clang API Documentation
00001 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This contains code dealing with code generation of C++ expressions 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "CodeGenFunction.h" 00015 #include "CGCUDARuntime.h" 00016 #include "CGCXXABI.h" 00017 #include "CGDebugInfo.h" 00018 #include "CGObjCRuntime.h" 00019 #include "clang/CodeGen/CGFunctionInfo.h" 00020 #include "clang/Frontend/CodeGenOptions.h" 00021 #include "llvm/IR/CallSite.h" 00022 #include "llvm/IR/Intrinsics.h" 00023 00024 using namespace clang; 00025 using namespace CodeGen; 00026 00027 static RequiredArgs commonEmitCXXMemberOrOperatorCall( 00028 CodeGenFunction &CGF, const CXXMethodDecl *MD, llvm::Value *Callee, 00029 ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam, 00030 QualType ImplicitParamTy, const CallExpr *CE, CallArgList &Args) { 00031 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 00032 isa<CXXOperatorCallExpr>(CE)); 00033 assert(MD->isInstance() && 00034 "Trying to emit a member or operator call expr on a static method!"); 00035 00036 // C++11 [class.mfct.non-static]p2: 00037 // If a non-static member function of a class X is called for an object that 00038 // is not of type X, or of a type derived from X, the behavior is undefined. 00039 SourceLocation CallLoc; 00040 if (CE) 00041 CallLoc = CE->getExprLoc(); 00042 CGF.EmitTypeCheck( 00043 isa<CXXConstructorDecl>(MD) ? CodeGenFunction::TCK_ConstructorCall 00044 : CodeGenFunction::TCK_MemberCall, 00045 CallLoc, This, CGF.getContext().getRecordType(MD->getParent())); 00046 00047 // Push the this ptr. 00048 Args.add(RValue::get(This), MD->getThisType(CGF.getContext())); 00049 00050 // If there is an implicit parameter (e.g. VTT), emit it. 00051 if (ImplicitParam) { 00052 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 00053 } 00054 00055 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 00056 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 00057 00058 // And the rest of the call args. 00059 if (CE) { 00060 // Special case: skip first argument of CXXOperatorCall (it is "this"). 00061 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 00062 CGF.EmitCallArgs(Args, FPT, CE->arg_begin() + ArgsToSkip, CE->arg_end(), 00063 CE->getDirectCallee()); 00064 } else { 00065 assert( 00066 FPT->getNumParams() == 0 && 00067 "No CallExpr specified for function with non-zero number of arguments"); 00068 } 00069 return required; 00070 } 00071 00072 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 00073 const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue, 00074 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 00075 const CallExpr *CE) { 00076 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 00077 CallArgList Args; 00078 RequiredArgs required = commonEmitCXXMemberOrOperatorCall( 00079 *this, MD, Callee, ReturnValue, This, ImplicitParam, ImplicitParamTy, CE, 00080 Args); 00081 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 00082 Callee, ReturnValue, Args, MD); 00083 } 00084 00085 RValue CodeGenFunction::EmitCXXStructorCall( 00086 const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue, 00087 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 00088 const CallExpr *CE, StructorType Type) { 00089 CallArgList Args; 00090 commonEmitCXXMemberOrOperatorCall(*this, MD, Callee, ReturnValue, This, 00091 ImplicitParam, ImplicitParamTy, CE, Args); 00092 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(MD, Type), 00093 Callee, ReturnValue, Args, MD); 00094 } 00095 00096 static CXXRecordDecl *getCXXRecord(const Expr *E) { 00097 QualType T = E->getType(); 00098 if (const PointerType *PTy = T->getAs<PointerType>()) 00099 T = PTy->getPointeeType(); 00100 const RecordType *Ty = T->castAs<RecordType>(); 00101 return cast<CXXRecordDecl>(Ty->getDecl()); 00102 } 00103 00104 // Note: This function also emit constructor calls to support a MSVC 00105 // extensions allowing explicit constructor function call. 00106 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 00107 ReturnValueSlot ReturnValue) { 00108 const Expr *callee = CE->getCallee()->IgnoreParens(); 00109 00110 if (isa<BinaryOperator>(callee)) 00111 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 00112 00113 const MemberExpr *ME = cast<MemberExpr>(callee); 00114 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 00115 00116 if (MD->isStatic()) { 00117 // The method is static, emit it as we would a regular call. 00118 llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 00119 return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE, 00120 ReturnValue); 00121 } 00122 00123 // Compute the object pointer. 00124 const Expr *Base = ME->getBase(); 00125 bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier(); 00126 00127 const CXXMethodDecl *DevirtualizedMethod = nullptr; 00128 if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) { 00129 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 00130 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 00131 assert(DevirtualizedMethod); 00132 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 00133 const Expr *Inner = Base->ignoreParenBaseCasts(); 00134 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 00135 MD->getReturnType().getCanonicalType()) 00136 // If the return types are not the same, this might be a case where more 00137 // code needs to run to compensate for it. For example, the derived 00138 // method might return a type that inherits form from the return 00139 // type of MD and has a prefix. 00140 // For now we just avoid devirtualizing these covariant cases. 00141 DevirtualizedMethod = nullptr; 00142 else if (getCXXRecord(Inner) == DevirtualizedClass) 00143 // If the class of the Inner expression is where the dynamic method 00144 // is defined, build the this pointer from it. 00145 Base = Inner; 00146 else if (getCXXRecord(Base) != DevirtualizedClass) { 00147 // If the method is defined in a class that is not the best dynamic 00148 // one or the one of the full expression, we would have to build 00149 // a derived-to-base cast to compute the correct this pointer, but 00150 // we don't have support for that yet, so do a virtual call. 00151 DevirtualizedMethod = nullptr; 00152 } 00153 } 00154 00155 llvm::Value *This; 00156 if (ME->isArrow()) 00157 This = EmitScalarExpr(Base); 00158 else 00159 This = EmitLValue(Base).getAddress(); 00160 00161 00162 if (MD->isTrivial()) { 00163 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 00164 if (isa<CXXConstructorDecl>(MD) && 00165 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 00166 return RValue::get(nullptr); 00167 00168 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 00169 // We don't like to generate the trivial copy/move assignment operator 00170 // when it isn't necessary; just produce the proper effect here. 00171 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 00172 EmitAggregateAssign(This, RHS, CE->getType()); 00173 return RValue::get(This); 00174 } 00175 00176 if (isa<CXXConstructorDecl>(MD) && 00177 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 00178 // Trivial move and copy ctor are the same. 00179 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 00180 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 00181 EmitAggregateCopy(This, RHS, CE->arg_begin()->getType()); 00182 return RValue::get(This); 00183 } 00184 llvm_unreachable("unknown trivial member function"); 00185 } 00186 00187 // Compute the function type we're calling. 00188 const CXXMethodDecl *CalleeDecl = DevirtualizedMethod ? DevirtualizedMethod : MD; 00189 const CGFunctionInfo *FInfo = nullptr; 00190 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 00191 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 00192 Dtor, StructorType::Complete); 00193 else if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 00194 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 00195 Ctor, StructorType::Complete); 00196 else 00197 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 00198 00199 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 00200 00201 // C++ [class.virtual]p12: 00202 // Explicit qualification with the scope operator (5.1) suppresses the 00203 // virtual call mechanism. 00204 // 00205 // We also don't emit a virtual call if the base expression has a record type 00206 // because then we know what the type is. 00207 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 00208 llvm::Value *Callee; 00209 00210 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 00211 assert(CE->arg_begin() == CE->arg_end() && 00212 "Destructor shouldn't have explicit parameters"); 00213 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 00214 if (UseVirtualCall) { 00215 CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete, 00216 This, CE); 00217 } else { 00218 if (getLangOpts().AppleKext && 00219 MD->isVirtual() && 00220 ME->hasQualifier()) 00221 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 00222 else if (!DevirtualizedMethod) 00223 Callee = 00224 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty); 00225 else { 00226 const CXXDestructorDecl *DDtor = 00227 cast<CXXDestructorDecl>(DevirtualizedMethod); 00228 Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); 00229 } 00230 EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This, 00231 /*ImplicitParam=*/nullptr, QualType(), CE); 00232 } 00233 return RValue::get(nullptr); 00234 } 00235 00236 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 00237 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 00238 } else if (UseVirtualCall) { 00239 Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty); 00240 } else { 00241 if (getLangOpts().AppleKext && 00242 MD->isVirtual() && 00243 ME->hasQualifier()) 00244 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 00245 else if (!DevirtualizedMethod) 00246 Callee = CGM.GetAddrOfFunction(MD, Ty); 00247 else { 00248 Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); 00249 } 00250 } 00251 00252 if (MD->isVirtual()) { 00253 This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 00254 *this, MD, This, UseVirtualCall); 00255 } 00256 00257 return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This, 00258 /*ImplicitParam=*/nullptr, QualType(), CE); 00259 } 00260 00261 RValue 00262 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 00263 ReturnValueSlot ReturnValue) { 00264 const BinaryOperator *BO = 00265 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 00266 const Expr *BaseExpr = BO->getLHS(); 00267 const Expr *MemFnExpr = BO->getRHS(); 00268 00269 const MemberPointerType *MPT = 00270 MemFnExpr->getType()->castAs<MemberPointerType>(); 00271 00272 const FunctionProtoType *FPT = 00273 MPT->getPointeeType()->castAs<FunctionProtoType>(); 00274 const CXXRecordDecl *RD = 00275 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 00276 00277 // Get the member function pointer. 00278 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 00279 00280 // Emit the 'this' pointer. 00281 llvm::Value *This; 00282 00283 if (BO->getOpcode() == BO_PtrMemI) 00284 This = EmitScalarExpr(BaseExpr); 00285 else 00286 This = EmitLValue(BaseExpr).getAddress(); 00287 00288 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This, 00289 QualType(MPT->getClass(), 0)); 00290 00291 // Ask the ABI to load the callee. Note that This is modified. 00292 llvm::Value *Callee = 00293 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, MemFnPtr, MPT); 00294 00295 CallArgList Args; 00296 00297 QualType ThisType = 00298 getContext().getPointerType(getContext().getTagDeclType(RD)); 00299 00300 // Push the this ptr. 00301 Args.add(RValue::get(This), ThisType); 00302 00303 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 00304 00305 // And the rest of the call args 00306 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end(), E->getDirectCallee()); 00307 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 00308 Callee, ReturnValue, Args); 00309 } 00310 00311 RValue 00312 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 00313 const CXXMethodDecl *MD, 00314 ReturnValueSlot ReturnValue) { 00315 assert(MD->isInstance() && 00316 "Trying to emit a member call expr on a static method!"); 00317 LValue LV = EmitLValue(E->getArg(0)); 00318 llvm::Value *This = LV.getAddress(); 00319 00320 if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 00321 MD->isTrivial() && !MD->getParent()->mayInsertExtraPadding()) { 00322 llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress(); 00323 QualType Ty = E->getType(); 00324 EmitAggregateAssign(This, Src, Ty); 00325 return RValue::get(This); 00326 } 00327 00328 llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This); 00329 return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This, 00330 /*ImplicitParam=*/nullptr, QualType(), E); 00331 } 00332 00333 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 00334 ReturnValueSlot ReturnValue) { 00335 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 00336 } 00337 00338 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 00339 llvm::Value *DestPtr, 00340 const CXXRecordDecl *Base) { 00341 if (Base->isEmpty()) 00342 return; 00343 00344 DestPtr = CGF.EmitCastToVoidPtr(DestPtr); 00345 00346 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 00347 CharUnits Size = Layout.getNonVirtualSize(); 00348 CharUnits Align = Layout.getNonVirtualAlignment(); 00349 00350 llvm::Value *SizeVal = CGF.CGM.getSize(Size); 00351 00352 // If the type contains a pointer to data member we can't memset it to zero. 00353 // Instead, create a null constant and copy it to the destination. 00354 // TODO: there are other patterns besides zero that we can usefully memset, 00355 // like -1, which happens to be the pattern used by member-pointers. 00356 // TODO: isZeroInitializable can be over-conservative in the case where a 00357 // virtual base contains a member pointer. 00358 if (!CGF.CGM.getTypes().isZeroInitializable(Base)) { 00359 llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base); 00360 00361 llvm::GlobalVariable *NullVariable = 00362 new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(), 00363 /*isConstant=*/true, 00364 llvm::GlobalVariable::PrivateLinkage, 00365 NullConstant, Twine()); 00366 NullVariable->setAlignment(Align.getQuantity()); 00367 llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable); 00368 00369 // Get and call the appropriate llvm.memcpy overload. 00370 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity()); 00371 return; 00372 } 00373 00374 // Otherwise, just memset the whole thing to zero. This is legal 00375 // because in LLVM, all default initializers (other than the ones we just 00376 // handled above) are guaranteed to have a bit pattern of all zeros. 00377 CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal, 00378 Align.getQuantity()); 00379 } 00380 00381 void 00382 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 00383 AggValueSlot Dest) { 00384 assert(!Dest.isIgnored() && "Must have a destination!"); 00385 const CXXConstructorDecl *CD = E->getConstructor(); 00386 00387 // If we require zero initialization before (or instead of) calling the 00388 // constructor, as can be the case with a non-user-provided default 00389 // constructor, emit the zero initialization now, unless destination is 00390 // already zeroed. 00391 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 00392 switch (E->getConstructionKind()) { 00393 case CXXConstructExpr::CK_Delegating: 00394 case CXXConstructExpr::CK_Complete: 00395 EmitNullInitialization(Dest.getAddr(), E->getType()); 00396 break; 00397 case CXXConstructExpr::CK_VirtualBase: 00398 case CXXConstructExpr::CK_NonVirtualBase: 00399 EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent()); 00400 break; 00401 } 00402 } 00403 00404 // If this is a call to a trivial default constructor, do nothing. 00405 if (CD->isTrivial() && CD->isDefaultConstructor()) 00406 return; 00407 00408 // Elide the constructor if we're constructing from a temporary. 00409 // The temporary check is required because Sema sets this on NRVO 00410 // returns. 00411 if (getLangOpts().ElideConstructors && E->isElidable()) { 00412 assert(getContext().hasSameUnqualifiedType(E->getType(), 00413 E->getArg(0)->getType())); 00414 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 00415 EmitAggExpr(E->getArg(0), Dest); 00416 return; 00417 } 00418 } 00419 00420 if (const ConstantArrayType *arrayType 00421 = getContext().getAsConstantArrayType(E->getType())) { 00422 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), E); 00423 } else { 00424 CXXCtorType Type = Ctor_Complete; 00425 bool ForVirtualBase = false; 00426 bool Delegating = false; 00427 00428 switch (E->getConstructionKind()) { 00429 case CXXConstructExpr::CK_Delegating: 00430 // We should be emitting a constructor; GlobalDecl will assert this 00431 Type = CurGD.getCtorType(); 00432 Delegating = true; 00433 break; 00434 00435 case CXXConstructExpr::CK_Complete: 00436 Type = Ctor_Complete; 00437 break; 00438 00439 case CXXConstructExpr::CK_VirtualBase: 00440 ForVirtualBase = true; 00441 // fall-through 00442 00443 case CXXConstructExpr::CK_NonVirtualBase: 00444 Type = Ctor_Base; 00445 } 00446 00447 // Call the constructor. 00448 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(), 00449 E); 00450 } 00451 } 00452 00453 void 00454 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 00455 llvm::Value *Src, 00456 const Expr *Exp) { 00457 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 00458 Exp = E->getSubExpr(); 00459 assert(isa<CXXConstructExpr>(Exp) && 00460 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 00461 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 00462 const CXXConstructorDecl *CD = E->getConstructor(); 00463 RunCleanupsScope Scope(*this); 00464 00465 // If we require zero initialization before (or instead of) calling the 00466 // constructor, as can be the case with a non-user-provided default 00467 // constructor, emit the zero initialization now. 00468 // FIXME. Do I still need this for a copy ctor synthesis? 00469 if (E->requiresZeroInitialization()) 00470 EmitNullInitialization(Dest, E->getType()); 00471 00472 assert(!getContext().getAsConstantArrayType(E->getType()) 00473 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 00474 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 00475 } 00476 00477 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 00478 const CXXNewExpr *E) { 00479 if (!E->isArray()) 00480 return CharUnits::Zero(); 00481 00482 // No cookie is required if the operator new[] being used is the 00483 // reserved placement operator new[]. 00484 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 00485 return CharUnits::Zero(); 00486 00487 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 00488 } 00489 00490 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 00491 const CXXNewExpr *e, 00492 unsigned minElements, 00493 llvm::Value *&numElements, 00494 llvm::Value *&sizeWithoutCookie) { 00495 QualType type = e->getAllocatedType(); 00496 00497 if (!e->isArray()) { 00498 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 00499 sizeWithoutCookie 00500 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 00501 return sizeWithoutCookie; 00502 } 00503 00504 // The width of size_t. 00505 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 00506 00507 // Figure out the cookie size. 00508 llvm::APInt cookieSize(sizeWidth, 00509 CalculateCookiePadding(CGF, e).getQuantity()); 00510 00511 // Emit the array size expression. 00512 // We multiply the size of all dimensions for NumElements. 00513 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 00514 numElements = CGF.EmitScalarExpr(e->getArraySize()); 00515 assert(isa<llvm::IntegerType>(numElements->getType())); 00516 00517 // The number of elements can be have an arbitrary integer type; 00518 // essentially, we need to multiply it by a constant factor, add a 00519 // cookie size, and verify that the result is representable as a 00520 // size_t. That's just a gloss, though, and it's wrong in one 00521 // important way: if the count is negative, it's an error even if 00522 // the cookie size would bring the total size >= 0. 00523 bool isSigned 00524 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 00525 llvm::IntegerType *numElementsType 00526 = cast<llvm::IntegerType>(numElements->getType()); 00527 unsigned numElementsWidth = numElementsType->getBitWidth(); 00528 00529 // Compute the constant factor. 00530 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 00531 while (const ConstantArrayType *CAT 00532 = CGF.getContext().getAsConstantArrayType(type)) { 00533 type = CAT->getElementType(); 00534 arraySizeMultiplier *= CAT->getSize(); 00535 } 00536 00537 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 00538 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 00539 typeSizeMultiplier *= arraySizeMultiplier; 00540 00541 // This will be a size_t. 00542 llvm::Value *size; 00543 00544 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 00545 // Don't bloat the -O0 code. 00546 if (llvm::ConstantInt *numElementsC = 00547 dyn_cast<llvm::ConstantInt>(numElements)) { 00548 const llvm::APInt &count = numElementsC->getValue(); 00549 00550 bool hasAnyOverflow = false; 00551 00552 // If 'count' was a negative number, it's an overflow. 00553 if (isSigned && count.isNegative()) 00554 hasAnyOverflow = true; 00555 00556 // We want to do all this arithmetic in size_t. If numElements is 00557 // wider than that, check whether it's already too big, and if so, 00558 // overflow. 00559 else if (numElementsWidth > sizeWidth && 00560 numElementsWidth - sizeWidth > count.countLeadingZeros()) 00561 hasAnyOverflow = true; 00562 00563 // Okay, compute a count at the right width. 00564 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 00565 00566 // If there is a brace-initializer, we cannot allocate fewer elements than 00567 // there are initializers. If we do, that's treated like an overflow. 00568 if (adjustedCount.ult(minElements)) 00569 hasAnyOverflow = true; 00570 00571 // Scale numElements by that. This might overflow, but we don't 00572 // care because it only overflows if allocationSize does, too, and 00573 // if that overflows then we shouldn't use this. 00574 numElements = llvm::ConstantInt::get(CGF.SizeTy, 00575 adjustedCount * arraySizeMultiplier); 00576 00577 // Compute the size before cookie, and track whether it overflowed. 00578 bool overflow; 00579 llvm::APInt allocationSize 00580 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 00581 hasAnyOverflow |= overflow; 00582 00583 // Add in the cookie, and check whether it's overflowed. 00584 if (cookieSize != 0) { 00585 // Save the current size without a cookie. This shouldn't be 00586 // used if there was overflow. 00587 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 00588 00589 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 00590 hasAnyOverflow |= overflow; 00591 } 00592 00593 // On overflow, produce a -1 so operator new will fail. 00594 if (hasAnyOverflow) { 00595 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 00596 } else { 00597 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 00598 } 00599 00600 // Otherwise, we might need to use the overflow intrinsics. 00601 } else { 00602 // There are up to five conditions we need to test for: 00603 // 1) if isSigned, we need to check whether numElements is negative; 00604 // 2) if numElementsWidth > sizeWidth, we need to check whether 00605 // numElements is larger than something representable in size_t; 00606 // 3) if minElements > 0, we need to check whether numElements is smaller 00607 // than that. 00608 // 4) we need to compute 00609 // sizeWithoutCookie := numElements * typeSizeMultiplier 00610 // and check whether it overflows; and 00611 // 5) if we need a cookie, we need to compute 00612 // size := sizeWithoutCookie + cookieSize 00613 // and check whether it overflows. 00614 00615 llvm::Value *hasOverflow = nullptr; 00616 00617 // If numElementsWidth > sizeWidth, then one way or another, we're 00618 // going to have to do a comparison for (2), and this happens to 00619 // take care of (1), too. 00620 if (numElementsWidth > sizeWidth) { 00621 llvm::APInt threshold(numElementsWidth, 1); 00622 threshold <<= sizeWidth; 00623 00624 llvm::Value *thresholdV 00625 = llvm::ConstantInt::get(numElementsType, threshold); 00626 00627 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 00628 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 00629 00630 // Otherwise, if we're signed, we want to sext up to size_t. 00631 } else if (isSigned) { 00632 if (numElementsWidth < sizeWidth) 00633 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 00634 00635 // If there's a non-1 type size multiplier, then we can do the 00636 // signedness check at the same time as we do the multiply 00637 // because a negative number times anything will cause an 00638 // unsigned overflow. Otherwise, we have to do it here. But at least 00639 // in this case, we can subsume the >= minElements check. 00640 if (typeSizeMultiplier == 1) 00641 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 00642 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 00643 00644 // Otherwise, zext up to size_t if necessary. 00645 } else if (numElementsWidth < sizeWidth) { 00646 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 00647 } 00648 00649 assert(numElements->getType() == CGF.SizeTy); 00650 00651 if (minElements) { 00652 // Don't allow allocation of fewer elements than we have initializers. 00653 if (!hasOverflow) { 00654 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 00655 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 00656 } else if (numElementsWidth > sizeWidth) { 00657 // The other existing overflow subsumes this check. 00658 // We do an unsigned comparison, since any signed value < -1 is 00659 // taken care of either above or below. 00660 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 00661 CGF.Builder.CreateICmpULT(numElements, 00662 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 00663 } 00664 } 00665 00666 size = numElements; 00667 00668 // Multiply by the type size if necessary. This multiplier 00669 // includes all the factors for nested arrays. 00670 // 00671 // This step also causes numElements to be scaled up by the 00672 // nested-array factor if necessary. Overflow on this computation 00673 // can be ignored because the result shouldn't be used if 00674 // allocation fails. 00675 if (typeSizeMultiplier != 1) { 00676 llvm::Value *umul_with_overflow 00677 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 00678 00679 llvm::Value *tsmV = 00680 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 00681 llvm::Value *result = 00682 CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV); 00683 00684 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 00685 if (hasOverflow) 00686 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 00687 else 00688 hasOverflow = overflowed; 00689 00690 size = CGF.Builder.CreateExtractValue(result, 0); 00691 00692 // Also scale up numElements by the array size multiplier. 00693 if (arraySizeMultiplier != 1) { 00694 // If the base element type size is 1, then we can re-use the 00695 // multiply we just did. 00696 if (typeSize.isOne()) { 00697 assert(arraySizeMultiplier == typeSizeMultiplier); 00698 numElements = size; 00699 00700 // Otherwise we need a separate multiply. 00701 } else { 00702 llvm::Value *asmV = 00703 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 00704 numElements = CGF.Builder.CreateMul(numElements, asmV); 00705 } 00706 } 00707 } else { 00708 // numElements doesn't need to be scaled. 00709 assert(arraySizeMultiplier == 1); 00710 } 00711 00712 // Add in the cookie size if necessary. 00713 if (cookieSize != 0) { 00714 sizeWithoutCookie = size; 00715 00716 llvm::Value *uadd_with_overflow 00717 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 00718 00719 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 00720 llvm::Value *result = 00721 CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV); 00722 00723 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 00724 if (hasOverflow) 00725 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 00726 else 00727 hasOverflow = overflowed; 00728 00729 size = CGF.Builder.CreateExtractValue(result, 0); 00730 } 00731 00732 // If we had any possibility of dynamic overflow, make a select to 00733 // overwrite 'size' with an all-ones value, which should cause 00734 // operator new to throw. 00735 if (hasOverflow) 00736 size = CGF.Builder.CreateSelect(hasOverflow, 00737 llvm::Constant::getAllOnesValue(CGF.SizeTy), 00738 size); 00739 } 00740 00741 if (cookieSize == 0) 00742 sizeWithoutCookie = size; 00743 else 00744 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 00745 00746 return size; 00747 } 00748 00749 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 00750 QualType AllocType, llvm::Value *NewPtr) { 00751 // FIXME: Refactor with EmitExprAsInit. 00752 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType); 00753 switch (CGF.getEvaluationKind(AllocType)) { 00754 case TEK_Scalar: 00755 CGF.EmitScalarInit(Init, nullptr, CGF.MakeAddrLValue(NewPtr, AllocType, 00756 Alignment), 00757 false); 00758 return; 00759 case TEK_Complex: 00760 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType, 00761 Alignment), 00762 /*isInit*/ true); 00763 return; 00764 case TEK_Aggregate: { 00765 AggValueSlot Slot 00766 = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(), 00767 AggValueSlot::IsDestructed, 00768 AggValueSlot::DoesNotNeedGCBarriers, 00769 AggValueSlot::IsNotAliased); 00770 CGF.EmitAggExpr(Init, Slot); 00771 return; 00772 } 00773 } 00774 llvm_unreachable("bad evaluation kind"); 00775 } 00776 00777 void 00778 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, 00779 QualType ElementType, 00780 llvm::Value *BeginPtr, 00781 llvm::Value *NumElements, 00782 llvm::Value *AllocSizeWithoutCookie) { 00783 // If we have a type with trivial initialization and no initializer, 00784 // there's nothing to do. 00785 if (!E->hasInitializer()) 00786 return; 00787 00788 llvm::Value *CurPtr = BeginPtr; 00789 00790 unsigned InitListElements = 0; 00791 00792 const Expr *Init = E->getInitializer(); 00793 llvm::AllocaInst *EndOfInit = nullptr; 00794 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 00795 EHScopeStack::stable_iterator Cleanup; 00796 llvm::Instruction *CleanupDominator = nullptr; 00797 00798 // If the initializer is an initializer list, first do the explicit elements. 00799 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 00800 InitListElements = ILE->getNumInits(); 00801 00802 // If this is a multi-dimensional array new, we will initialize multiple 00803 // elements with each init list element. 00804 QualType AllocType = E->getAllocatedType(); 00805 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 00806 AllocType->getAsArrayTypeUnsafe())) { 00807 unsigned AS = CurPtr->getType()->getPointerAddressSpace(); 00808 llvm::Type *AllocPtrTy = ConvertTypeForMem(AllocType)->getPointerTo(AS); 00809 CurPtr = Builder.CreateBitCast(CurPtr, AllocPtrTy); 00810 InitListElements *= getContext().getConstantArrayElementCount(CAT); 00811 } 00812 00813 // Enter a partial-destruction Cleanup if necessary. 00814 if (needsEHCleanup(DtorKind)) { 00815 // In principle we could tell the Cleanup where we are more 00816 // directly, but the control flow can get so varied here that it 00817 // would actually be quite complex. Therefore we go through an 00818 // alloca. 00819 EndOfInit = CreateTempAlloca(BeginPtr->getType(), "array.init.end"); 00820 CleanupDominator = Builder.CreateStore(BeginPtr, EndOfInit); 00821 pushIrregularPartialArrayCleanup(BeginPtr, EndOfInit, ElementType, 00822 getDestroyer(DtorKind)); 00823 Cleanup = EHStack.stable_begin(); 00824 } 00825 00826 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 00827 // Tell the cleanup that it needs to destroy up to this 00828 // element. TODO: some of these stores can be trivially 00829 // observed to be unnecessary. 00830 if (EndOfInit) 00831 Builder.CreateStore(Builder.CreateBitCast(CurPtr, BeginPtr->getType()), 00832 EndOfInit); 00833 // FIXME: If the last initializer is an incomplete initializer list for 00834 // an array, and we have an array filler, we can fold together the two 00835 // initialization loops. 00836 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 00837 ILE->getInit(i)->getType(), CurPtr); 00838 CurPtr = Builder.CreateConstInBoundsGEP1_32(CurPtr, 1, "array.exp.next"); 00839 } 00840 00841 // The remaining elements are filled with the array filler expression. 00842 Init = ILE->getArrayFiller(); 00843 00844 // Extract the initializer for the individual array elements by pulling 00845 // out the array filler from all the nested initializer lists. This avoids 00846 // generating a nested loop for the initialization. 00847 while (Init && Init->getType()->isConstantArrayType()) { 00848 auto *SubILE = dyn_cast<InitListExpr>(Init); 00849 if (!SubILE) 00850 break; 00851 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 00852 Init = SubILE->getArrayFiller(); 00853 } 00854 00855 // Switch back to initializing one base element at a time. 00856 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr->getType()); 00857 } 00858 00859 // Attempt to perform zero-initialization using memset. 00860 auto TryMemsetInitialization = [&]() -> bool { 00861 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 00862 // we can initialize with a memset to -1. 00863 if (!CGM.getTypes().isZeroInitializable(ElementType)) 00864 return false; 00865 00866 // Optimization: since zero initialization will just set the memory 00867 // to all zeroes, generate a single memset to do it in one shot. 00868 00869 // Subtract out the size of any elements we've already initialized. 00870 auto *RemainingSize = AllocSizeWithoutCookie; 00871 if (InitListElements) { 00872 // We know this can't overflow; we check this when doing the allocation. 00873 auto *InitializedSize = llvm::ConstantInt::get( 00874 RemainingSize->getType(), 00875 getContext().getTypeSizeInChars(ElementType).getQuantity() * 00876 InitListElements); 00877 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 00878 } 00879 00880 // Create the memset. 00881 CharUnits Alignment = getContext().getTypeAlignInChars(ElementType); 00882 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, 00883 Alignment.getQuantity(), false); 00884 return true; 00885 }; 00886 00887 // If all elements have already been initialized, skip any further 00888 // initialization. 00889 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 00890 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 00891 // If there was a Cleanup, deactivate it. 00892 if (CleanupDominator) 00893 DeactivateCleanupBlock(Cleanup, CleanupDominator); 00894 return; 00895 } 00896 00897 assert(Init && "have trailing elements to initialize but no initializer"); 00898 00899 // If this is a constructor call, try to optimize it out, and failing that 00900 // emit a single loop to initialize all remaining elements. 00901 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 00902 CXXConstructorDecl *Ctor = CCE->getConstructor(); 00903 if (Ctor->isTrivial()) { 00904 // If new expression did not specify value-initialization, then there 00905 // is no initialization. 00906 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 00907 return; 00908 00909 if (TryMemsetInitialization()) 00910 return; 00911 } 00912 00913 // Store the new Cleanup position for irregular Cleanups. 00914 // 00915 // FIXME: Share this cleanup with the constructor call emission rather than 00916 // having it create a cleanup of its own. 00917 if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit); 00918 00919 // Emit a constructor call loop to initialize the remaining elements. 00920 if (InitListElements) 00921 NumElements = Builder.CreateSub( 00922 NumElements, 00923 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 00924 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 00925 CCE->requiresZeroInitialization()); 00926 return; 00927 } 00928 00929 // If this is value-initialization, we can usually use memset. 00930 ImplicitValueInitExpr IVIE(ElementType); 00931 if (isa<ImplicitValueInitExpr>(Init)) { 00932 if (TryMemsetInitialization()) 00933 return; 00934 00935 // Switch to an ImplicitValueInitExpr for the element type. This handles 00936 // only one case: multidimensional array new of pointers to members. In 00937 // all other cases, we already have an initializer for the array element. 00938 Init = &IVIE; 00939 } 00940 00941 // At this point we should have found an initializer for the individual 00942 // elements of the array. 00943 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 00944 "got wrong type of element to initialize"); 00945 00946 // If we have an empty initializer list, we can usually use memset. 00947 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 00948 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 00949 return; 00950 00951 // Create the loop blocks. 00952 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 00953 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 00954 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 00955 00956 // Find the end of the array, hoisted out of the loop. 00957 llvm::Value *EndPtr = 00958 Builder.CreateInBoundsGEP(BeginPtr, NumElements, "array.end"); 00959 00960 // If the number of elements isn't constant, we have to now check if there is 00961 // anything left to initialize. 00962 if (!ConstNum) { 00963 llvm::Value *IsEmpty = Builder.CreateICmpEQ(CurPtr, EndPtr, 00964 "array.isempty"); 00965 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 00966 } 00967 00968 // Enter the loop. 00969 EmitBlock(LoopBB); 00970 00971 // Set up the current-element phi. 00972 llvm::PHINode *CurPtrPhi = 00973 Builder.CreatePHI(CurPtr->getType(), 2, "array.cur"); 00974 CurPtrPhi->addIncoming(CurPtr, EntryBB); 00975 CurPtr = CurPtrPhi; 00976 00977 // Store the new Cleanup position for irregular Cleanups. 00978 if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit); 00979 00980 // Enter a partial-destruction Cleanup if necessary. 00981 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 00982 pushRegularPartialArrayCleanup(BeginPtr, CurPtr, ElementType, 00983 getDestroyer(DtorKind)); 00984 Cleanup = EHStack.stable_begin(); 00985 CleanupDominator = Builder.CreateUnreachable(); 00986 } 00987 00988 // Emit the initializer into this element. 00989 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr); 00990 00991 // Leave the Cleanup if we entered one. 00992 if (CleanupDominator) { 00993 DeactivateCleanupBlock(Cleanup, CleanupDominator); 00994 CleanupDominator->eraseFromParent(); 00995 } 00996 00997 // Advance to the next element by adjusting the pointer type as necessary. 00998 llvm::Value *NextPtr = 00999 Builder.CreateConstInBoundsGEP1_32(CurPtr, 1, "array.next"); 01000 01001 // Check whether we've gotten to the end of the array and, if so, 01002 // exit the loop. 01003 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 01004 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 01005 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 01006 01007 EmitBlock(ContBB); 01008 } 01009 01010 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 01011 QualType ElementType, 01012 llvm::Value *NewPtr, 01013 llvm::Value *NumElements, 01014 llvm::Value *AllocSizeWithoutCookie) { 01015 if (E->isArray()) 01016 CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements, 01017 AllocSizeWithoutCookie); 01018 else if (const Expr *Init = E->getInitializer()) 01019 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 01020 } 01021 01022 /// Emit a call to an operator new or operator delete function, as implicitly 01023 /// created by new-expressions and delete-expressions. 01024 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 01025 const FunctionDecl *Callee, 01026 const FunctionProtoType *CalleeType, 01027 const CallArgList &Args) { 01028 llvm::Instruction *CallOrInvoke; 01029 llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee); 01030 RValue RV = 01031 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(Args, CalleeType), 01032 CalleeAddr, ReturnValueSlot(), Args, 01033 Callee, &CallOrInvoke); 01034 01035 /// C++1y [expr.new]p10: 01036 /// [In a new-expression,] an implementation is allowed to omit a call 01037 /// to a replaceable global allocation function. 01038 /// 01039 /// We model such elidable calls with the 'builtin' attribute. 01040 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr); 01041 if (Callee->isReplaceableGlobalAllocationFunction() && 01042 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 01043 // FIXME: Add addAttribute to CallSite. 01044 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 01045 CI->addAttribute(llvm::AttributeSet::FunctionIndex, 01046 llvm::Attribute::Builtin); 01047 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 01048 II->addAttribute(llvm::AttributeSet::FunctionIndex, 01049 llvm::Attribute::Builtin); 01050 else 01051 llvm_unreachable("unexpected kind of call instruction"); 01052 } 01053 01054 return RV; 01055 } 01056 01057 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 01058 const Expr *Arg, 01059 bool IsDelete) { 01060 CallArgList Args; 01061 const Stmt *ArgS = Arg; 01062 EmitCallArgs(Args, *Type->param_type_begin(), 01063 ConstExprIterator(&ArgS), ConstExprIterator(&ArgS + 1)); 01064 // Find the allocation or deallocation function that we're calling. 01065 ASTContext &Ctx = getContext(); 01066 DeclarationName Name = Ctx.DeclarationNames 01067 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 01068 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 01069 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 01070 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 01071 return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args); 01072 llvm_unreachable("predeclared global operator new/delete is missing"); 01073 } 01074 01075 namespace { 01076 /// A cleanup to call the given 'operator delete' function upon 01077 /// abnormal exit from a new expression. 01078 class CallDeleteDuringNew : public EHScopeStack::Cleanup { 01079 size_t NumPlacementArgs; 01080 const FunctionDecl *OperatorDelete; 01081 llvm::Value *Ptr; 01082 llvm::Value *AllocSize; 01083 01084 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 01085 01086 public: 01087 static size_t getExtraSize(size_t NumPlacementArgs) { 01088 return NumPlacementArgs * sizeof(RValue); 01089 } 01090 01091 CallDeleteDuringNew(size_t NumPlacementArgs, 01092 const FunctionDecl *OperatorDelete, 01093 llvm::Value *Ptr, 01094 llvm::Value *AllocSize) 01095 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 01096 Ptr(Ptr), AllocSize(AllocSize) {} 01097 01098 void setPlacementArg(unsigned I, RValue Arg) { 01099 assert(I < NumPlacementArgs && "index out of range"); 01100 getPlacementArgs()[I] = Arg; 01101 } 01102 01103 void Emit(CodeGenFunction &CGF, Flags flags) override { 01104 const FunctionProtoType *FPT 01105 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 01106 assert(FPT->getNumParams() == NumPlacementArgs + 1 || 01107 (FPT->getNumParams() == 2 && NumPlacementArgs == 0)); 01108 01109 CallArgList DeleteArgs; 01110 01111 // The first argument is always a void*. 01112 FunctionProtoType::param_type_iterator AI = FPT->param_type_begin(); 01113 DeleteArgs.add(RValue::get(Ptr), *AI++); 01114 01115 // A member 'operator delete' can take an extra 'size_t' argument. 01116 if (FPT->getNumParams() == NumPlacementArgs + 2) 01117 DeleteArgs.add(RValue::get(AllocSize), *AI++); 01118 01119 // Pass the rest of the arguments, which must match exactly. 01120 for (unsigned I = 0; I != NumPlacementArgs; ++I) 01121 DeleteArgs.add(getPlacementArgs()[I], *AI++); 01122 01123 // Call 'operator delete'. 01124 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 01125 } 01126 }; 01127 01128 /// A cleanup to call the given 'operator delete' function upon 01129 /// abnormal exit from a new expression when the new expression is 01130 /// conditional. 01131 class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup { 01132 size_t NumPlacementArgs; 01133 const FunctionDecl *OperatorDelete; 01134 DominatingValue<RValue>::saved_type Ptr; 01135 DominatingValue<RValue>::saved_type AllocSize; 01136 01137 DominatingValue<RValue>::saved_type *getPlacementArgs() { 01138 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 01139 } 01140 01141 public: 01142 static size_t getExtraSize(size_t NumPlacementArgs) { 01143 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 01144 } 01145 01146 CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 01147 const FunctionDecl *OperatorDelete, 01148 DominatingValue<RValue>::saved_type Ptr, 01149 DominatingValue<RValue>::saved_type AllocSize) 01150 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 01151 Ptr(Ptr), AllocSize(AllocSize) {} 01152 01153 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 01154 assert(I < NumPlacementArgs && "index out of range"); 01155 getPlacementArgs()[I] = Arg; 01156 } 01157 01158 void Emit(CodeGenFunction &CGF, Flags flags) override { 01159 const FunctionProtoType *FPT 01160 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 01161 assert(FPT->getNumParams() == NumPlacementArgs + 1 || 01162 (FPT->getNumParams() == 2 && NumPlacementArgs == 0)); 01163 01164 CallArgList DeleteArgs; 01165 01166 // The first argument is always a void*. 01167 FunctionProtoType::param_type_iterator AI = FPT->param_type_begin(); 01168 DeleteArgs.add(Ptr.restore(CGF), *AI++); 01169 01170 // A member 'operator delete' can take an extra 'size_t' argument. 01171 if (FPT->getNumParams() == NumPlacementArgs + 2) { 01172 RValue RV = AllocSize.restore(CGF); 01173 DeleteArgs.add(RV, *AI++); 01174 } 01175 01176 // Pass the rest of the arguments, which must match exactly. 01177 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 01178 RValue RV = getPlacementArgs()[I].restore(CGF); 01179 DeleteArgs.add(RV, *AI++); 01180 } 01181 01182 // Call 'operator delete'. 01183 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 01184 } 01185 }; 01186 } 01187 01188 /// Enter a cleanup to call 'operator delete' if the initializer in a 01189 /// new-expression throws. 01190 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 01191 const CXXNewExpr *E, 01192 llvm::Value *NewPtr, 01193 llvm::Value *AllocSize, 01194 const CallArgList &NewArgs) { 01195 // If we're not inside a conditional branch, then the cleanup will 01196 // dominate and we can do the easier (and more efficient) thing. 01197 if (!CGF.isInConditionalBranch()) { 01198 CallDeleteDuringNew *Cleanup = CGF.EHStack 01199 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 01200 E->getNumPlacementArgs(), 01201 E->getOperatorDelete(), 01202 NewPtr, AllocSize); 01203 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 01204 Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 01205 01206 return; 01207 } 01208 01209 // Otherwise, we need to save all this stuff. 01210 DominatingValue<RValue>::saved_type SavedNewPtr = 01211 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr)); 01212 DominatingValue<RValue>::saved_type SavedAllocSize = 01213 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 01214 01215 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 01216 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, 01217 E->getNumPlacementArgs(), 01218 E->getOperatorDelete(), 01219 SavedNewPtr, 01220 SavedAllocSize); 01221 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 01222 Cleanup->setPlacementArg(I, 01223 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 01224 01225 CGF.initFullExprCleanup(); 01226 } 01227 01228 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 01229 // The element type being allocated. 01230 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 01231 01232 // 1. Build a call to the allocation function. 01233 FunctionDecl *allocator = E->getOperatorNew(); 01234 const FunctionProtoType *allocatorType = 01235 allocator->getType()->castAs<FunctionProtoType>(); 01236 01237 CallArgList allocatorArgs; 01238 01239 // The allocation size is the first argument. 01240 QualType sizeType = getContext().getSizeType(); 01241 01242 // If there is a brace-initializer, cannot allocate fewer elements than inits. 01243 unsigned minElements = 0; 01244 if (E->isArray() && E->hasInitializer()) { 01245 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer())) 01246 minElements = ILE->getNumInits(); 01247 } 01248 01249 llvm::Value *numElements = nullptr; 01250 llvm::Value *allocSizeWithoutCookie = nullptr; 01251 llvm::Value *allocSize = 01252 EmitCXXNewAllocSize(*this, E, minElements, numElements, 01253 allocSizeWithoutCookie); 01254 01255 allocatorArgs.add(RValue::get(allocSize), sizeType); 01256 01257 // We start at 1 here because the first argument (the allocation size) 01258 // has already been emitted. 01259 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arg_begin(), 01260 E->placement_arg_end(), /* CalleeDecl */ nullptr, 01261 /*ParamsToSkip*/ 1); 01262 01263 // Emit the allocation call. If the allocator is a global placement 01264 // operator, just "inline" it directly. 01265 RValue RV; 01266 if (allocator->isReservedGlobalPlacementOperator()) { 01267 assert(allocatorArgs.size() == 2); 01268 RV = allocatorArgs[1].RV; 01269 // TODO: kill any unnecessary computations done for the size 01270 // argument. 01271 } else { 01272 RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 01273 } 01274 01275 // Emit a null check on the allocation result if the allocation 01276 // function is allowed to return null (because it has a non-throwing 01277 // exception spec; for this part, we inline 01278 // CXXNewExpr::shouldNullCheckAllocation()) and we have an 01279 // interesting initializer. 01280 bool nullCheck = allocatorType->isNothrow(getContext()) && 01281 (!allocType.isPODType(getContext()) || E->hasInitializer()); 01282 01283 llvm::BasicBlock *nullCheckBB = nullptr; 01284 llvm::BasicBlock *contBB = nullptr; 01285 01286 llvm::Value *allocation = RV.getScalarVal(); 01287 unsigned AS = allocation->getType()->getPointerAddressSpace(); 01288 01289 // The null-check means that the initializer is conditionally 01290 // evaluated. 01291 ConditionalEvaluation conditional(*this); 01292 01293 if (nullCheck) { 01294 conditional.begin(*this); 01295 01296 nullCheckBB = Builder.GetInsertBlock(); 01297 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 01298 contBB = createBasicBlock("new.cont"); 01299 01300 llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); 01301 Builder.CreateCondBr(isNull, contBB, notNullBB); 01302 EmitBlock(notNullBB); 01303 } 01304 01305 // If there's an operator delete, enter a cleanup to call it if an 01306 // exception is thrown. 01307 EHScopeStack::stable_iterator operatorDeleteCleanup; 01308 llvm::Instruction *cleanupDominator = nullptr; 01309 if (E->getOperatorDelete() && 01310 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 01311 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 01312 operatorDeleteCleanup = EHStack.stable_begin(); 01313 cleanupDominator = Builder.CreateUnreachable(); 01314 } 01315 01316 assert((allocSize == allocSizeWithoutCookie) == 01317 CalculateCookiePadding(*this, E).isZero()); 01318 if (allocSize != allocSizeWithoutCookie) { 01319 assert(E->isArray()); 01320 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 01321 numElements, 01322 E, allocType); 01323 } 01324 01325 llvm::Type *elementPtrTy 01326 = ConvertTypeForMem(allocType)->getPointerTo(AS); 01327 llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy); 01328 01329 EmitNewInitializer(*this, E, allocType, result, numElements, 01330 allocSizeWithoutCookie); 01331 if (E->isArray()) { 01332 // NewPtr is a pointer to the base element type. If we're 01333 // allocating an array of arrays, we'll need to cast back to the 01334 // array pointer type. 01335 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 01336 if (result->getType() != resultType) 01337 result = Builder.CreateBitCast(result, resultType); 01338 } 01339 01340 // Deactivate the 'operator delete' cleanup if we finished 01341 // initialization. 01342 if (operatorDeleteCleanup.isValid()) { 01343 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 01344 cleanupDominator->eraseFromParent(); 01345 } 01346 01347 if (nullCheck) { 01348 conditional.end(*this); 01349 01350 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 01351 EmitBlock(contBB); 01352 01353 llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2); 01354 PHI->addIncoming(result, notNullBB); 01355 PHI->addIncoming(llvm::Constant::getNullValue(result->getType()), 01356 nullCheckBB); 01357 01358 result = PHI; 01359 } 01360 01361 return result; 01362 } 01363 01364 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 01365 llvm::Value *Ptr, 01366 QualType DeleteTy) { 01367 assert(DeleteFD->getOverloadedOperator() == OO_Delete); 01368 01369 const FunctionProtoType *DeleteFTy = 01370 DeleteFD->getType()->getAs<FunctionProtoType>(); 01371 01372 CallArgList DeleteArgs; 01373 01374 // Check if we need to pass the size to the delete operator. 01375 llvm::Value *Size = nullptr; 01376 QualType SizeTy; 01377 if (DeleteFTy->getNumParams() == 2) { 01378 SizeTy = DeleteFTy->getParamType(1); 01379 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 01380 Size = llvm::ConstantInt::get(ConvertType(SizeTy), 01381 DeleteTypeSize.getQuantity()); 01382 } 01383 01384 QualType ArgTy = DeleteFTy->getParamType(0); 01385 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 01386 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 01387 01388 if (Size) 01389 DeleteArgs.add(RValue::get(Size), SizeTy); 01390 01391 // Emit the call to delete. 01392 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 01393 } 01394 01395 namespace { 01396 /// Calls the given 'operator delete' on a single object. 01397 struct CallObjectDelete : EHScopeStack::Cleanup { 01398 llvm::Value *Ptr; 01399 const FunctionDecl *OperatorDelete; 01400 QualType ElementType; 01401 01402 CallObjectDelete(llvm::Value *Ptr, 01403 const FunctionDecl *OperatorDelete, 01404 QualType ElementType) 01405 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 01406 01407 void Emit(CodeGenFunction &CGF, Flags flags) override { 01408 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 01409 } 01410 }; 01411 } 01412 01413 void 01414 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 01415 llvm::Value *CompletePtr, 01416 QualType ElementType) { 01417 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 01418 OperatorDelete, ElementType); 01419 } 01420 01421 /// Emit the code for deleting a single object. 01422 static void EmitObjectDelete(CodeGenFunction &CGF, 01423 const CXXDeleteExpr *DE, 01424 llvm::Value *Ptr, 01425 QualType ElementType) { 01426 // Find the destructor for the type, if applicable. If the 01427 // destructor is virtual, we'll just emit the vcall and return. 01428 const CXXDestructorDecl *Dtor = nullptr; 01429 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 01430 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 01431 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 01432 Dtor = RD->getDestructor(); 01433 01434 if (Dtor->isVirtual()) { 01435 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 01436 Dtor); 01437 return; 01438 } 01439 } 01440 } 01441 01442 // Make sure that we call delete even if the dtor throws. 01443 // This doesn't have to a conditional cleanup because we're going 01444 // to pop it off in a second. 01445 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 01446 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 01447 Ptr, OperatorDelete, ElementType); 01448 01449 if (Dtor) 01450 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 01451 /*ForVirtualBase=*/false, 01452 /*Delegating=*/false, 01453 Ptr); 01454 else if (CGF.getLangOpts().ObjCAutoRefCount && 01455 ElementType->isObjCLifetimeType()) { 01456 switch (ElementType.getObjCLifetime()) { 01457 case Qualifiers::OCL_None: 01458 case Qualifiers::OCL_ExplicitNone: 01459 case Qualifiers::OCL_Autoreleasing: 01460 break; 01461 01462 case Qualifiers::OCL_Strong: { 01463 // Load the pointer value. 01464 llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 01465 ElementType.isVolatileQualified()); 01466 01467 CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime); 01468 break; 01469 } 01470 01471 case Qualifiers::OCL_Weak: 01472 CGF.EmitARCDestroyWeak(Ptr); 01473 break; 01474 } 01475 } 01476 01477 CGF.PopCleanupBlock(); 01478 } 01479 01480 namespace { 01481 /// Calls the given 'operator delete' on an array of objects. 01482 struct CallArrayDelete : EHScopeStack::Cleanup { 01483 llvm::Value *Ptr; 01484 const FunctionDecl *OperatorDelete; 01485 llvm::Value *NumElements; 01486 QualType ElementType; 01487 CharUnits CookieSize; 01488 01489 CallArrayDelete(llvm::Value *Ptr, 01490 const FunctionDecl *OperatorDelete, 01491 llvm::Value *NumElements, 01492 QualType ElementType, 01493 CharUnits CookieSize) 01494 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 01495 ElementType(ElementType), CookieSize(CookieSize) {} 01496 01497 void Emit(CodeGenFunction &CGF, Flags flags) override { 01498 const FunctionProtoType *DeleteFTy = 01499 OperatorDelete->getType()->getAs<FunctionProtoType>(); 01500 assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2); 01501 01502 CallArgList Args; 01503 01504 // Pass the pointer as the first argument. 01505 QualType VoidPtrTy = DeleteFTy->getParamType(0); 01506 llvm::Value *DeletePtr 01507 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 01508 Args.add(RValue::get(DeletePtr), VoidPtrTy); 01509 01510 // Pass the original requested size as the second argument. 01511 if (DeleteFTy->getNumParams() == 2) { 01512 QualType size_t = DeleteFTy->getParamType(1); 01513 llvm::IntegerType *SizeTy 01514 = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 01515 01516 CharUnits ElementTypeSize = 01517 CGF.CGM.getContext().getTypeSizeInChars(ElementType); 01518 01519 // The size of an element, multiplied by the number of elements. 01520 llvm::Value *Size 01521 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 01522 Size = CGF.Builder.CreateMul(Size, NumElements); 01523 01524 // Plus the size of the cookie if applicable. 01525 if (!CookieSize.isZero()) { 01526 llvm::Value *CookieSizeV 01527 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 01528 Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 01529 } 01530 01531 Args.add(RValue::get(Size), size_t); 01532 } 01533 01534 // Emit the call to delete. 01535 EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args); 01536 } 01537 }; 01538 } 01539 01540 /// Emit the code for deleting an array of objects. 01541 static void EmitArrayDelete(CodeGenFunction &CGF, 01542 const CXXDeleteExpr *E, 01543 llvm::Value *deletedPtr, 01544 QualType elementType) { 01545 llvm::Value *numElements = nullptr; 01546 llvm::Value *allocatedPtr = nullptr; 01547 CharUnits cookieSize; 01548 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 01549 numElements, allocatedPtr, cookieSize); 01550 01551 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 01552 01553 // Make sure that we call delete even if one of the dtors throws. 01554 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 01555 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 01556 allocatedPtr, operatorDelete, 01557 numElements, elementType, 01558 cookieSize); 01559 01560 // Destroy the elements. 01561 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 01562 assert(numElements && "no element count for a type with a destructor!"); 01563 01564 llvm::Value *arrayEnd = 01565 CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end"); 01566 01567 // Note that it is legal to allocate a zero-length array, and we 01568 // can never fold the check away because the length should always 01569 // come from a cookie. 01570 CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType, 01571 CGF.getDestroyer(dtorKind), 01572 /*checkZeroLength*/ true, 01573 CGF.needsEHCleanup(dtorKind)); 01574 } 01575 01576 // Pop the cleanup block. 01577 CGF.PopCleanupBlock(); 01578 } 01579 01580 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 01581 const Expr *Arg = E->getArgument(); 01582 llvm::Value *Ptr = EmitScalarExpr(Arg); 01583 01584 // Null check the pointer. 01585 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 01586 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 01587 01588 llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); 01589 01590 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 01591 EmitBlock(DeleteNotNull); 01592 01593 // We might be deleting a pointer to array. If so, GEP down to the 01594 // first non-array element. 01595 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 01596 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 01597 if (DeleteTy->isConstantArrayType()) { 01598 llvm::Value *Zero = Builder.getInt32(0); 01599 SmallVector<llvm::Value*,8> GEP; 01600 01601 GEP.push_back(Zero); // point at the outermost array 01602 01603 // For each layer of array type we're pointing at: 01604 while (const ConstantArrayType *Arr 01605 = getContext().getAsConstantArrayType(DeleteTy)) { 01606 // 1. Unpeel the array type. 01607 DeleteTy = Arr->getElementType(); 01608 01609 // 2. GEP to the first element of the array. 01610 GEP.push_back(Zero); 01611 } 01612 01613 Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first"); 01614 } 01615 01616 assert(ConvertTypeForMem(DeleteTy) == 01617 cast<llvm::PointerType>(Ptr->getType())->getElementType()); 01618 01619 if (E->isArrayForm()) { 01620 EmitArrayDelete(*this, E, Ptr, DeleteTy); 01621 } else { 01622 EmitObjectDelete(*this, E, Ptr, DeleteTy); 01623 } 01624 01625 EmitBlock(DeleteEnd); 01626 } 01627 01628 static bool isGLValueFromPointerDeref(const Expr *E) { 01629 E = E->IgnoreParens(); 01630 01631 if (const auto *CE = dyn_cast<CastExpr>(E)) { 01632 if (!CE->getSubExpr()->isGLValue()) 01633 return false; 01634 return isGLValueFromPointerDeref(CE->getSubExpr()); 01635 } 01636 01637 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 01638 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 01639 01640 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 01641 if (BO->getOpcode() == BO_Comma) 01642 return isGLValueFromPointerDeref(BO->getRHS()); 01643 01644 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 01645 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 01646 isGLValueFromPointerDeref(ACO->getFalseExpr()); 01647 01648 // C++11 [expr.sub]p1: 01649 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 01650 if (isa<ArraySubscriptExpr>(E)) 01651 return true; 01652 01653 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 01654 if (UO->getOpcode() == UO_Deref) 01655 return true; 01656 01657 return false; 01658 } 01659 01660 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 01661 llvm::Type *StdTypeInfoPtrTy) { 01662 // Get the vtable pointer. 01663 llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress(); 01664 01665 // C++ [expr.typeid]p2: 01666 // If the glvalue expression is obtained by applying the unary * operator to 01667 // a pointer and the pointer is a null pointer value, the typeid expression 01668 // throws the std::bad_typeid exception. 01669 // 01670 // However, this paragraph's intent is not clear. We choose a very generous 01671 // interpretation which implores us to consider comma operators, conditional 01672 // operators, parentheses and other such constructs. 01673 QualType SrcRecordTy = E->getType(); 01674 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 01675 isGLValueFromPointerDeref(E), SrcRecordTy)) { 01676 llvm::BasicBlock *BadTypeidBlock = 01677 CGF.createBasicBlock("typeid.bad_typeid"); 01678 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 01679 01680 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); 01681 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 01682 01683 CGF.EmitBlock(BadTypeidBlock); 01684 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 01685 CGF.EmitBlock(EndBlock); 01686 } 01687 01688 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 01689 StdTypeInfoPtrTy); 01690 } 01691 01692 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 01693 llvm::Type *StdTypeInfoPtrTy = 01694 ConvertType(E->getType())->getPointerTo(); 01695 01696 if (E->isTypeOperand()) { 01697 llvm::Constant *TypeInfo = 01698 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 01699 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 01700 } 01701 01702 // C++ [expr.typeid]p2: 01703 // When typeid is applied to a glvalue expression whose type is a 01704 // polymorphic class type, the result refers to a std::type_info object 01705 // representing the type of the most derived object (that is, the dynamic 01706 // type) to which the glvalue refers. 01707 if (E->isPotentiallyEvaluated()) 01708 return EmitTypeidFromVTable(*this, E->getExprOperand(), 01709 StdTypeInfoPtrTy); 01710 01711 QualType OperandTy = E->getExprOperand()->getType(); 01712 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 01713 StdTypeInfoPtrTy); 01714 } 01715 01716 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 01717 QualType DestTy) { 01718 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 01719 if (DestTy->isPointerType()) 01720 return llvm::Constant::getNullValue(DestLTy); 01721 01722 /// C++ [expr.dynamic.cast]p9: 01723 /// A failed cast to reference type throws std::bad_cast 01724 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 01725 return nullptr; 01726 01727 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 01728 return llvm::UndefValue::get(DestLTy); 01729 } 01730 01731 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value, 01732 const CXXDynamicCastExpr *DCE) { 01733 QualType DestTy = DCE->getTypeAsWritten(); 01734 01735 if (DCE->isAlwaysNull()) 01736 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 01737 return T; 01738 01739 QualType SrcTy = DCE->getSubExpr()->getType(); 01740 01741 // C++ [expr.dynamic.cast]p7: 01742 // If T is "pointer to cv void," then the result is a pointer to the most 01743 // derived object pointed to by v. 01744 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 01745 01746 bool isDynamicCastToVoid; 01747 QualType SrcRecordTy; 01748 QualType DestRecordTy; 01749 if (DestPTy) { 01750 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 01751 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 01752 DestRecordTy = DestPTy->getPointeeType(); 01753 } else { 01754 isDynamicCastToVoid = false; 01755 SrcRecordTy = SrcTy; 01756 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 01757 } 01758 01759 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 01760 01761 // C++ [expr.dynamic.cast]p4: 01762 // If the value of v is a null pointer value in the pointer case, the result 01763 // is the null pointer value of type T. 01764 bool ShouldNullCheckSrcValue = 01765 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 01766 SrcRecordTy); 01767 01768 llvm::BasicBlock *CastNull = nullptr; 01769 llvm::BasicBlock *CastNotNull = nullptr; 01770 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 01771 01772 if (ShouldNullCheckSrcValue) { 01773 CastNull = createBasicBlock("dynamic_cast.null"); 01774 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 01775 01776 llvm::Value *IsNull = Builder.CreateIsNull(Value); 01777 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 01778 EmitBlock(CastNotNull); 01779 } 01780 01781 if (isDynamicCastToVoid) { 01782 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, Value, SrcRecordTy, 01783 DestTy); 01784 } else { 01785 assert(DestRecordTy->isRecordType() && 01786 "destination type must be a record type!"); 01787 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, Value, SrcRecordTy, 01788 DestTy, DestRecordTy, CastEnd); 01789 } 01790 01791 if (ShouldNullCheckSrcValue) { 01792 EmitBranch(CastEnd); 01793 01794 EmitBlock(CastNull); 01795 EmitBranch(CastEnd); 01796 } 01797 01798 EmitBlock(CastEnd); 01799 01800 if (ShouldNullCheckSrcValue) { 01801 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 01802 PHI->addIncoming(Value, CastNotNull); 01803 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 01804 01805 Value = PHI; 01806 } 01807 01808 return Value; 01809 } 01810 01811 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 01812 RunCleanupsScope Scope(*this); 01813 LValue SlotLV = 01814 MakeAddrLValue(Slot.getAddr(), E->getType(), Slot.getAlignment()); 01815 01816 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 01817 for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(), 01818 e = E->capture_init_end(); 01819 i != e; ++i, ++CurField) { 01820 // Emit initialization 01821 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 01822 if (CurField->hasCapturedVLAType()) { 01823 auto VAT = CurField->getCapturedVLAType(); 01824 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 01825 } else { 01826 ArrayRef<VarDecl *> ArrayIndexes; 01827 if (CurField->getType()->isArrayType()) 01828 ArrayIndexes = E->getCaptureInitIndexVars(i); 01829 EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 01830 } 01831 } 01832 }