clang API Documentation

CGExprScalar.cpp
Go to the documentation of this file.
00001 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
00011 //
00012 //===----------------------------------------------------------------------===//
00013 
00014 #include "CodeGenFunction.h"
00015 #include "CGCXXABI.h"
00016 #include "CGDebugInfo.h"
00017 #include "CGObjCRuntime.h"
00018 #include "CodeGenModule.h"
00019 #include "clang/AST/ASTContext.h"
00020 #include "clang/AST/DeclObjC.h"
00021 #include "clang/AST/RecordLayout.h"
00022 #include "clang/AST/StmtVisitor.h"
00023 #include "clang/Basic/TargetInfo.h"
00024 #include "clang/Frontend/CodeGenOptions.h"
00025 #include "llvm/IR/CFG.h"
00026 #include "llvm/IR/Constants.h"
00027 #include "llvm/IR/DataLayout.h"
00028 #include "llvm/IR/Function.h"
00029 #include "llvm/IR/GlobalVariable.h"
00030 #include "llvm/IR/Intrinsics.h"
00031 #include "llvm/IR/Module.h"
00032 #include <cstdarg>
00033 
00034 using namespace clang;
00035 using namespace CodeGen;
00036 using llvm::Value;
00037 
00038 //===----------------------------------------------------------------------===//
00039 //                         Scalar Expression Emitter
00040 //===----------------------------------------------------------------------===//
00041 
00042 namespace {
00043 struct BinOpInfo {
00044   Value *LHS;
00045   Value *RHS;
00046   QualType Ty;  // Computation Type.
00047   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
00048   bool FPContractable;
00049   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
00050 };
00051 
00052 static bool MustVisitNullValue(const Expr *E) {
00053   // If a null pointer expression's type is the C++0x nullptr_t, then
00054   // it's not necessarily a simple constant and it must be evaluated
00055   // for its potential side effects.
00056   return E->getType()->isNullPtrType();
00057 }
00058 
00059 class ScalarExprEmitter
00060   : public StmtVisitor<ScalarExprEmitter, Value*> {
00061   CodeGenFunction &CGF;
00062   CGBuilderTy &Builder;
00063   bool IgnoreResultAssign;
00064   llvm::LLVMContext &VMContext;
00065 public:
00066 
00067   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
00068     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
00069       VMContext(cgf.getLLVMContext()) {
00070   }
00071 
00072   //===--------------------------------------------------------------------===//
00073   //                               Utilities
00074   //===--------------------------------------------------------------------===//
00075 
00076   bool TestAndClearIgnoreResultAssign() {
00077     bool I = IgnoreResultAssign;
00078     IgnoreResultAssign = false;
00079     return I;
00080   }
00081 
00082   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
00083   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
00084   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
00085     return CGF.EmitCheckedLValue(E, TCK);
00086   }
00087 
00088   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerKind>> Checks,
00089                       const BinOpInfo &Info);
00090 
00091   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
00092     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
00093   }
00094 
00095   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
00096     const AlignValueAttr *AVAttr = nullptr;
00097     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
00098       const ValueDecl *VD = DRE->getDecl();
00099 
00100       if (VD->getType()->isReferenceType()) {
00101         if (const auto *TTy =
00102             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
00103           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
00104       } else {
00105         // Assumptions for function parameters are emitted at the start of the
00106         // function, so there is no need to repeat that here.
00107         if (isa<ParmVarDecl>(VD))
00108           return;
00109 
00110         AVAttr = VD->getAttr<AlignValueAttr>();
00111       }
00112     }
00113 
00114     if (!AVAttr)
00115       if (const auto *TTy =
00116           dyn_cast<TypedefType>(E->getType()))
00117         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
00118 
00119     if (!AVAttr)
00120       return;
00121 
00122     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
00123     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
00124     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
00125   }
00126 
00127   /// EmitLoadOfLValue - Given an expression with complex type that represents a
00128   /// value l-value, this method emits the address of the l-value, then loads
00129   /// and returns the result.
00130   Value *EmitLoadOfLValue(const Expr *E) {
00131     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
00132                                 E->getExprLoc());
00133 
00134     EmitLValueAlignmentAssumption(E, V);
00135     return V;
00136   }
00137 
00138   /// EmitConversionToBool - Convert the specified expression value to a
00139   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
00140   Value *EmitConversionToBool(Value *Src, QualType DstTy);
00141 
00142   /// \brief Emit a check that a conversion to or from a floating-point type
00143   /// does not overflow.
00144   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
00145                                 Value *Src, QualType SrcType,
00146                                 QualType DstType, llvm::Type *DstTy);
00147 
00148   /// EmitScalarConversion - Emit a conversion from the specified type to the
00149   /// specified destination type, both of which are LLVM scalar types.
00150   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
00151 
00152   /// EmitComplexToScalarConversion - Emit a conversion from the specified
00153   /// complex type to the specified destination type, where the destination type
00154   /// is an LLVM scalar type.
00155   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
00156                                        QualType SrcTy, QualType DstTy);
00157 
00158   /// EmitNullValue - Emit a value that corresponds to null for the given type.
00159   Value *EmitNullValue(QualType Ty);
00160 
00161   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
00162   Value *EmitFloatToBoolConversion(Value *V) {
00163     // Compare against 0.0 for fp scalars.
00164     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
00165     return Builder.CreateFCmpUNE(V, Zero, "tobool");
00166   }
00167 
00168   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
00169   Value *EmitPointerToBoolConversion(Value *V) {
00170     Value *Zero = llvm::ConstantPointerNull::get(
00171                                       cast<llvm::PointerType>(V->getType()));
00172     return Builder.CreateICmpNE(V, Zero, "tobool");
00173   }
00174 
00175   Value *EmitIntToBoolConversion(Value *V) {
00176     // Because of the type rules of C, we often end up computing a
00177     // logical value, then zero extending it to int, then wanting it
00178     // as a logical value again.  Optimize this common case.
00179     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
00180       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
00181         Value *Result = ZI->getOperand(0);
00182         // If there aren't any more uses, zap the instruction to save space.
00183         // Note that there can be more uses, for example if this
00184         // is the result of an assignment.
00185         if (ZI->use_empty())
00186           ZI->eraseFromParent();
00187         return Result;
00188       }
00189     }
00190 
00191     return Builder.CreateIsNotNull(V, "tobool");
00192   }
00193 
00194   //===--------------------------------------------------------------------===//
00195   //                            Visitor Methods
00196   //===--------------------------------------------------------------------===//
00197 
00198   Value *Visit(Expr *E) {
00199     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
00200   }
00201 
00202   Value *VisitStmt(Stmt *S) {
00203     S->dump(CGF.getContext().getSourceManager());
00204     llvm_unreachable("Stmt can't have complex result type!");
00205   }
00206   Value *VisitExpr(Expr *S);
00207 
00208   Value *VisitParenExpr(ParenExpr *PE) {
00209     return Visit(PE->getSubExpr());
00210   }
00211   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
00212     return Visit(E->getReplacement());
00213   }
00214   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
00215     return Visit(GE->getResultExpr());
00216   }
00217 
00218   // Leaves.
00219   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
00220     return Builder.getInt(E->getValue());
00221   }
00222   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
00223     return llvm::ConstantFP::get(VMContext, E->getValue());
00224   }
00225   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
00226     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
00227   }
00228   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
00229     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
00230   }
00231   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
00232     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
00233   }
00234   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
00235     return EmitNullValue(E->getType());
00236   }
00237   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
00238     return EmitNullValue(E->getType());
00239   }
00240   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
00241   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
00242   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
00243     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
00244     return Builder.CreateBitCast(V, ConvertType(E->getType()));
00245   }
00246 
00247   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
00248     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
00249   }
00250 
00251   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
00252     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
00253   }
00254 
00255   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
00256     if (E->isGLValue())
00257       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
00258 
00259     // Otherwise, assume the mapping is the scalar directly.
00260     return CGF.getOpaqueRValueMapping(E).getScalarVal();
00261   }
00262 
00263   // l-values.
00264   Value *VisitDeclRefExpr(DeclRefExpr *E) {
00265     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
00266       if (result.isReference())
00267         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
00268                                 E->getExprLoc());
00269       return result.getValue();
00270     }
00271     return EmitLoadOfLValue(E);
00272   }
00273 
00274   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
00275     return CGF.EmitObjCSelectorExpr(E);
00276   }
00277   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
00278     return CGF.EmitObjCProtocolExpr(E);
00279   }
00280   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
00281     return EmitLoadOfLValue(E);
00282   }
00283   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
00284     if (E->getMethodDecl() &&
00285         E->getMethodDecl()->getReturnType()->isReferenceType())
00286       return EmitLoadOfLValue(E);
00287     return CGF.EmitObjCMessageExpr(E).getScalarVal();
00288   }
00289 
00290   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
00291     LValue LV = CGF.EmitObjCIsaExpr(E);
00292     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
00293     return V;
00294   }
00295 
00296   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
00297   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
00298   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
00299   Value *VisitMemberExpr(MemberExpr *E);
00300   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
00301   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
00302     return EmitLoadOfLValue(E);
00303   }
00304 
00305   Value *VisitInitListExpr(InitListExpr *E);
00306 
00307   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
00308     return EmitNullValue(E->getType());
00309   }
00310   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
00311     if (E->getType()->isVariablyModifiedType())
00312       CGF.EmitVariablyModifiedType(E->getType());
00313 
00314     if (CGDebugInfo *DI = CGF.getDebugInfo())
00315       DI->EmitExplicitCastType(E->getType());
00316 
00317     return VisitCastExpr(E);
00318   }
00319   Value *VisitCastExpr(CastExpr *E);
00320 
00321   Value *VisitCallExpr(const CallExpr *E) {
00322     if (E->getCallReturnType()->isReferenceType())
00323       return EmitLoadOfLValue(E);
00324 
00325     Value *V = CGF.EmitCallExpr(E).getScalarVal();
00326 
00327     EmitLValueAlignmentAssumption(E, V);
00328     return V;
00329   }
00330 
00331   Value *VisitStmtExpr(const StmtExpr *E);
00332 
00333   // Unary Operators.
00334   Value *VisitUnaryPostDec(const UnaryOperator *E) {
00335     LValue LV = EmitLValue(E->getSubExpr());
00336     return EmitScalarPrePostIncDec(E, LV, false, false);
00337   }
00338   Value *VisitUnaryPostInc(const UnaryOperator *E) {
00339     LValue LV = EmitLValue(E->getSubExpr());
00340     return EmitScalarPrePostIncDec(E, LV, true, false);
00341   }
00342   Value *VisitUnaryPreDec(const UnaryOperator *E) {
00343     LValue LV = EmitLValue(E->getSubExpr());
00344     return EmitScalarPrePostIncDec(E, LV, false, true);
00345   }
00346   Value *VisitUnaryPreInc(const UnaryOperator *E) {
00347     LValue LV = EmitLValue(E->getSubExpr());
00348     return EmitScalarPrePostIncDec(E, LV, true, true);
00349   }
00350 
00351   llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
00352                                                llvm::Value *InVal,
00353                                                llvm::Value *NextVal,
00354                                                bool IsInc);
00355 
00356   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
00357                                        bool isInc, bool isPre);
00358 
00359 
00360   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
00361     if (isa<MemberPointerType>(E->getType())) // never sugared
00362       return CGF.CGM.getMemberPointerConstant(E);
00363 
00364     return EmitLValue(E->getSubExpr()).getAddress();
00365   }
00366   Value *VisitUnaryDeref(const UnaryOperator *E) {
00367     if (E->getType()->isVoidType())
00368       return Visit(E->getSubExpr()); // the actual value should be unused
00369     return EmitLoadOfLValue(E);
00370   }
00371   Value *VisitUnaryPlus(const UnaryOperator *E) {
00372     // This differs from gcc, though, most likely due to a bug in gcc.
00373     TestAndClearIgnoreResultAssign();
00374     return Visit(E->getSubExpr());
00375   }
00376   Value *VisitUnaryMinus    (const UnaryOperator *E);
00377   Value *VisitUnaryNot      (const UnaryOperator *E);
00378   Value *VisitUnaryLNot     (const UnaryOperator *E);
00379   Value *VisitUnaryReal     (const UnaryOperator *E);
00380   Value *VisitUnaryImag     (const UnaryOperator *E);
00381   Value *VisitUnaryExtension(const UnaryOperator *E) {
00382     return Visit(E->getSubExpr());
00383   }
00384 
00385   // C++
00386   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
00387     return EmitLoadOfLValue(E);
00388   }
00389 
00390   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
00391     return Visit(DAE->getExpr());
00392   }
00393   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
00394     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
00395     return Visit(DIE->getExpr());
00396   }
00397   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
00398     return CGF.LoadCXXThis();
00399   }
00400 
00401   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
00402     CGF.enterFullExpression(E);
00403     CodeGenFunction::RunCleanupsScope Scope(CGF);
00404     return Visit(E->getSubExpr());
00405   }
00406   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
00407     return CGF.EmitCXXNewExpr(E);
00408   }
00409   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
00410     CGF.EmitCXXDeleteExpr(E);
00411     return nullptr;
00412   }
00413 
00414   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
00415     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
00416   }
00417 
00418   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
00419     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
00420   }
00421 
00422   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
00423     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
00424   }
00425 
00426   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
00427     // C++ [expr.pseudo]p1:
00428     //   The result shall only be used as the operand for the function call
00429     //   operator (), and the result of such a call has type void. The only
00430     //   effect is the evaluation of the postfix-expression before the dot or
00431     //   arrow.
00432     CGF.EmitScalarExpr(E->getBase());
00433     return nullptr;
00434   }
00435 
00436   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
00437     return EmitNullValue(E->getType());
00438   }
00439 
00440   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
00441     CGF.EmitCXXThrowExpr(E);
00442     return nullptr;
00443   }
00444 
00445   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
00446     return Builder.getInt1(E->getValue());
00447   }
00448 
00449   // Binary Operators.
00450   Value *EmitMul(const BinOpInfo &Ops) {
00451     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
00452       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
00453       case LangOptions::SOB_Defined:
00454         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
00455       case LangOptions::SOB_Undefined:
00456         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
00457           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
00458         // Fall through.
00459       case LangOptions::SOB_Trapping:
00460         return EmitOverflowCheckedBinOp(Ops);
00461       }
00462     }
00463 
00464     if (Ops.Ty->isUnsignedIntegerType() &&
00465         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
00466       return EmitOverflowCheckedBinOp(Ops);
00467 
00468     if (Ops.LHS->getType()->isFPOrFPVectorTy())
00469       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
00470     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
00471   }
00472   /// Create a binary op that checks for overflow.
00473   /// Currently only supports +, - and *.
00474   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
00475 
00476   // Check for undefined division and modulus behaviors.
00477   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
00478                                                   llvm::Value *Zero,bool isDiv);
00479   // Common helper for getting how wide LHS of shift is.
00480   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
00481   Value *EmitDiv(const BinOpInfo &Ops);
00482   Value *EmitRem(const BinOpInfo &Ops);
00483   Value *EmitAdd(const BinOpInfo &Ops);
00484   Value *EmitSub(const BinOpInfo &Ops);
00485   Value *EmitShl(const BinOpInfo &Ops);
00486   Value *EmitShr(const BinOpInfo &Ops);
00487   Value *EmitAnd(const BinOpInfo &Ops) {
00488     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
00489   }
00490   Value *EmitXor(const BinOpInfo &Ops) {
00491     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
00492   }
00493   Value *EmitOr (const BinOpInfo &Ops) {
00494     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
00495   }
00496 
00497   BinOpInfo EmitBinOps(const BinaryOperator *E);
00498   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
00499                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
00500                                   Value *&Result);
00501 
00502   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
00503                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
00504 
00505   // Binary operators and binary compound assignment operators.
00506 #define HANDLEBINOP(OP) \
00507   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
00508     return Emit ## OP(EmitBinOps(E));                                      \
00509   }                                                                        \
00510   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
00511     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
00512   }
00513   HANDLEBINOP(Mul)
00514   HANDLEBINOP(Div)
00515   HANDLEBINOP(Rem)
00516   HANDLEBINOP(Add)
00517   HANDLEBINOP(Sub)
00518   HANDLEBINOP(Shl)
00519   HANDLEBINOP(Shr)
00520   HANDLEBINOP(And)
00521   HANDLEBINOP(Xor)
00522   HANDLEBINOP(Or)
00523 #undef HANDLEBINOP
00524 
00525   // Comparisons.
00526   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
00527                      unsigned SICmpOpc, unsigned FCmpOpc);
00528 #define VISITCOMP(CODE, UI, SI, FP) \
00529     Value *VisitBin##CODE(const BinaryOperator *E) { \
00530       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
00531                          llvm::FCmpInst::FP); }
00532   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
00533   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
00534   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
00535   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
00536   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
00537   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
00538 #undef VISITCOMP
00539 
00540   Value *VisitBinAssign     (const BinaryOperator *E);
00541 
00542   Value *VisitBinLAnd       (const BinaryOperator *E);
00543   Value *VisitBinLOr        (const BinaryOperator *E);
00544   Value *VisitBinComma      (const BinaryOperator *E);
00545 
00546   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
00547   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
00548 
00549   // Other Operators.
00550   Value *VisitBlockExpr(const BlockExpr *BE);
00551   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
00552   Value *VisitChooseExpr(ChooseExpr *CE);
00553   Value *VisitVAArgExpr(VAArgExpr *VE);
00554   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
00555     return CGF.EmitObjCStringLiteral(E);
00556   }
00557   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
00558     return CGF.EmitObjCBoxedExpr(E);
00559   }
00560   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
00561     return CGF.EmitObjCArrayLiteral(E);
00562   }
00563   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
00564     return CGF.EmitObjCDictionaryLiteral(E);
00565   }
00566   Value *VisitAsTypeExpr(AsTypeExpr *CE);
00567   Value *VisitAtomicExpr(AtomicExpr *AE);
00568 };
00569 }  // end anonymous namespace.
00570 
00571 //===----------------------------------------------------------------------===//
00572 //                                Utilities
00573 //===----------------------------------------------------------------------===//
00574 
00575 /// EmitConversionToBool - Convert the specified expression value to a
00576 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
00577 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
00578   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
00579 
00580   if (SrcType->isRealFloatingType())
00581     return EmitFloatToBoolConversion(Src);
00582 
00583   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
00584     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
00585 
00586   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
00587          "Unknown scalar type to convert");
00588 
00589   if (isa<llvm::IntegerType>(Src->getType()))
00590     return EmitIntToBoolConversion(Src);
00591 
00592   assert(isa<llvm::PointerType>(Src->getType()));
00593   return EmitPointerToBoolConversion(Src);
00594 }
00595 
00596 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc,
00597                                                  QualType OrigSrcType,
00598                                                  Value *Src, QualType SrcType,
00599                                                  QualType DstType,
00600                                                  llvm::Type *DstTy) {
00601   CodeGenFunction::SanitizerScope SanScope(&CGF);
00602   using llvm::APFloat;
00603   using llvm::APSInt;
00604 
00605   llvm::Type *SrcTy = Src->getType();
00606 
00607   llvm::Value *Check = nullptr;
00608   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
00609     // Integer to floating-point. This can fail for unsigned short -> __half
00610     // or unsigned __int128 -> float.
00611     assert(DstType->isFloatingType());
00612     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
00613 
00614     APFloat LargestFloat =
00615       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
00616     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
00617 
00618     bool IsExact;
00619     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
00620                                       &IsExact) != APFloat::opOK)
00621       // The range of representable values of this floating point type includes
00622       // all values of this integer type. Don't need an overflow check.
00623       return;
00624 
00625     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
00626     if (SrcIsUnsigned)
00627       Check = Builder.CreateICmpULE(Src, Max);
00628     else {
00629       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
00630       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
00631       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
00632       Check = Builder.CreateAnd(GE, LE);
00633     }
00634   } else {
00635     const llvm::fltSemantics &SrcSema =
00636       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
00637     if (isa<llvm::IntegerType>(DstTy)) {
00638       // Floating-point to integer. This has undefined behavior if the source is
00639       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
00640       // to an integer).
00641       unsigned Width = CGF.getContext().getIntWidth(DstType);
00642       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
00643 
00644       APSInt Min = APSInt::getMinValue(Width, Unsigned);
00645       APFloat MinSrc(SrcSema, APFloat::uninitialized);
00646       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
00647           APFloat::opOverflow)
00648         // Don't need an overflow check for lower bound. Just check for
00649         // -Inf/NaN.
00650         MinSrc = APFloat::getInf(SrcSema, true);
00651       else
00652         // Find the largest value which is too small to represent (before
00653         // truncation toward zero).
00654         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
00655 
00656       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
00657       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
00658       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
00659           APFloat::opOverflow)
00660         // Don't need an overflow check for upper bound. Just check for
00661         // +Inf/NaN.
00662         MaxSrc = APFloat::getInf(SrcSema, false);
00663       else
00664         // Find the smallest value which is too large to represent (before
00665         // truncation toward zero).
00666         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
00667 
00668       // If we're converting from __half, convert the range to float to match
00669       // the type of src.
00670       if (OrigSrcType->isHalfType()) {
00671         const llvm::fltSemantics &Sema =
00672           CGF.getContext().getFloatTypeSemantics(SrcType);
00673         bool IsInexact;
00674         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
00675         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
00676       }
00677 
00678       llvm::Value *GE =
00679         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
00680       llvm::Value *LE =
00681         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
00682       Check = Builder.CreateAnd(GE, LE);
00683     } else {
00684       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
00685       //
00686       // Floating-point to floating-point. This has undefined behavior if the
00687       // source is not in the range of representable values of the destination
00688       // type. The C and C++ standards are spectacularly unclear here. We
00689       // diagnose finite out-of-range conversions, but allow infinities and NaNs
00690       // to convert to the corresponding value in the smaller type.
00691       //
00692       // C11 Annex F gives all such conversions defined behavior for IEC 60559
00693       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
00694       // does not.
00695 
00696       // Converting from a lower rank to a higher rank can never have
00697       // undefined behavior, since higher-rank types must have a superset
00698       // of values of lower-rank types.
00699       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
00700         return;
00701 
00702       assert(!OrigSrcType->isHalfType() &&
00703              "should not check conversion from __half, it has the lowest rank");
00704 
00705       const llvm::fltSemantics &DstSema =
00706         CGF.getContext().getFloatTypeSemantics(DstType);
00707       APFloat MinBad = APFloat::getLargest(DstSema, false);
00708       APFloat MaxBad = APFloat::getInf(DstSema, false);
00709 
00710       bool IsInexact;
00711       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
00712       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
00713 
00714       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
00715         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
00716       llvm::Value *GE =
00717         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
00718       llvm::Value *LE =
00719         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
00720       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
00721     }
00722   }
00723 
00724   // FIXME: Provide a SourceLocation.
00725   llvm::Constant *StaticArgs[] = {
00726     CGF.EmitCheckTypeDescriptor(OrigSrcType),
00727     CGF.EmitCheckTypeDescriptor(DstType)
00728   };
00729   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
00730                 "float_cast_overflow", StaticArgs, OrigSrc);
00731 }
00732 
00733 /// EmitScalarConversion - Emit a conversion from the specified type to the
00734 /// specified destination type, both of which are LLVM scalar types.
00735 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
00736                                                QualType DstType) {
00737   SrcType = CGF.getContext().getCanonicalType(SrcType);
00738   DstType = CGF.getContext().getCanonicalType(DstType);
00739   if (SrcType == DstType) return Src;
00740 
00741   if (DstType->isVoidType()) return nullptr;
00742 
00743   llvm::Value *OrigSrc = Src;
00744   QualType OrigSrcType = SrcType;
00745   llvm::Type *SrcTy = Src->getType();
00746 
00747   // If casting to/from storage-only half FP, use special intrinsics.
00748   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType &&
00749       !CGF.getContext().getLangOpts().HalfArgsAndReturns) {
00750     Src = Builder.CreateCall(
00751         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
00752                              CGF.CGM.FloatTy),
00753         Src);
00754     SrcType = CGF.getContext().FloatTy;
00755     SrcTy = CGF.FloatTy;
00756   }
00757 
00758   // Handle conversions to bool first, they are special: comparisons against 0.
00759   if (DstType->isBooleanType())
00760     return EmitConversionToBool(Src, SrcType);
00761 
00762   llvm::Type *DstTy = ConvertType(DstType);
00763 
00764   // Ignore conversions like int -> uint.
00765   if (SrcTy == DstTy)
00766     return Src;
00767 
00768   // Handle pointer conversions next: pointers can only be converted to/from
00769   // other pointers and integers. Check for pointer types in terms of LLVM, as
00770   // some native types (like Obj-C id) may map to a pointer type.
00771   if (isa<llvm::PointerType>(DstTy)) {
00772     // The source value may be an integer, or a pointer.
00773     if (isa<llvm::PointerType>(SrcTy))
00774       return Builder.CreateBitCast(Src, DstTy, "conv");
00775 
00776     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
00777     // First, convert to the correct width so that we control the kind of
00778     // extension.
00779     llvm::Type *MiddleTy = CGF.IntPtrTy;
00780     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
00781     llvm::Value* IntResult =
00782         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
00783     // Then, cast to pointer.
00784     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
00785   }
00786 
00787   if (isa<llvm::PointerType>(SrcTy)) {
00788     // Must be an ptr to int cast.
00789     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
00790     return Builder.CreatePtrToInt(Src, DstTy, "conv");
00791   }
00792 
00793   // A scalar can be splatted to an extended vector of the same element type
00794   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
00795     // Cast the scalar to element type
00796     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
00797     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
00798 
00799     // Splat the element across to all elements
00800     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
00801     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
00802   }
00803 
00804   // Allow bitcast from vector to integer/fp of the same size.
00805   if (isa<llvm::VectorType>(SrcTy) ||
00806       isa<llvm::VectorType>(DstTy))
00807     return Builder.CreateBitCast(Src, DstTy, "conv");
00808 
00809   // Finally, we have the arithmetic types: real int/float.
00810   Value *Res = nullptr;
00811   llvm::Type *ResTy = DstTy;
00812 
00813   // An overflowing conversion has undefined behavior if either the source type
00814   // or the destination type is a floating-point type.
00815   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
00816       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
00817     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType,
00818                              DstTy);
00819 
00820   // Cast to half via float
00821   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType &&
00822       !CGF.getContext().getLangOpts().HalfArgsAndReturns)
00823     DstTy = CGF.FloatTy;
00824 
00825   if (isa<llvm::IntegerType>(SrcTy)) {
00826     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
00827     if (isa<llvm::IntegerType>(DstTy))
00828       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
00829     else if (InputSigned)
00830       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
00831     else
00832       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
00833   } else if (isa<llvm::IntegerType>(DstTy)) {
00834     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
00835     if (DstType->isSignedIntegerOrEnumerationType())
00836       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
00837     else
00838       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
00839   } else {
00840     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
00841            "Unknown real conversion");
00842     if (DstTy->getTypeID() < SrcTy->getTypeID())
00843       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
00844     else
00845       Res = Builder.CreateFPExt(Src, DstTy, "conv");
00846   }
00847 
00848   if (DstTy != ResTy) {
00849     assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
00850     Res = Builder.CreateCall(
00851         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
00852         Res);
00853   }
00854 
00855   return Res;
00856 }
00857 
00858 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
00859 /// type to the specified destination type, where the destination type is an
00860 /// LLVM scalar type.
00861 Value *ScalarExprEmitter::
00862 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
00863                               QualType SrcTy, QualType DstTy) {
00864   // Get the source element type.
00865   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
00866 
00867   // Handle conversions to bool first, they are special: comparisons against 0.
00868   if (DstTy->isBooleanType()) {
00869     //  Complex != 0  -> (Real != 0) | (Imag != 0)
00870     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
00871     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
00872     return Builder.CreateOr(Src.first, Src.second, "tobool");
00873   }
00874 
00875   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
00876   // the imaginary part of the complex value is discarded and the value of the
00877   // real part is converted according to the conversion rules for the
00878   // corresponding real type.
00879   return EmitScalarConversion(Src.first, SrcTy, DstTy);
00880 }
00881 
00882 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
00883   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
00884 }
00885 
00886 /// \brief Emit a sanitization check for the given "binary" operation (which
00887 /// might actually be a unary increment which has been lowered to a binary
00888 /// operation). The check passes if all values in \p Checks (which are \c i1),
00889 /// are \c true.
00890 void ScalarExprEmitter::EmitBinOpCheck(
00891     ArrayRef<std::pair<Value *, SanitizerKind>> Checks, const BinOpInfo &Info) {
00892   assert(CGF.IsSanitizerScope);
00893   StringRef CheckName;
00894   SmallVector<llvm::Constant *, 4> StaticData;
00895   SmallVector<llvm::Value *, 2> DynamicData;
00896 
00897   BinaryOperatorKind Opcode = Info.Opcode;
00898   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
00899     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
00900 
00901   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
00902   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
00903   if (UO && UO->getOpcode() == UO_Minus) {
00904     CheckName = "negate_overflow";
00905     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
00906     DynamicData.push_back(Info.RHS);
00907   } else {
00908     if (BinaryOperator::isShiftOp(Opcode)) {
00909       // Shift LHS negative or too large, or RHS out of bounds.
00910       CheckName = "shift_out_of_bounds";
00911       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
00912       StaticData.push_back(
00913         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
00914       StaticData.push_back(
00915         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
00916     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
00917       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
00918       CheckName = "divrem_overflow";
00919       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
00920     } else {
00921       // Arithmetic overflow (+, -, *).
00922       switch (Opcode) {
00923       case BO_Add: CheckName = "add_overflow"; break;
00924       case BO_Sub: CheckName = "sub_overflow"; break;
00925       case BO_Mul: CheckName = "mul_overflow"; break;
00926       default: llvm_unreachable("unexpected opcode for bin op check");
00927       }
00928       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
00929     }
00930     DynamicData.push_back(Info.LHS);
00931     DynamicData.push_back(Info.RHS);
00932   }
00933 
00934   CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
00935 }
00936 
00937 //===----------------------------------------------------------------------===//
00938 //                            Visitor Methods
00939 //===----------------------------------------------------------------------===//
00940 
00941 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
00942   CGF.ErrorUnsupported(E, "scalar expression");
00943   if (E->getType()->isVoidType())
00944     return nullptr;
00945   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
00946 }
00947 
00948 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
00949   // Vector Mask Case
00950   if (E->getNumSubExprs() == 2 ||
00951       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
00952     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
00953     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
00954     Value *Mask;
00955 
00956     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
00957     unsigned LHSElts = LTy->getNumElements();
00958 
00959     if (E->getNumSubExprs() == 3) {
00960       Mask = CGF.EmitScalarExpr(E->getExpr(2));
00961 
00962       // Shuffle LHS & RHS into one input vector.
00963       SmallVector<llvm::Constant*, 32> concat;
00964       for (unsigned i = 0; i != LHSElts; ++i) {
00965         concat.push_back(Builder.getInt32(2*i));
00966         concat.push_back(Builder.getInt32(2*i+1));
00967       }
00968 
00969       Value* CV = llvm::ConstantVector::get(concat);
00970       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
00971       LHSElts *= 2;
00972     } else {
00973       Mask = RHS;
00974     }
00975 
00976     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
00977     llvm::Constant* EltMask;
00978 
00979     EltMask = llvm::ConstantInt::get(MTy->getElementType(),
00980                                      llvm::NextPowerOf2(LHSElts-1)-1);
00981 
00982     // Mask off the high bits of each shuffle index.
00983     Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
00984                                                      EltMask);
00985     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
00986 
00987     // newv = undef
00988     // mask = mask & maskbits
00989     // for each elt
00990     //   n = extract mask i
00991     //   x = extract val n
00992     //   newv = insert newv, x, i
00993     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
00994                                                   MTy->getNumElements());
00995     Value* NewV = llvm::UndefValue::get(RTy);
00996     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
00997       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
00998       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
00999 
01000       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
01001       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
01002     }
01003     return NewV;
01004   }
01005 
01006   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
01007   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
01008 
01009   SmallVector<llvm::Constant*, 32> indices;
01010   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
01011     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
01012     // Check for -1 and output it as undef in the IR.
01013     if (Idx.isSigned() && Idx.isAllOnesValue())
01014       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
01015     else
01016       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
01017   }
01018 
01019   Value *SV = llvm::ConstantVector::get(indices);
01020   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
01021 }
01022 
01023 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
01024   QualType SrcType = E->getSrcExpr()->getType(),
01025            DstType = E->getType();
01026 
01027   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
01028 
01029   SrcType = CGF.getContext().getCanonicalType(SrcType);
01030   DstType = CGF.getContext().getCanonicalType(DstType);
01031   if (SrcType == DstType) return Src;
01032 
01033   assert(SrcType->isVectorType() &&
01034          "ConvertVector source type must be a vector");
01035   assert(DstType->isVectorType() &&
01036          "ConvertVector destination type must be a vector");
01037 
01038   llvm::Type *SrcTy = Src->getType();
01039   llvm::Type *DstTy = ConvertType(DstType);
01040 
01041   // Ignore conversions like int -> uint.
01042   if (SrcTy == DstTy)
01043     return Src;
01044 
01045   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
01046            DstEltType = DstType->getAs<VectorType>()->getElementType();
01047 
01048   assert(SrcTy->isVectorTy() &&
01049          "ConvertVector source IR type must be a vector");
01050   assert(DstTy->isVectorTy() &&
01051          "ConvertVector destination IR type must be a vector");
01052 
01053   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
01054              *DstEltTy = DstTy->getVectorElementType();
01055 
01056   if (DstEltType->isBooleanType()) {
01057     assert((SrcEltTy->isFloatingPointTy() ||
01058             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
01059 
01060     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
01061     if (SrcEltTy->isFloatingPointTy()) {
01062       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
01063     } else {
01064       return Builder.CreateICmpNE(Src, Zero, "tobool");
01065     }
01066   }
01067 
01068   // We have the arithmetic types: real int/float.
01069   Value *Res = nullptr;
01070 
01071   if (isa<llvm::IntegerType>(SrcEltTy)) {
01072     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
01073     if (isa<llvm::IntegerType>(DstEltTy))
01074       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
01075     else if (InputSigned)
01076       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
01077     else
01078       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
01079   } else if (isa<llvm::IntegerType>(DstEltTy)) {
01080     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
01081     if (DstEltType->isSignedIntegerOrEnumerationType())
01082       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
01083     else
01084       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
01085   } else {
01086     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
01087            "Unknown real conversion");
01088     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
01089       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
01090     else
01091       Res = Builder.CreateFPExt(Src, DstTy, "conv");
01092   }
01093 
01094   return Res;
01095 }
01096 
01097 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
01098   llvm::APSInt Value;
01099   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
01100     if (E->isArrow())
01101       CGF.EmitScalarExpr(E->getBase());
01102     else
01103       EmitLValue(E->getBase());
01104     return Builder.getInt(Value);
01105   }
01106 
01107   return EmitLoadOfLValue(E);
01108 }
01109 
01110 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
01111   TestAndClearIgnoreResultAssign();
01112 
01113   // Emit subscript expressions in rvalue context's.  For most cases, this just
01114   // loads the lvalue formed by the subscript expr.  However, we have to be
01115   // careful, because the base of a vector subscript is occasionally an rvalue,
01116   // so we can't get it as an lvalue.
01117   if (!E->getBase()->getType()->isVectorType())
01118     return EmitLoadOfLValue(E);
01119 
01120   // Handle the vector case.  The base must be a vector, the index must be an
01121   // integer value.
01122   Value *Base = Visit(E->getBase());
01123   Value *Idx  = Visit(E->getIdx());
01124   QualType IdxTy = E->getIdx()->getType();
01125 
01126   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
01127     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
01128 
01129   return Builder.CreateExtractElement(Base, Idx, "vecext");
01130 }
01131 
01132 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
01133                                   unsigned Off, llvm::Type *I32Ty) {
01134   int MV = SVI->getMaskValue(Idx);
01135   if (MV == -1)
01136     return llvm::UndefValue::get(I32Ty);
01137   return llvm::ConstantInt::get(I32Ty, Off+MV);
01138 }
01139 
01140 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
01141   bool Ignore = TestAndClearIgnoreResultAssign();
01142   (void)Ignore;
01143   assert (Ignore == false && "init list ignored");
01144   unsigned NumInitElements = E->getNumInits();
01145 
01146   if (E->hadArrayRangeDesignator())
01147     CGF.ErrorUnsupported(E, "GNU array range designator extension");
01148 
01149   llvm::VectorType *VType =
01150     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
01151 
01152   if (!VType) {
01153     if (NumInitElements == 0) {
01154       // C++11 value-initialization for the scalar.
01155       return EmitNullValue(E->getType());
01156     }
01157     // We have a scalar in braces. Just use the first element.
01158     return Visit(E->getInit(0));
01159   }
01160 
01161   unsigned ResElts = VType->getNumElements();
01162 
01163   // Loop over initializers collecting the Value for each, and remembering
01164   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
01165   // us to fold the shuffle for the swizzle into the shuffle for the vector
01166   // initializer, since LLVM optimizers generally do not want to touch
01167   // shuffles.
01168   unsigned CurIdx = 0;
01169   bool VIsUndefShuffle = false;
01170   llvm::Value *V = llvm::UndefValue::get(VType);
01171   for (unsigned i = 0; i != NumInitElements; ++i) {
01172     Expr *IE = E->getInit(i);
01173     Value *Init = Visit(IE);
01174     SmallVector<llvm::Constant*, 16> Args;
01175 
01176     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
01177 
01178     // Handle scalar elements.  If the scalar initializer is actually one
01179     // element of a different vector of the same width, use shuffle instead of
01180     // extract+insert.
01181     if (!VVT) {
01182       if (isa<ExtVectorElementExpr>(IE)) {
01183         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
01184 
01185         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
01186           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
01187           Value *LHS = nullptr, *RHS = nullptr;
01188           if (CurIdx == 0) {
01189             // insert into undef -> shuffle (src, undef)
01190             Args.push_back(C);
01191             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
01192 
01193             LHS = EI->getVectorOperand();
01194             RHS = V;
01195             VIsUndefShuffle = true;
01196           } else if (VIsUndefShuffle) {
01197             // insert into undefshuffle && size match -> shuffle (v, src)
01198             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
01199             for (unsigned j = 0; j != CurIdx; ++j)
01200               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
01201             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
01202             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
01203 
01204             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
01205             RHS = EI->getVectorOperand();
01206             VIsUndefShuffle = false;
01207           }
01208           if (!Args.empty()) {
01209             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
01210             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
01211             ++CurIdx;
01212             continue;
01213           }
01214         }
01215       }
01216       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
01217                                       "vecinit");
01218       VIsUndefShuffle = false;
01219       ++CurIdx;
01220       continue;
01221     }
01222 
01223     unsigned InitElts = VVT->getNumElements();
01224 
01225     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
01226     // input is the same width as the vector being constructed, generate an
01227     // optimized shuffle of the swizzle input into the result.
01228     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
01229     if (isa<ExtVectorElementExpr>(IE)) {
01230       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
01231       Value *SVOp = SVI->getOperand(0);
01232       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
01233 
01234       if (OpTy->getNumElements() == ResElts) {
01235         for (unsigned j = 0; j != CurIdx; ++j) {
01236           // If the current vector initializer is a shuffle with undef, merge
01237           // this shuffle directly into it.
01238           if (VIsUndefShuffle) {
01239             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
01240                                       CGF.Int32Ty));
01241           } else {
01242             Args.push_back(Builder.getInt32(j));
01243           }
01244         }
01245         for (unsigned j = 0, je = InitElts; j != je; ++j)
01246           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
01247         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
01248 
01249         if (VIsUndefShuffle)
01250           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
01251 
01252         Init = SVOp;
01253       }
01254     }
01255 
01256     // Extend init to result vector length, and then shuffle its contribution
01257     // to the vector initializer into V.
01258     if (Args.empty()) {
01259       for (unsigned j = 0; j != InitElts; ++j)
01260         Args.push_back(Builder.getInt32(j));
01261       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
01262       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
01263       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
01264                                          Mask, "vext");
01265 
01266       Args.clear();
01267       for (unsigned j = 0; j != CurIdx; ++j)
01268         Args.push_back(Builder.getInt32(j));
01269       for (unsigned j = 0; j != InitElts; ++j)
01270         Args.push_back(Builder.getInt32(j+Offset));
01271       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
01272     }
01273 
01274     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
01275     // merging subsequent shuffles into this one.
01276     if (CurIdx == 0)
01277       std::swap(V, Init);
01278     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
01279     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
01280     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
01281     CurIdx += InitElts;
01282   }
01283 
01284   // FIXME: evaluate codegen vs. shuffling against constant null vector.
01285   // Emit remaining default initializers.
01286   llvm::Type *EltTy = VType->getElementType();
01287 
01288   // Emit remaining default initializers
01289   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
01290     Value *Idx = Builder.getInt32(CurIdx);
01291     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
01292     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
01293   }
01294   return V;
01295 }
01296 
01297 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
01298   const Expr *E = CE->getSubExpr();
01299 
01300   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
01301     return false;
01302 
01303   if (isa<CXXThisExpr>(E)) {
01304     // We always assume that 'this' is never null.
01305     return false;
01306   }
01307 
01308   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
01309     // And that glvalue casts are never null.
01310     if (ICE->getValueKind() != VK_RValue)
01311       return false;
01312   }
01313 
01314   return true;
01315 }
01316 
01317 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
01318 // have to handle a more broad range of conversions than explicit casts, as they
01319 // handle things like function to ptr-to-function decay etc.
01320 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
01321   Expr *E = CE->getSubExpr();
01322   QualType DestTy = CE->getType();
01323   CastKind Kind = CE->getCastKind();
01324 
01325   if (!DestTy->isVoidType())
01326     TestAndClearIgnoreResultAssign();
01327 
01328   // Since almost all cast kinds apply to scalars, this switch doesn't have
01329   // a default case, so the compiler will warn on a missing case.  The cases
01330   // are in the same order as in the CastKind enum.
01331   switch (Kind) {
01332   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
01333   case CK_BuiltinFnToFnPtr:
01334     llvm_unreachable("builtin functions are handled elsewhere");
01335 
01336   case CK_LValueBitCast:
01337   case CK_ObjCObjectLValueCast: {
01338     Value *V = EmitLValue(E).getAddress();
01339     V = Builder.CreateBitCast(V,
01340                           ConvertType(CGF.getContext().getPointerType(DestTy)));
01341     return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy),
01342                             CE->getExprLoc());
01343   }
01344 
01345   case CK_CPointerToObjCPointerCast:
01346   case CK_BlockPointerToObjCPointerCast:
01347   case CK_AnyPointerToBlockPointerCast:
01348   case CK_BitCast: {
01349     Value *Src = Visit(const_cast<Expr*>(E));
01350     llvm::Type *SrcTy = Src->getType();
01351     llvm::Type *DstTy = ConvertType(DestTy);
01352     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
01353         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
01354       llvm::Type *MidTy = CGF.CGM.getDataLayout().getIntPtrType(SrcTy);
01355       return Builder.CreateIntToPtr(Builder.CreatePtrToInt(Src, MidTy), DstTy);
01356     }
01357     return Builder.CreateBitCast(Src, DstTy);
01358   }
01359   case CK_AddressSpaceConversion: {
01360     Value *Src = Visit(const_cast<Expr*>(E));
01361     return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
01362   }
01363   case CK_AtomicToNonAtomic:
01364   case CK_NonAtomicToAtomic:
01365   case CK_NoOp:
01366   case CK_UserDefinedConversion:
01367     return Visit(const_cast<Expr*>(E));
01368 
01369   case CK_BaseToDerived: {
01370     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
01371     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
01372 
01373     llvm::Value *V = Visit(E);
01374 
01375     llvm::Value *Derived =
01376       CGF.GetAddressOfDerivedClass(V, DerivedClassDecl,
01377                                    CE->path_begin(), CE->path_end(),
01378                                    ShouldNullCheckClassCastValue(CE));
01379 
01380     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
01381     // performed and the object is not of the derived type.
01382     if (CGF.sanitizePerformTypeCheck())
01383       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
01384                         Derived, DestTy->getPointeeType());
01385 
01386     return Derived;
01387   }
01388   case CK_UncheckedDerivedToBase:
01389   case CK_DerivedToBase: {
01390     const CXXRecordDecl *DerivedClassDecl =
01391       E->getType()->getPointeeCXXRecordDecl();
01392     assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
01393 
01394     return CGF.GetAddressOfBaseClass(
01395         Visit(E), DerivedClassDecl, CE->path_begin(), CE->path_end(),
01396         ShouldNullCheckClassCastValue(CE), CE->getExprLoc());
01397   }
01398   case CK_Dynamic: {
01399     Value *V = Visit(const_cast<Expr*>(E));
01400     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
01401     return CGF.EmitDynamicCast(V, DCE);
01402   }
01403 
01404   case CK_ArrayToPointerDecay: {
01405     assert(E->getType()->isArrayType() &&
01406            "Array to pointer decay must have array source type!");
01407 
01408     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
01409 
01410     // Note that VLA pointers are always decayed, so we don't need to do
01411     // anything here.
01412     if (!E->getType()->isVariableArrayType()) {
01413       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
01414       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
01415                                  ->getElementType()) &&
01416              "Expected pointer to array");
01417       V = Builder.CreateStructGEP(V, 0, "arraydecay");
01418     }
01419 
01420     // Make sure the array decay ends up being the right type.  This matters if
01421     // the array type was of an incomplete type.
01422     return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType()));
01423   }
01424   case CK_FunctionToPointerDecay:
01425     return EmitLValue(E).getAddress();
01426 
01427   case CK_NullToPointer:
01428     if (MustVisitNullValue(E))
01429       (void) Visit(E);
01430 
01431     return llvm::ConstantPointerNull::get(
01432                                cast<llvm::PointerType>(ConvertType(DestTy)));
01433 
01434   case CK_NullToMemberPointer: {
01435     if (MustVisitNullValue(E))
01436       (void) Visit(E);
01437 
01438     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
01439     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
01440   }
01441 
01442   case CK_ReinterpretMemberPointer:
01443   case CK_BaseToDerivedMemberPointer:
01444   case CK_DerivedToBaseMemberPointer: {
01445     Value *Src = Visit(E);
01446 
01447     // Note that the AST doesn't distinguish between checked and
01448     // unchecked member pointer conversions, so we always have to
01449     // implement checked conversions here.  This is inefficient when
01450     // actual control flow may be required in order to perform the
01451     // check, which it is for data member pointers (but not member
01452     // function pointers on Itanium and ARM).
01453     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
01454   }
01455 
01456   case CK_ARCProduceObject:
01457     return CGF.EmitARCRetainScalarExpr(E);
01458   case CK_ARCConsumeObject:
01459     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
01460   case CK_ARCReclaimReturnedObject: {
01461     llvm::Value *value = Visit(E);
01462     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
01463     return CGF.EmitObjCConsumeObject(E->getType(), value);
01464   }
01465   case CK_ARCExtendBlockObject:
01466     return CGF.EmitARCExtendBlockObject(E);
01467 
01468   case CK_CopyAndAutoreleaseBlockObject:
01469     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
01470 
01471   case CK_FloatingRealToComplex:
01472   case CK_FloatingComplexCast:
01473   case CK_IntegralRealToComplex:
01474   case CK_IntegralComplexCast:
01475   case CK_IntegralComplexToFloatingComplex:
01476   case CK_FloatingComplexToIntegralComplex:
01477   case CK_ConstructorConversion:
01478   case CK_ToUnion:
01479     llvm_unreachable("scalar cast to non-scalar value");
01480 
01481   case CK_LValueToRValue:
01482     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
01483     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
01484     return Visit(const_cast<Expr*>(E));
01485 
01486   case CK_IntegralToPointer: {
01487     Value *Src = Visit(const_cast<Expr*>(E));
01488 
01489     // First, convert to the correct width so that we control the kind of
01490     // extension.
01491     llvm::Type *MiddleTy = CGF.IntPtrTy;
01492     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
01493     llvm::Value* IntResult =
01494       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
01495 
01496     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
01497   }
01498   case CK_PointerToIntegral:
01499     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
01500     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
01501 
01502   case CK_ToVoid: {
01503     CGF.EmitIgnoredExpr(E);
01504     return nullptr;
01505   }
01506   case CK_VectorSplat: {
01507     llvm::Type *DstTy = ConvertType(DestTy);
01508     Value *Elt = Visit(const_cast<Expr*>(E));
01509     Elt = EmitScalarConversion(Elt, E->getType(),
01510                                DestTy->getAs<VectorType>()->getElementType());
01511 
01512     // Splat the element across to all elements
01513     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
01514     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
01515   }
01516 
01517   case CK_IntegralCast:
01518   case CK_IntegralToFloating:
01519   case CK_FloatingToIntegral:
01520   case CK_FloatingCast:
01521     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
01522   case CK_IntegralToBoolean:
01523     return EmitIntToBoolConversion(Visit(E));
01524   case CK_PointerToBoolean:
01525     return EmitPointerToBoolConversion(Visit(E));
01526   case CK_FloatingToBoolean:
01527     return EmitFloatToBoolConversion(Visit(E));
01528   case CK_MemberPointerToBoolean: {
01529     llvm::Value *MemPtr = Visit(E);
01530     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
01531     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
01532   }
01533 
01534   case CK_FloatingComplexToReal:
01535   case CK_IntegralComplexToReal:
01536     return CGF.EmitComplexExpr(E, false, true).first;
01537 
01538   case CK_FloatingComplexToBoolean:
01539   case CK_IntegralComplexToBoolean: {
01540     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
01541 
01542     // TODO: kill this function off, inline appropriate case here
01543     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
01544   }
01545 
01546   case CK_ZeroToOCLEvent: {
01547     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
01548     return llvm::Constant::getNullValue(ConvertType(DestTy));
01549   }
01550 
01551   }
01552 
01553   llvm_unreachable("unknown scalar cast");
01554 }
01555 
01556 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
01557   CodeGenFunction::StmtExprEvaluation eval(CGF);
01558   llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
01559                                                 !E->getType()->isVoidType());
01560   if (!RetAlloca)
01561     return nullptr;
01562   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
01563                               E->getExprLoc());
01564 }
01565 
01566 //===----------------------------------------------------------------------===//
01567 //                             Unary Operators
01568 //===----------------------------------------------------------------------===//
01569 
01570 llvm::Value *ScalarExprEmitter::
01571 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
01572                                 llvm::Value *InVal,
01573                                 llvm::Value *NextVal, bool IsInc) {
01574   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
01575   case LangOptions::SOB_Defined:
01576     return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
01577   case LangOptions::SOB_Undefined:
01578     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
01579       return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
01580     // Fall through.
01581   case LangOptions::SOB_Trapping:
01582     BinOpInfo BinOp;
01583     BinOp.LHS = InVal;
01584     BinOp.RHS = NextVal;
01585     BinOp.Ty = E->getType();
01586     BinOp.Opcode = BO_Add;
01587     BinOp.FPContractable = false;
01588     BinOp.E = E;
01589     return EmitOverflowCheckedBinOp(BinOp);
01590   }
01591   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
01592 }
01593 
01594 llvm::Value *
01595 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
01596                                            bool isInc, bool isPre) {
01597 
01598   QualType type = E->getSubExpr()->getType();
01599   llvm::PHINode *atomicPHI = nullptr;
01600   llvm::Value *value;
01601   llvm::Value *input;
01602 
01603   int amount = (isInc ? 1 : -1);
01604 
01605   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
01606     type = atomicTy->getValueType();
01607     if (isInc && type->isBooleanType()) {
01608       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
01609       if (isPre) {
01610         Builder.Insert(new llvm::StoreInst(True,
01611               LV.getAddress(), LV.isVolatileQualified(),
01612               LV.getAlignment().getQuantity(),
01613               llvm::SequentiallyConsistent));
01614         return Builder.getTrue();
01615       }
01616       // For atomic bool increment, we just store true and return it for
01617       // preincrement, do an atomic swap with true for postincrement
01618         return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
01619             LV.getAddress(), True, llvm::SequentiallyConsistent);
01620     }
01621     // Special case for atomic increment / decrement on integers, emit
01622     // atomicrmw instructions.  We skip this if we want to be doing overflow
01623     // checking, and fall into the slow path with the atomic cmpxchg loop.
01624     if (!type->isBooleanType() && type->isIntegerType() &&
01625         !(type->isUnsignedIntegerType() &&
01626           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
01627         CGF.getLangOpts().getSignedOverflowBehavior() !=
01628             LangOptions::SOB_Trapping) {
01629       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
01630         llvm::AtomicRMWInst::Sub;
01631       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
01632         llvm::Instruction::Sub;
01633       llvm::Value *amt = CGF.EmitToMemory(
01634           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
01635       llvm::Value *old = Builder.CreateAtomicRMW(aop,
01636           LV.getAddress(), amt, llvm::SequentiallyConsistent);
01637       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
01638     }
01639     value = EmitLoadOfLValue(LV, E->getExprLoc());
01640     input = value;
01641     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
01642     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
01643     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
01644     value = CGF.EmitToMemory(value, type);
01645     Builder.CreateBr(opBB);
01646     Builder.SetInsertPoint(opBB);
01647     atomicPHI = Builder.CreatePHI(value->getType(), 2);
01648     atomicPHI->addIncoming(value, startBB);
01649     value = atomicPHI;
01650   } else {
01651     value = EmitLoadOfLValue(LV, E->getExprLoc());
01652     input = value;
01653   }
01654 
01655   // Special case of integer increment that we have to check first: bool++.
01656   // Due to promotion rules, we get:
01657   //   bool++ -> bool = bool + 1
01658   //          -> bool = (int)bool + 1
01659   //          -> bool = ((int)bool + 1 != 0)
01660   // An interesting aspect of this is that increment is always true.
01661   // Decrement does not have this property.
01662   if (isInc && type->isBooleanType()) {
01663     value = Builder.getTrue();
01664 
01665   // Most common case by far: integer increment.
01666   } else if (type->isIntegerType()) {
01667 
01668     llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
01669 
01670     // Note that signed integer inc/dec with width less than int can't
01671     // overflow because of promotion rules; we're just eliding a few steps here.
01672     bool CanOverflow = value->getType()->getIntegerBitWidth() >=
01673                        CGF.IntTy->getIntegerBitWidth();
01674     if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
01675       value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
01676     } else if (CanOverflow && type->isUnsignedIntegerType() &&
01677                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
01678       BinOpInfo BinOp;
01679       BinOp.LHS = value;
01680       BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
01681       BinOp.Ty = E->getType();
01682       BinOp.Opcode = isInc ? BO_Add : BO_Sub;
01683       BinOp.FPContractable = false;
01684       BinOp.E = E;
01685       value = EmitOverflowCheckedBinOp(BinOp);
01686     } else
01687       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
01688 
01689   // Next most common: pointer increment.
01690   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
01691     QualType type = ptr->getPointeeType();
01692 
01693     // VLA types don't have constant size.
01694     if (const VariableArrayType *vla
01695           = CGF.getContext().getAsVariableArrayType(type)) {
01696       llvm::Value *numElts = CGF.getVLASize(vla).first;
01697       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
01698       if (CGF.getLangOpts().isSignedOverflowDefined())
01699         value = Builder.CreateGEP(value, numElts, "vla.inc");
01700       else
01701         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
01702 
01703     // Arithmetic on function pointers (!) is just +-1.
01704     } else if (type->isFunctionType()) {
01705       llvm::Value *amt = Builder.getInt32(amount);
01706 
01707       value = CGF.EmitCastToVoidPtr(value);
01708       if (CGF.getLangOpts().isSignedOverflowDefined())
01709         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
01710       else
01711         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
01712       value = Builder.CreateBitCast(value, input->getType());
01713 
01714     // For everything else, we can just do a simple increment.
01715     } else {
01716       llvm::Value *amt = Builder.getInt32(amount);
01717       if (CGF.getLangOpts().isSignedOverflowDefined())
01718         value = Builder.CreateGEP(value, amt, "incdec.ptr");
01719       else
01720         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
01721     }
01722 
01723   // Vector increment/decrement.
01724   } else if (type->isVectorType()) {
01725     if (type->hasIntegerRepresentation()) {
01726       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
01727 
01728       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
01729     } else {
01730       value = Builder.CreateFAdd(
01731                   value,
01732                   llvm::ConstantFP::get(value->getType(), amount),
01733                   isInc ? "inc" : "dec");
01734     }
01735 
01736   // Floating point.
01737   } else if (type->isRealFloatingType()) {
01738     // Add the inc/dec to the real part.
01739     llvm::Value *amt;
01740 
01741     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType &&
01742         !CGF.getContext().getLangOpts().HalfArgsAndReturns) {
01743       // Another special case: half FP increment should be done via float
01744       value = Builder.CreateCall(
01745           CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
01746                                CGF.CGM.FloatTy),
01747           input);
01748     }
01749 
01750     if (value->getType()->isFloatTy())
01751       amt = llvm::ConstantFP::get(VMContext,
01752                                   llvm::APFloat(static_cast<float>(amount)));
01753     else if (value->getType()->isDoubleTy())
01754       amt = llvm::ConstantFP::get(VMContext,
01755                                   llvm::APFloat(static_cast<double>(amount)));
01756     else {
01757       llvm::APFloat F(static_cast<float>(amount));
01758       bool ignored;
01759       F.convert(CGF.getTarget().getLongDoubleFormat(),
01760                 llvm::APFloat::rmTowardZero, &ignored);
01761       amt = llvm::ConstantFP::get(VMContext, F);
01762     }
01763     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
01764 
01765     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType &&
01766         !CGF.getContext().getLangOpts().HalfArgsAndReturns)
01767       value = Builder.CreateCall(
01768           CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
01769                                CGF.CGM.FloatTy),
01770           value);
01771 
01772   // Objective-C pointer types.
01773   } else {
01774     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
01775     value = CGF.EmitCastToVoidPtr(value);
01776 
01777     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
01778     if (!isInc) size = -size;
01779     llvm::Value *sizeValue =
01780       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
01781 
01782     if (CGF.getLangOpts().isSignedOverflowDefined())
01783       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
01784     else
01785       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
01786     value = Builder.CreateBitCast(value, input->getType());
01787   }
01788 
01789   if (atomicPHI) {
01790     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
01791     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
01792     llvm::Value *pair = Builder.CreateAtomicCmpXchg(
01793         LV.getAddress(), atomicPHI, CGF.EmitToMemory(value, type),
01794         llvm::SequentiallyConsistent, llvm::SequentiallyConsistent);
01795     llvm::Value *old = Builder.CreateExtractValue(pair, 0);
01796     llvm::Value *success = Builder.CreateExtractValue(pair, 1);
01797     atomicPHI->addIncoming(old, opBB);
01798     Builder.CreateCondBr(success, contBB, opBB);
01799     Builder.SetInsertPoint(contBB);
01800     return isPre ? value : input;
01801   }
01802 
01803   // Store the updated result through the lvalue.
01804   if (LV.isBitField())
01805     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
01806   else
01807     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
01808 
01809   // If this is a postinc, return the value read from memory, otherwise use the
01810   // updated value.
01811   return isPre ? value : input;
01812 }
01813 
01814 
01815 
01816 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
01817   TestAndClearIgnoreResultAssign();
01818   // Emit unary minus with EmitSub so we handle overflow cases etc.
01819   BinOpInfo BinOp;
01820   BinOp.RHS = Visit(E->getSubExpr());
01821 
01822   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
01823     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
01824   else
01825     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
01826   BinOp.Ty = E->getType();
01827   BinOp.Opcode = BO_Sub;
01828   BinOp.FPContractable = false;
01829   BinOp.E = E;
01830   return EmitSub(BinOp);
01831 }
01832 
01833 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
01834   TestAndClearIgnoreResultAssign();
01835   Value *Op = Visit(E->getSubExpr());
01836   return Builder.CreateNot(Op, "neg");
01837 }
01838 
01839 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
01840   // Perform vector logical not on comparison with zero vector.
01841   if (E->getType()->isExtVectorType()) {
01842     Value *Oper = Visit(E->getSubExpr());
01843     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
01844     Value *Result;
01845     if (Oper->getType()->isFPOrFPVectorTy())
01846       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
01847     else
01848       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
01849     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
01850   }
01851 
01852   // Compare operand to zero.
01853   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
01854 
01855   // Invert value.
01856   // TODO: Could dynamically modify easy computations here.  For example, if
01857   // the operand is an icmp ne, turn into icmp eq.
01858   BoolVal = Builder.CreateNot(BoolVal, "lnot");
01859 
01860   // ZExt result to the expr type.
01861   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
01862 }
01863 
01864 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
01865   // Try folding the offsetof to a constant.
01866   llvm::APSInt Value;
01867   if (E->EvaluateAsInt(Value, CGF.getContext()))
01868     return Builder.getInt(Value);
01869 
01870   // Loop over the components of the offsetof to compute the value.
01871   unsigned n = E->getNumComponents();
01872   llvm::Type* ResultType = ConvertType(E->getType());
01873   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
01874   QualType CurrentType = E->getTypeSourceInfo()->getType();
01875   for (unsigned i = 0; i != n; ++i) {
01876     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
01877     llvm::Value *Offset = nullptr;
01878     switch (ON.getKind()) {
01879     case OffsetOfExpr::OffsetOfNode::Array: {
01880       // Compute the index
01881       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
01882       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
01883       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
01884       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
01885 
01886       // Save the element type
01887       CurrentType =
01888           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
01889 
01890       // Compute the element size
01891       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
01892           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
01893 
01894       // Multiply out to compute the result
01895       Offset = Builder.CreateMul(Idx, ElemSize);
01896       break;
01897     }
01898 
01899     case OffsetOfExpr::OffsetOfNode::Field: {
01900       FieldDecl *MemberDecl = ON.getField();
01901       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
01902       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
01903 
01904       // Compute the index of the field in its parent.
01905       unsigned i = 0;
01906       // FIXME: It would be nice if we didn't have to loop here!
01907       for (RecordDecl::field_iterator Field = RD->field_begin(),
01908                                       FieldEnd = RD->field_end();
01909            Field != FieldEnd; ++Field, ++i) {
01910         if (*Field == MemberDecl)
01911           break;
01912       }
01913       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
01914 
01915       // Compute the offset to the field
01916       int64_t OffsetInt = RL.getFieldOffset(i) /
01917                           CGF.getContext().getCharWidth();
01918       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
01919 
01920       // Save the element type.
01921       CurrentType = MemberDecl->getType();
01922       break;
01923     }
01924 
01925     case OffsetOfExpr::OffsetOfNode::Identifier:
01926       llvm_unreachable("dependent __builtin_offsetof");
01927 
01928     case OffsetOfExpr::OffsetOfNode::Base: {
01929       if (ON.getBase()->isVirtual()) {
01930         CGF.ErrorUnsupported(E, "virtual base in offsetof");
01931         continue;
01932       }
01933 
01934       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
01935       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
01936 
01937       // Save the element type.
01938       CurrentType = ON.getBase()->getType();
01939 
01940       // Compute the offset to the base.
01941       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
01942       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
01943       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
01944       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
01945       break;
01946     }
01947     }
01948     Result = Builder.CreateAdd(Result, Offset);
01949   }
01950   return Result;
01951 }
01952 
01953 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
01954 /// argument of the sizeof expression as an integer.
01955 Value *
01956 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
01957                               const UnaryExprOrTypeTraitExpr *E) {
01958   QualType TypeToSize = E->getTypeOfArgument();
01959   if (E->getKind() == UETT_SizeOf) {
01960     if (const VariableArrayType *VAT =
01961           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
01962       if (E->isArgumentType()) {
01963         // sizeof(type) - make sure to emit the VLA size.
01964         CGF.EmitVariablyModifiedType(TypeToSize);
01965       } else {
01966         // C99 6.5.3.4p2: If the argument is an expression of type
01967         // VLA, it is evaluated.
01968         CGF.EmitIgnoredExpr(E->getArgumentExpr());
01969       }
01970 
01971       QualType eltType;
01972       llvm::Value *numElts;
01973       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
01974 
01975       llvm::Value *size = numElts;
01976 
01977       // Scale the number of non-VLA elements by the non-VLA element size.
01978       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
01979       if (!eltSize.isOne())
01980         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
01981 
01982       return size;
01983     }
01984   }
01985 
01986   // If this isn't sizeof(vla), the result must be constant; use the constant
01987   // folding logic so we don't have to duplicate it here.
01988   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
01989 }
01990 
01991 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
01992   Expr *Op = E->getSubExpr();
01993   if (Op->getType()->isAnyComplexType()) {
01994     // If it's an l-value, load through the appropriate subobject l-value.
01995     // Note that we have to ask E because Op might be an l-value that
01996     // this won't work for, e.g. an Obj-C property.
01997     if (E->isGLValue())
01998       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
01999                                   E->getExprLoc()).getScalarVal();
02000 
02001     // Otherwise, calculate and project.
02002     return CGF.EmitComplexExpr(Op, false, true).first;
02003   }
02004 
02005   return Visit(Op);
02006 }
02007 
02008 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
02009   Expr *Op = E->getSubExpr();
02010   if (Op->getType()->isAnyComplexType()) {
02011     // If it's an l-value, load through the appropriate subobject l-value.
02012     // Note that we have to ask E because Op might be an l-value that
02013     // this won't work for, e.g. an Obj-C property.
02014     if (Op->isGLValue())
02015       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
02016                                   E->getExprLoc()).getScalarVal();
02017 
02018     // Otherwise, calculate and project.
02019     return CGF.EmitComplexExpr(Op, true, false).second;
02020   }
02021 
02022   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
02023   // effects are evaluated, but not the actual value.
02024   if (Op->isGLValue())
02025     CGF.EmitLValue(Op);
02026   else
02027     CGF.EmitScalarExpr(Op, true);
02028   return llvm::Constant::getNullValue(ConvertType(E->getType()));
02029 }
02030 
02031 //===----------------------------------------------------------------------===//
02032 //                           Binary Operators
02033 //===----------------------------------------------------------------------===//
02034 
02035 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
02036   TestAndClearIgnoreResultAssign();
02037   BinOpInfo Result;
02038   Result.LHS = Visit(E->getLHS());
02039   Result.RHS = Visit(E->getRHS());
02040   Result.Ty  = E->getType();
02041   Result.Opcode = E->getOpcode();
02042   Result.FPContractable = E->isFPContractable();
02043   Result.E = E;
02044   return Result;
02045 }
02046 
02047 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
02048                                               const CompoundAssignOperator *E,
02049                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
02050                                                    Value *&Result) {
02051   QualType LHSTy = E->getLHS()->getType();
02052   BinOpInfo OpInfo;
02053 
02054   if (E->getComputationResultType()->isAnyComplexType())
02055     return CGF.EmitScalarCompooundAssignWithComplex(E, Result);
02056 
02057   // Emit the RHS first.  __block variables need to have the rhs evaluated
02058   // first, plus this should improve codegen a little.
02059   OpInfo.RHS = Visit(E->getRHS());
02060   OpInfo.Ty = E->getComputationResultType();
02061   OpInfo.Opcode = E->getOpcode();
02062   OpInfo.FPContractable = false;
02063   OpInfo.E = E;
02064   // Load/convert the LHS.
02065   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
02066 
02067   llvm::PHINode *atomicPHI = nullptr;
02068   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
02069     QualType type = atomicTy->getValueType();
02070     if (!type->isBooleanType() && type->isIntegerType() &&
02071         !(type->isUnsignedIntegerType() &&
02072           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
02073         CGF.getLangOpts().getSignedOverflowBehavior() !=
02074             LangOptions::SOB_Trapping) {
02075       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
02076       switch (OpInfo.Opcode) {
02077         // We don't have atomicrmw operands for *, %, /, <<, >>
02078         case BO_MulAssign: case BO_DivAssign:
02079         case BO_RemAssign:
02080         case BO_ShlAssign:
02081         case BO_ShrAssign:
02082           break;
02083         case BO_AddAssign:
02084           aop = llvm::AtomicRMWInst::Add;
02085           break;
02086         case BO_SubAssign:
02087           aop = llvm::AtomicRMWInst::Sub;
02088           break;
02089         case BO_AndAssign:
02090           aop = llvm::AtomicRMWInst::And;
02091           break;
02092         case BO_XorAssign:
02093           aop = llvm::AtomicRMWInst::Xor;
02094           break;
02095         case BO_OrAssign:
02096           aop = llvm::AtomicRMWInst::Or;
02097           break;
02098         default:
02099           llvm_unreachable("Invalid compound assignment type");
02100       }
02101       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
02102         llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS,
02103               E->getRHS()->getType(), LHSTy), LHSTy);
02104         Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt,
02105             llvm::SequentiallyConsistent);
02106         return LHSLV;
02107       }
02108     }
02109     // FIXME: For floating point types, we should be saving and restoring the
02110     // floating point environment in the loop.
02111     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
02112     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
02113     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
02114     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
02115     Builder.CreateBr(opBB);
02116     Builder.SetInsertPoint(opBB);
02117     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
02118     atomicPHI->addIncoming(OpInfo.LHS, startBB);
02119     OpInfo.LHS = atomicPHI;
02120   }
02121   else
02122     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
02123 
02124   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
02125                                     E->getComputationLHSType());
02126 
02127   // Expand the binary operator.
02128   Result = (this->*Func)(OpInfo);
02129 
02130   // Convert the result back to the LHS type.
02131   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
02132 
02133   if (atomicPHI) {
02134     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
02135     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
02136     llvm::Value *pair = Builder.CreateAtomicCmpXchg(
02137         LHSLV.getAddress(), atomicPHI, CGF.EmitToMemory(Result, LHSTy),
02138         llvm::SequentiallyConsistent, llvm::SequentiallyConsistent);
02139     llvm::Value *old = Builder.CreateExtractValue(pair, 0);
02140     llvm::Value *success = Builder.CreateExtractValue(pair, 1);
02141     atomicPHI->addIncoming(old, opBB);
02142     Builder.CreateCondBr(success, contBB, opBB);
02143     Builder.SetInsertPoint(contBB);
02144     return LHSLV;
02145   }
02146 
02147   // Store the result value into the LHS lvalue. Bit-fields are handled
02148   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
02149   // 'An assignment expression has the value of the left operand after the
02150   // assignment...'.
02151   if (LHSLV.isBitField())
02152     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
02153   else
02154     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
02155 
02156   return LHSLV;
02157 }
02158 
02159 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
02160                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
02161   bool Ignore = TestAndClearIgnoreResultAssign();
02162   Value *RHS;
02163   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
02164 
02165   // If the result is clearly ignored, return now.
02166   if (Ignore)
02167     return nullptr;
02168 
02169   // The result of an assignment in C is the assigned r-value.
02170   if (!CGF.getLangOpts().CPlusPlus)
02171     return RHS;
02172 
02173   // If the lvalue is non-volatile, return the computed value of the assignment.
02174   if (!LHS.isVolatileQualified())
02175     return RHS;
02176 
02177   // Otherwise, reload the value.
02178   return EmitLoadOfLValue(LHS, E->getExprLoc());
02179 }
02180 
02181 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
02182     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
02183   SmallVector<std::pair<llvm::Value *, SanitizerKind>, 2> Checks;
02184 
02185   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
02186     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
02187                                     SanitizerKind::IntegerDivideByZero));
02188   }
02189 
02190   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
02191       Ops.Ty->hasSignedIntegerRepresentation()) {
02192     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
02193 
02194     llvm::Value *IntMin =
02195       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
02196     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
02197 
02198     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
02199     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
02200     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
02201     Checks.push_back(
02202         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
02203   }
02204 
02205   if (Checks.size() > 0)
02206     EmitBinOpCheck(Checks, Ops);
02207 }
02208 
02209 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
02210   {
02211     CodeGenFunction::SanitizerScope SanScope(&CGF);
02212     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
02213          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
02214         Ops.Ty->isIntegerType()) {
02215       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
02216       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
02217     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
02218                Ops.Ty->isRealFloatingType()) {
02219       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
02220       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
02221       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
02222                      Ops);
02223     }
02224   }
02225 
02226   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
02227     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
02228     if (CGF.getLangOpts().OpenCL) {
02229       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
02230       llvm::Type *ValTy = Val->getType();
02231       if (ValTy->isFloatTy() ||
02232           (isa<llvm::VectorType>(ValTy) &&
02233            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
02234         CGF.SetFPAccuracy(Val, 2.5);
02235     }
02236     return Val;
02237   }
02238   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
02239     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
02240   else
02241     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
02242 }
02243 
02244 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
02245   // Rem in C can't be a floating point type: C99 6.5.5p2.
02246   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
02247     CodeGenFunction::SanitizerScope SanScope(&CGF);
02248     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
02249 
02250     if (Ops.Ty->isIntegerType())
02251       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
02252   }
02253 
02254   if (Ops.Ty->hasUnsignedIntegerRepresentation())
02255     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
02256   else
02257     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
02258 }
02259 
02260 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
02261   unsigned IID;
02262   unsigned OpID = 0;
02263 
02264   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
02265   switch (Ops.Opcode) {
02266   case BO_Add:
02267   case BO_AddAssign:
02268     OpID = 1;
02269     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
02270                      llvm::Intrinsic::uadd_with_overflow;
02271     break;
02272   case BO_Sub:
02273   case BO_SubAssign:
02274     OpID = 2;
02275     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
02276                      llvm::Intrinsic::usub_with_overflow;
02277     break;
02278   case BO_Mul:
02279   case BO_MulAssign:
02280     OpID = 3;
02281     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
02282                      llvm::Intrinsic::umul_with_overflow;
02283     break;
02284   default:
02285     llvm_unreachable("Unsupported operation for overflow detection");
02286   }
02287   OpID <<= 1;
02288   if (isSigned)
02289     OpID |= 1;
02290 
02291   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
02292 
02293   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
02294 
02295   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
02296   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
02297   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
02298 
02299   // Handle overflow with llvm.trap if no custom handler has been specified.
02300   const std::string *handlerName =
02301     &CGF.getLangOpts().OverflowHandler;
02302   if (handlerName->empty()) {
02303     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
02304     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
02305     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
02306       CodeGenFunction::SanitizerScope SanScope(&CGF);
02307       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
02308       SanitizerKind Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
02309                               : SanitizerKind::UnsignedIntegerOverflow;
02310       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
02311     } else
02312       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
02313     return result;
02314   }
02315 
02316   // Branch in case of overflow.
02317   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
02318   llvm::Function::iterator insertPt = initialBB;
02319   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
02320                                                       std::next(insertPt));
02321   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
02322 
02323   Builder.CreateCondBr(overflow, overflowBB, continueBB);
02324 
02325   // If an overflow handler is set, then we want to call it and then use its
02326   // result, if it returns.
02327   Builder.SetInsertPoint(overflowBB);
02328 
02329   // Get the overflow handler.
02330   llvm::Type *Int8Ty = CGF.Int8Ty;
02331   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
02332   llvm::FunctionType *handlerTy =
02333       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
02334   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
02335 
02336   // Sign extend the args to 64-bit, so that we can use the same handler for
02337   // all types of overflow.
02338   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
02339   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
02340 
02341   // Call the handler with the two arguments, the operation, and the size of
02342   // the result.
02343   llvm::Value *handlerArgs[] = {
02344     lhs,
02345     rhs,
02346     Builder.getInt8(OpID),
02347     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
02348   };
02349   llvm::Value *handlerResult =
02350     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
02351 
02352   // Truncate the result back to the desired size.
02353   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
02354   Builder.CreateBr(continueBB);
02355 
02356   Builder.SetInsertPoint(continueBB);
02357   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
02358   phi->addIncoming(result, initialBB);
02359   phi->addIncoming(handlerResult, overflowBB);
02360 
02361   return phi;
02362 }
02363 
02364 /// Emit pointer + index arithmetic.
02365 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
02366                                     const BinOpInfo &op,
02367                                     bool isSubtraction) {
02368   // Must have binary (not unary) expr here.  Unary pointer
02369   // increment/decrement doesn't use this path.
02370   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
02371 
02372   Value *pointer = op.LHS;
02373   Expr *pointerOperand = expr->getLHS();
02374   Value *index = op.RHS;
02375   Expr *indexOperand = expr->getRHS();
02376 
02377   // In a subtraction, the LHS is always the pointer.
02378   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
02379     std::swap(pointer, index);
02380     std::swap(pointerOperand, indexOperand);
02381   }
02382 
02383   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
02384   if (width != CGF.PointerWidthInBits) {
02385     // Zero-extend or sign-extend the pointer value according to
02386     // whether the index is signed or not.
02387     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
02388     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
02389                                       "idx.ext");
02390   }
02391 
02392   // If this is subtraction, negate the index.
02393   if (isSubtraction)
02394     index = CGF.Builder.CreateNeg(index, "idx.neg");
02395 
02396   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
02397     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
02398                         /*Accessed*/ false);
02399 
02400   const PointerType *pointerType
02401     = pointerOperand->getType()->getAs<PointerType>();
02402   if (!pointerType) {
02403     QualType objectType = pointerOperand->getType()
02404                                         ->castAs<ObjCObjectPointerType>()
02405                                         ->getPointeeType();
02406     llvm::Value *objectSize
02407       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
02408 
02409     index = CGF.Builder.CreateMul(index, objectSize);
02410 
02411     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
02412     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
02413     return CGF.Builder.CreateBitCast(result, pointer->getType());
02414   }
02415 
02416   QualType elementType = pointerType->getPointeeType();
02417   if (const VariableArrayType *vla
02418         = CGF.getContext().getAsVariableArrayType(elementType)) {
02419     // The element count here is the total number of non-VLA elements.
02420     llvm::Value *numElements = CGF.getVLASize(vla).first;
02421 
02422     // Effectively, the multiply by the VLA size is part of the GEP.
02423     // GEP indexes are signed, and scaling an index isn't permitted to
02424     // signed-overflow, so we use the same semantics for our explicit
02425     // multiply.  We suppress this if overflow is not undefined behavior.
02426     if (CGF.getLangOpts().isSignedOverflowDefined()) {
02427       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
02428       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
02429     } else {
02430       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
02431       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
02432     }
02433     return pointer;
02434   }
02435 
02436   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
02437   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
02438   // future proof.
02439   if (elementType->isVoidType() || elementType->isFunctionType()) {
02440     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
02441     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
02442     return CGF.Builder.CreateBitCast(result, pointer->getType());
02443   }
02444 
02445   if (CGF.getLangOpts().isSignedOverflowDefined())
02446     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
02447 
02448   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
02449 }
02450 
02451 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
02452 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
02453 // the add operand respectively. This allows fmuladd to represent a*b-c, or
02454 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
02455 // efficient operations.
02456 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
02457                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
02458                            bool negMul, bool negAdd) {
02459   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
02460 
02461   Value *MulOp0 = MulOp->getOperand(0);
02462   Value *MulOp1 = MulOp->getOperand(1);
02463   if (negMul) {
02464     MulOp0 =
02465       Builder.CreateFSub(
02466         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
02467         "neg");
02468   } else if (negAdd) {
02469     Addend =
02470       Builder.CreateFSub(
02471         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
02472         "neg");
02473   }
02474 
02475   Value *FMulAdd =
02476     Builder.CreateCall3(
02477       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
02478                            MulOp0, MulOp1, Addend);
02479    MulOp->eraseFromParent();
02480 
02481    return FMulAdd;
02482 }
02483 
02484 // Check whether it would be legal to emit an fmuladd intrinsic call to
02485 // represent op and if so, build the fmuladd.
02486 //
02487 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
02488 // Does NOT check the type of the operation - it's assumed that this function
02489 // will be called from contexts where it's known that the type is contractable.
02490 static Value* tryEmitFMulAdd(const BinOpInfo &op,
02491                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
02492                          bool isSub=false) {
02493 
02494   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
02495           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
02496          "Only fadd/fsub can be the root of an fmuladd.");
02497 
02498   // Check whether this op is marked as fusable.
02499   if (!op.FPContractable)
02500     return nullptr;
02501 
02502   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
02503   // either disabled, or handled entirely by the LLVM backend).
02504   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
02505     return nullptr;
02506 
02507   // We have a potentially fusable op. Look for a mul on one of the operands.
02508   if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
02509     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
02510       assert(LHSBinOp->getNumUses() == 0 &&
02511              "Operations with multiple uses shouldn't be contracted.");
02512       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
02513     }
02514   } else if (llvm::BinaryOperator* RHSBinOp =
02515                dyn_cast<llvm::BinaryOperator>(op.RHS)) {
02516     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
02517       assert(RHSBinOp->getNumUses() == 0 &&
02518              "Operations with multiple uses shouldn't be contracted.");
02519       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
02520     }
02521   }
02522 
02523   return nullptr;
02524 }
02525 
02526 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
02527   if (op.LHS->getType()->isPointerTy() ||
02528       op.RHS->getType()->isPointerTy())
02529     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
02530 
02531   if (op.Ty->isSignedIntegerOrEnumerationType()) {
02532     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
02533     case LangOptions::SOB_Defined:
02534       return Builder.CreateAdd(op.LHS, op.RHS, "add");
02535     case LangOptions::SOB_Undefined:
02536       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
02537         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
02538       // Fall through.
02539     case LangOptions::SOB_Trapping:
02540       return EmitOverflowCheckedBinOp(op);
02541     }
02542   }
02543 
02544   if (op.Ty->isUnsignedIntegerType() &&
02545       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
02546     return EmitOverflowCheckedBinOp(op);
02547 
02548   if (op.LHS->getType()->isFPOrFPVectorTy()) {
02549     // Try to form an fmuladd.
02550     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
02551       return FMulAdd;
02552 
02553     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
02554   }
02555 
02556   return Builder.CreateAdd(op.LHS, op.RHS, "add");
02557 }
02558 
02559 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
02560   // The LHS is always a pointer if either side is.
02561   if (!op.LHS->getType()->isPointerTy()) {
02562     if (op.Ty->isSignedIntegerOrEnumerationType()) {
02563       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
02564       case LangOptions::SOB_Defined:
02565         return Builder.CreateSub(op.LHS, op.RHS, "sub");
02566       case LangOptions::SOB_Undefined:
02567         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
02568           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
02569         // Fall through.
02570       case LangOptions::SOB_Trapping:
02571         return EmitOverflowCheckedBinOp(op);
02572       }
02573     }
02574 
02575     if (op.Ty->isUnsignedIntegerType() &&
02576         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
02577       return EmitOverflowCheckedBinOp(op);
02578 
02579     if (op.LHS->getType()->isFPOrFPVectorTy()) {
02580       // Try to form an fmuladd.
02581       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
02582         return FMulAdd;
02583       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
02584     }
02585 
02586     return Builder.CreateSub(op.LHS, op.RHS, "sub");
02587   }
02588 
02589   // If the RHS is not a pointer, then we have normal pointer
02590   // arithmetic.
02591   if (!op.RHS->getType()->isPointerTy())
02592     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
02593 
02594   // Otherwise, this is a pointer subtraction.
02595 
02596   // Do the raw subtraction part.
02597   llvm::Value *LHS
02598     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
02599   llvm::Value *RHS
02600     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
02601   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
02602 
02603   // Okay, figure out the element size.
02604   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
02605   QualType elementType = expr->getLHS()->getType()->getPointeeType();
02606 
02607   llvm::Value *divisor = nullptr;
02608 
02609   // For a variable-length array, this is going to be non-constant.
02610   if (const VariableArrayType *vla
02611         = CGF.getContext().getAsVariableArrayType(elementType)) {
02612     llvm::Value *numElements;
02613     std::tie(numElements, elementType) = CGF.getVLASize(vla);
02614 
02615     divisor = numElements;
02616 
02617     // Scale the number of non-VLA elements by the non-VLA element size.
02618     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
02619     if (!eltSize.isOne())
02620       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
02621 
02622   // For everything elese, we can just compute it, safe in the
02623   // assumption that Sema won't let anything through that we can't
02624   // safely compute the size of.
02625   } else {
02626     CharUnits elementSize;
02627     // Handle GCC extension for pointer arithmetic on void* and
02628     // function pointer types.
02629     if (elementType->isVoidType() || elementType->isFunctionType())
02630       elementSize = CharUnits::One();
02631     else
02632       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
02633 
02634     // Don't even emit the divide for element size of 1.
02635     if (elementSize.isOne())
02636       return diffInChars;
02637 
02638     divisor = CGF.CGM.getSize(elementSize);
02639   }
02640 
02641   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
02642   // pointer difference in C is only defined in the case where both operands
02643   // are pointing to elements of an array.
02644   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
02645 }
02646 
02647 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
02648   llvm::IntegerType *Ty;
02649   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
02650     Ty = cast<llvm::IntegerType>(VT->getElementType());
02651   else
02652     Ty = cast<llvm::IntegerType>(LHS->getType());
02653   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
02654 }
02655 
02656 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
02657   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
02658   // RHS to the same size as the LHS.
02659   Value *RHS = Ops.RHS;
02660   if (Ops.LHS->getType() != RHS->getType())
02661     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
02662 
02663   if (CGF.SanOpts.has(SanitizerKind::Shift) && !CGF.getLangOpts().OpenCL &&
02664       isa<llvm::IntegerType>(Ops.LHS->getType())) {
02665     CodeGenFunction::SanitizerScope SanScope(&CGF);
02666     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
02667     llvm::Value *Valid = Builder.CreateICmpULE(RHS, WidthMinusOne);
02668 
02669     if (Ops.Ty->hasSignedIntegerRepresentation()) {
02670       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
02671       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
02672       llvm::BasicBlock *CheckBitsShifted = CGF.createBasicBlock("check");
02673       Builder.CreateCondBr(Valid, CheckBitsShifted, Cont);
02674 
02675       // Check whether we are shifting any non-zero bits off the top of the
02676       // integer.
02677       CGF.EmitBlock(CheckBitsShifted);
02678       llvm::Value *BitsShiftedOff =
02679         Builder.CreateLShr(Ops.LHS,
02680                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
02681                                              /*NUW*/true, /*NSW*/true),
02682                            "shl.check");
02683       if (CGF.getLangOpts().CPlusPlus) {
02684         // In C99, we are not permitted to shift a 1 bit into the sign bit.
02685         // Under C++11's rules, shifting a 1 bit into the sign bit is
02686         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
02687         // define signed left shifts, so we use the C99 and C++11 rules there).
02688         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
02689         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
02690       }
02691       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
02692       llvm::Value *SecondCheck = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
02693       CGF.EmitBlock(Cont);
02694       llvm::PHINode *P = Builder.CreatePHI(Valid->getType(), 2);
02695       P->addIncoming(Valid, Orig);
02696       P->addIncoming(SecondCheck, CheckBitsShifted);
02697       Valid = P;
02698     }
02699 
02700     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::Shift), Ops);
02701   }
02702   // OpenCL 6.3j: shift values are effectively % word size of LHS.
02703   if (CGF.getLangOpts().OpenCL)
02704     RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
02705 
02706   return Builder.CreateShl(Ops.LHS, RHS, "shl");
02707 }
02708 
02709 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
02710   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
02711   // RHS to the same size as the LHS.
02712   Value *RHS = Ops.RHS;
02713   if (Ops.LHS->getType() != RHS->getType())
02714     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
02715 
02716   if (CGF.SanOpts.has(SanitizerKind::Shift) && !CGF.getLangOpts().OpenCL &&
02717       isa<llvm::IntegerType>(Ops.LHS->getType())) {
02718     CodeGenFunction::SanitizerScope SanScope(&CGF);
02719     llvm::Value *Valid =
02720         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
02721     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::Shift), Ops);
02722   }
02723 
02724   // OpenCL 6.3j: shift values are effectively % word size of LHS.
02725   if (CGF.getLangOpts().OpenCL)
02726     RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
02727 
02728   if (Ops.Ty->hasUnsignedIntegerRepresentation())
02729     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
02730   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
02731 }
02732 
02733 enum IntrinsicType { VCMPEQ, VCMPGT };
02734 // return corresponding comparison intrinsic for given vector type
02735 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
02736                                         BuiltinType::Kind ElemKind) {
02737   switch (ElemKind) {
02738   default: llvm_unreachable("unexpected element type");
02739   case BuiltinType::Char_U:
02740   case BuiltinType::UChar:
02741     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
02742                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
02743   case BuiltinType::Char_S:
02744   case BuiltinType::SChar:
02745     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
02746                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
02747   case BuiltinType::UShort:
02748     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
02749                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
02750   case BuiltinType::Short:
02751     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
02752                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
02753   case BuiltinType::UInt:
02754   case BuiltinType::ULong:
02755     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
02756                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
02757   case BuiltinType::Int:
02758   case BuiltinType::Long:
02759     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
02760                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
02761   case BuiltinType::Float:
02762     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
02763                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
02764   }
02765 }
02766 
02767 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
02768                                       unsigned SICmpOpc, unsigned FCmpOpc) {
02769   TestAndClearIgnoreResultAssign();
02770   Value *Result;
02771   QualType LHSTy = E->getLHS()->getType();
02772   QualType RHSTy = E->getRHS()->getType();
02773   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
02774     assert(E->getOpcode() == BO_EQ ||
02775            E->getOpcode() == BO_NE);
02776     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
02777     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
02778     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
02779                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
02780   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
02781     Value *LHS = Visit(E->getLHS());
02782     Value *RHS = Visit(E->getRHS());
02783 
02784     // If AltiVec, the comparison results in a numeric type, so we use
02785     // intrinsics comparing vectors and giving 0 or 1 as a result
02786     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
02787       // constants for mapping CR6 register bits to predicate result
02788       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
02789 
02790       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
02791 
02792       // in several cases vector arguments order will be reversed
02793       Value *FirstVecArg = LHS,
02794             *SecondVecArg = RHS;
02795 
02796       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
02797       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
02798       BuiltinType::Kind ElementKind = BTy->getKind();
02799 
02800       switch(E->getOpcode()) {
02801       default: llvm_unreachable("is not a comparison operation");
02802       case BO_EQ:
02803         CR6 = CR6_LT;
02804         ID = GetIntrinsic(VCMPEQ, ElementKind);
02805         break;
02806       case BO_NE:
02807         CR6 = CR6_EQ;
02808         ID = GetIntrinsic(VCMPEQ, ElementKind);
02809         break;
02810       case BO_LT:
02811         CR6 = CR6_LT;
02812         ID = GetIntrinsic(VCMPGT, ElementKind);
02813         std::swap(FirstVecArg, SecondVecArg);
02814         break;
02815       case BO_GT:
02816         CR6 = CR6_LT;
02817         ID = GetIntrinsic(VCMPGT, ElementKind);
02818         break;
02819       case BO_LE:
02820         if (ElementKind == BuiltinType::Float) {
02821           CR6 = CR6_LT;
02822           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
02823           std::swap(FirstVecArg, SecondVecArg);
02824         }
02825         else {
02826           CR6 = CR6_EQ;
02827           ID = GetIntrinsic(VCMPGT, ElementKind);
02828         }
02829         break;
02830       case BO_GE:
02831         if (ElementKind == BuiltinType::Float) {
02832           CR6 = CR6_LT;
02833           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
02834         }
02835         else {
02836           CR6 = CR6_EQ;
02837           ID = GetIntrinsic(VCMPGT, ElementKind);
02838           std::swap(FirstVecArg, SecondVecArg);
02839         }
02840         break;
02841       }
02842 
02843       Value *CR6Param = Builder.getInt32(CR6);
02844       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
02845       Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
02846       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
02847     }
02848 
02849     if (LHS->getType()->isFPOrFPVectorTy()) {
02850       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
02851                                   LHS, RHS, "cmp");
02852     } else if (LHSTy->hasSignedIntegerRepresentation()) {
02853       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
02854                                   LHS, RHS, "cmp");
02855     } else {
02856       // Unsigned integers and pointers.
02857       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
02858                                   LHS, RHS, "cmp");
02859     }
02860 
02861     // If this is a vector comparison, sign extend the result to the appropriate
02862     // vector integer type and return it (don't convert to bool).
02863     if (LHSTy->isVectorType())
02864       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
02865 
02866   } else {
02867     // Complex Comparison: can only be an equality comparison.
02868     CodeGenFunction::ComplexPairTy LHS, RHS;
02869     QualType CETy;
02870     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
02871       LHS = CGF.EmitComplexExpr(E->getLHS());
02872       CETy = CTy->getElementType();
02873     } else {
02874       LHS.first = Visit(E->getLHS());
02875       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
02876       CETy = LHSTy;
02877     }
02878     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
02879       RHS = CGF.EmitComplexExpr(E->getRHS());
02880       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
02881                                                      CTy->getElementType()) &&
02882              "The element types must always match.");
02883       (void)CTy;
02884     } else {
02885       RHS.first = Visit(E->getRHS());
02886       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
02887       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
02888              "The element types must always match.");
02889     }
02890 
02891     Value *ResultR, *ResultI;
02892     if (CETy->isRealFloatingType()) {
02893       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
02894                                    LHS.first, RHS.first, "cmp.r");
02895       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
02896                                    LHS.second, RHS.second, "cmp.i");
02897     } else {
02898       // Complex comparisons can only be equality comparisons.  As such, signed
02899       // and unsigned opcodes are the same.
02900       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
02901                                    LHS.first, RHS.first, "cmp.r");
02902       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
02903                                    LHS.second, RHS.second, "cmp.i");
02904     }
02905 
02906     if (E->getOpcode() == BO_EQ) {
02907       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
02908     } else {
02909       assert(E->getOpcode() == BO_NE &&
02910              "Complex comparison other than == or != ?");
02911       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
02912     }
02913   }
02914 
02915   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
02916 }
02917 
02918 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
02919   bool Ignore = TestAndClearIgnoreResultAssign();
02920 
02921   Value *RHS;
02922   LValue LHS;
02923 
02924   switch (E->getLHS()->getType().getObjCLifetime()) {
02925   case Qualifiers::OCL_Strong:
02926     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
02927     break;
02928 
02929   case Qualifiers::OCL_Autoreleasing:
02930     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
02931     break;
02932 
02933   case Qualifiers::OCL_Weak:
02934     RHS = Visit(E->getRHS());
02935     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
02936     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
02937     break;
02938 
02939   // No reason to do any of these differently.
02940   case Qualifiers::OCL_None:
02941   case Qualifiers::OCL_ExplicitNone:
02942     // __block variables need to have the rhs evaluated first, plus
02943     // this should improve codegen just a little.
02944     RHS = Visit(E->getRHS());
02945     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
02946 
02947     // Store the value into the LHS.  Bit-fields are handled specially
02948     // because the result is altered by the store, i.e., [C99 6.5.16p1]
02949     // 'An assignment expression has the value of the left operand after
02950     // the assignment...'.
02951     if (LHS.isBitField())
02952       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
02953     else
02954       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
02955   }
02956 
02957   // If the result is clearly ignored, return now.
02958   if (Ignore)
02959     return nullptr;
02960 
02961   // The result of an assignment in C is the assigned r-value.
02962   if (!CGF.getLangOpts().CPlusPlus)
02963     return RHS;
02964 
02965   // If the lvalue is non-volatile, return the computed value of the assignment.
02966   if (!LHS.isVolatileQualified())
02967     return RHS;
02968 
02969   // Otherwise, reload the value.
02970   return EmitLoadOfLValue(LHS, E->getExprLoc());
02971 }
02972 
02973 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
02974   RegionCounter Cnt = CGF.getPGORegionCounter(E);
02975 
02976   // Perform vector logical and on comparisons with zero vectors.
02977   if (E->getType()->isVectorType()) {
02978     Cnt.beginRegion(Builder);
02979 
02980     Value *LHS = Visit(E->getLHS());
02981     Value *RHS = Visit(E->getRHS());
02982     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
02983     if (LHS->getType()->isFPOrFPVectorTy()) {
02984       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
02985       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
02986     } else {
02987       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
02988       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
02989     }
02990     Value *And = Builder.CreateAnd(LHS, RHS);
02991     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
02992   }
02993 
02994   llvm::Type *ResTy = ConvertType(E->getType());
02995 
02996   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
02997   // If we have 1 && X, just emit X without inserting the control flow.
02998   bool LHSCondVal;
02999   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
03000     if (LHSCondVal) { // If we have 1 && X, just emit X.
03001       Cnt.beginRegion(Builder);
03002 
03003       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
03004       // ZExt result to int or bool.
03005       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
03006     }
03007 
03008     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
03009     if (!CGF.ContainsLabel(E->getRHS()))
03010       return llvm::Constant::getNullValue(ResTy);
03011   }
03012 
03013   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
03014   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
03015 
03016   CodeGenFunction::ConditionalEvaluation eval(CGF);
03017 
03018   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
03019   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, Cnt.getCount());
03020 
03021   // Any edges into the ContBlock are now from an (indeterminate number of)
03022   // edges from this first condition.  All of these values will be false.  Start
03023   // setting up the PHI node in the Cont Block for this.
03024   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
03025                                             "", ContBlock);
03026   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
03027        PI != PE; ++PI)
03028     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
03029 
03030   eval.begin(CGF);
03031   CGF.EmitBlock(RHSBlock);
03032   Cnt.beginRegion(Builder);
03033   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
03034   eval.end(CGF);
03035 
03036   // Reaquire the RHS block, as there may be subblocks inserted.
03037   RHSBlock = Builder.GetInsertBlock();
03038 
03039   // Emit an unconditional branch from this block to ContBlock.
03040   {
03041     // There is no need to emit line number for unconditional branch.
03042     SuppressDebugLocation S(Builder);
03043     CGF.EmitBlock(ContBlock);
03044   }
03045   // Insert an entry into the phi node for the edge with the value of RHSCond.
03046   PN->addIncoming(RHSCond, RHSBlock);
03047 
03048   // ZExt result to int.
03049   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
03050 }
03051 
03052 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
03053   RegionCounter Cnt = CGF.getPGORegionCounter(E);
03054 
03055   // Perform vector logical or on comparisons with zero vectors.
03056   if (E->getType()->isVectorType()) {
03057     Cnt.beginRegion(Builder);
03058 
03059     Value *LHS = Visit(E->getLHS());
03060     Value *RHS = Visit(E->getRHS());
03061     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
03062     if (LHS->getType()->isFPOrFPVectorTy()) {
03063       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
03064       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
03065     } else {
03066       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
03067       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
03068     }
03069     Value *Or = Builder.CreateOr(LHS, RHS);
03070     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
03071   }
03072 
03073   llvm::Type *ResTy = ConvertType(E->getType());
03074 
03075   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
03076   // If we have 0 || X, just emit X without inserting the control flow.
03077   bool LHSCondVal;
03078   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
03079     if (!LHSCondVal) { // If we have 0 || X, just emit X.
03080       Cnt.beginRegion(Builder);
03081 
03082       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
03083       // ZExt result to int or bool.
03084       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
03085     }
03086 
03087     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
03088     if (!CGF.ContainsLabel(E->getRHS()))
03089       return llvm::ConstantInt::get(ResTy, 1);
03090   }
03091 
03092   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
03093   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
03094 
03095   CodeGenFunction::ConditionalEvaluation eval(CGF);
03096 
03097   // Branch on the LHS first.  If it is true, go to the success (cont) block.
03098   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
03099                            Cnt.getParentCount() - Cnt.getCount());
03100 
03101   // Any edges into the ContBlock are now from an (indeterminate number of)
03102   // edges from this first condition.  All of these values will be true.  Start
03103   // setting up the PHI node in the Cont Block for this.
03104   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
03105                                             "", ContBlock);
03106   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
03107        PI != PE; ++PI)
03108     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
03109 
03110   eval.begin(CGF);
03111 
03112   // Emit the RHS condition as a bool value.
03113   CGF.EmitBlock(RHSBlock);
03114   Cnt.beginRegion(Builder);
03115   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
03116 
03117   eval.end(CGF);
03118 
03119   // Reaquire the RHS block, as there may be subblocks inserted.
03120   RHSBlock = Builder.GetInsertBlock();
03121 
03122   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
03123   // into the phi node for the edge with the value of RHSCond.
03124   CGF.EmitBlock(ContBlock);
03125   PN->addIncoming(RHSCond, RHSBlock);
03126 
03127   // ZExt result to int.
03128   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
03129 }
03130 
03131 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
03132   CGF.EmitIgnoredExpr(E->getLHS());
03133   CGF.EnsureInsertPoint();
03134   return Visit(E->getRHS());
03135 }
03136 
03137 //===----------------------------------------------------------------------===//
03138 //                             Other Operators
03139 //===----------------------------------------------------------------------===//
03140 
03141 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
03142 /// expression is cheap enough and side-effect-free enough to evaluate
03143 /// unconditionally instead of conditionally.  This is used to convert control
03144 /// flow into selects in some cases.
03145 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
03146                                                    CodeGenFunction &CGF) {
03147   // Anything that is an integer or floating point constant is fine.
03148   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
03149 
03150   // Even non-volatile automatic variables can't be evaluated unconditionally.
03151   // Referencing a thread_local may cause non-trivial initialization work to
03152   // occur. If we're inside a lambda and one of the variables is from the scope
03153   // outside the lambda, that function may have returned already. Reading its
03154   // locals is a bad idea. Also, these reads may introduce races there didn't
03155   // exist in the source-level program.
03156 }
03157 
03158 
03159 Value *ScalarExprEmitter::
03160 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
03161   TestAndClearIgnoreResultAssign();
03162 
03163   // Bind the common expression if necessary.
03164   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
03165   RegionCounter Cnt = CGF.getPGORegionCounter(E);
03166 
03167   Expr *condExpr = E->getCond();
03168   Expr *lhsExpr = E->getTrueExpr();
03169   Expr *rhsExpr = E->getFalseExpr();
03170 
03171   // If the condition constant folds and can be elided, try to avoid emitting
03172   // the condition and the dead arm.
03173   bool CondExprBool;
03174   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
03175     Expr *live = lhsExpr, *dead = rhsExpr;
03176     if (!CondExprBool) std::swap(live, dead);
03177 
03178     // If the dead side doesn't have labels we need, just emit the Live part.
03179     if (!CGF.ContainsLabel(dead)) {
03180       if (CondExprBool)
03181         Cnt.beginRegion(Builder);
03182       Value *Result = Visit(live);
03183 
03184       // If the live part is a throw expression, it acts like it has a void
03185       // type, so evaluating it returns a null Value*.  However, a conditional
03186       // with non-void type must return a non-null Value*.
03187       if (!Result && !E->getType()->isVoidType())
03188         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
03189 
03190       return Result;
03191     }
03192   }
03193 
03194   // OpenCL: If the condition is a vector, we can treat this condition like
03195   // the select function.
03196   if (CGF.getLangOpts().OpenCL
03197       && condExpr->getType()->isVectorType()) {
03198     Cnt.beginRegion(Builder);
03199 
03200     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
03201     llvm::Value *LHS = Visit(lhsExpr);
03202     llvm::Value *RHS = Visit(rhsExpr);
03203 
03204     llvm::Type *condType = ConvertType(condExpr->getType());
03205     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
03206 
03207     unsigned numElem = vecTy->getNumElements();
03208     llvm::Type *elemType = vecTy->getElementType();
03209 
03210     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
03211     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
03212     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
03213                                           llvm::VectorType::get(elemType,
03214                                                                 numElem),
03215                                           "sext");
03216     llvm::Value *tmp2 = Builder.CreateNot(tmp);
03217 
03218     // Cast float to int to perform ANDs if necessary.
03219     llvm::Value *RHSTmp = RHS;
03220     llvm::Value *LHSTmp = LHS;
03221     bool wasCast = false;
03222     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
03223     if (rhsVTy->getElementType()->isFloatingPointTy()) {
03224       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
03225       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
03226       wasCast = true;
03227     }
03228 
03229     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
03230     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
03231     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
03232     if (wasCast)
03233       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
03234 
03235     return tmp5;
03236   }
03237 
03238   // If this is a really simple expression (like x ? 4 : 5), emit this as a
03239   // select instead of as control flow.  We can only do this if it is cheap and
03240   // safe to evaluate the LHS and RHS unconditionally.
03241   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
03242       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
03243     Cnt.beginRegion(Builder);
03244 
03245     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
03246     llvm::Value *LHS = Visit(lhsExpr);
03247     llvm::Value *RHS = Visit(rhsExpr);
03248     if (!LHS) {
03249       // If the conditional has void type, make sure we return a null Value*.
03250       assert(!RHS && "LHS and RHS types must match");
03251       return nullptr;
03252     }
03253     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
03254   }
03255 
03256   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
03257   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
03258   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
03259 
03260   CodeGenFunction::ConditionalEvaluation eval(CGF);
03261   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, Cnt.getCount());
03262 
03263   CGF.EmitBlock(LHSBlock);
03264   Cnt.beginRegion(Builder);
03265   eval.begin(CGF);
03266   Value *LHS = Visit(lhsExpr);
03267   eval.end(CGF);
03268 
03269   LHSBlock = Builder.GetInsertBlock();
03270   Builder.CreateBr(ContBlock);
03271 
03272   CGF.EmitBlock(RHSBlock);
03273   eval.begin(CGF);
03274   Value *RHS = Visit(rhsExpr);
03275   eval.end(CGF);
03276 
03277   RHSBlock = Builder.GetInsertBlock();
03278   CGF.EmitBlock(ContBlock);
03279 
03280   // If the LHS or RHS is a throw expression, it will be legitimately null.
03281   if (!LHS)
03282     return RHS;
03283   if (!RHS)
03284     return LHS;
03285 
03286   // Create a PHI node for the real part.
03287   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
03288   PN->addIncoming(LHS, LHSBlock);
03289   PN->addIncoming(RHS, RHSBlock);
03290   return PN;
03291 }
03292 
03293 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
03294   return Visit(E->getChosenSubExpr());
03295 }
03296 
03297 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
03298   QualType Ty = VE->getType();
03299   if (Ty->isVariablyModifiedType())
03300     CGF.EmitVariablyModifiedType(Ty);
03301 
03302   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
03303   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
03304 
03305   // If EmitVAArg fails, we fall back to the LLVM instruction.
03306   if (!ArgPtr)
03307     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
03308 
03309   // FIXME Volatility.
03310   return Builder.CreateLoad(ArgPtr);
03311 }
03312 
03313 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
03314   return CGF.EmitBlockLiteral(block);
03315 }
03316 
03317 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
03318   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
03319   llvm::Type *DstTy = ConvertType(E->getType());
03320 
03321   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
03322   // a shuffle vector instead of a bitcast.
03323   llvm::Type *SrcTy = Src->getType();
03324   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
03325     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
03326     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
03327     if ((numElementsDst == 3 && numElementsSrc == 4)
03328         || (numElementsDst == 4 && numElementsSrc == 3)) {
03329 
03330 
03331       // In the case of going from int4->float3, a bitcast is needed before
03332       // doing a shuffle.
03333       llvm::Type *srcElemTy =
03334       cast<llvm::VectorType>(SrcTy)->getElementType();
03335       llvm::Type *dstElemTy =
03336       cast<llvm::VectorType>(DstTy)->getElementType();
03337 
03338       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
03339           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
03340         // Create a float type of the same size as the source or destination.
03341         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
03342                                                                  numElementsSrc);
03343 
03344         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
03345       }
03346 
03347       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
03348 
03349       SmallVector<llvm::Constant*, 3> Args;
03350       Args.push_back(Builder.getInt32(0));
03351       Args.push_back(Builder.getInt32(1));
03352       Args.push_back(Builder.getInt32(2));
03353 
03354       if (numElementsDst == 4)
03355         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
03356 
03357       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
03358 
03359       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
03360     }
03361   }
03362 
03363   return Builder.CreateBitCast(Src, DstTy, "astype");
03364 }
03365 
03366 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
03367   return CGF.EmitAtomicExpr(E).getScalarVal();
03368 }
03369 
03370 //===----------------------------------------------------------------------===//
03371 //                         Entry Point into this File
03372 //===----------------------------------------------------------------------===//
03373 
03374 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
03375 /// type, ignoring the result.
03376 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
03377   assert(E && hasScalarEvaluationKind(E->getType()) &&
03378          "Invalid scalar expression to emit");
03379 
03380   if (isa<CXXDefaultArgExpr>(E))
03381     disableDebugInfo();
03382   Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
03383     .Visit(const_cast<Expr*>(E));
03384   if (isa<CXXDefaultArgExpr>(E))
03385     enableDebugInfo();
03386   return V;
03387 }
03388 
03389 /// EmitScalarConversion - Emit a conversion from the specified type to the
03390 /// specified destination type, both of which are LLVM scalar types.
03391 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
03392                                              QualType DstTy) {
03393   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
03394          "Invalid scalar expression to emit");
03395   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
03396 }
03397 
03398 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
03399 /// type to the specified destination type, where the destination type is an
03400 /// LLVM scalar type.
03401 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
03402                                                       QualType SrcTy,
03403                                                       QualType DstTy) {
03404   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
03405          "Invalid complex -> scalar conversion");
03406   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
03407                                                                 DstTy);
03408 }
03409 
03410 
03411 llvm::Value *CodeGenFunction::
03412 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
03413                         bool isInc, bool isPre) {
03414   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
03415 }
03416 
03417 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
03418   llvm::Value *V;
03419   // object->isa or (*object).isa
03420   // Generate code as for: *(Class*)object
03421   // build Class* type
03422   llvm::Type *ClassPtrTy = ConvertType(E->getType());
03423 
03424   Expr *BaseExpr = E->getBase();
03425   if (BaseExpr->isRValue()) {
03426     V = CreateMemTemp(E->getType(), "resval");
03427     llvm::Value *Src = EmitScalarExpr(BaseExpr);
03428     Builder.CreateStore(Src, V);
03429     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
03430       MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc());
03431   } else {
03432     if (E->isArrow())
03433       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
03434     else
03435       V = EmitLValue(BaseExpr).getAddress();
03436   }
03437 
03438   // build Class* type
03439   ClassPtrTy = ClassPtrTy->getPointerTo();
03440   V = Builder.CreateBitCast(V, ClassPtrTy);
03441   return MakeNaturalAlignAddrLValue(V, E->getType());
03442 }
03443 
03444 
03445 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
03446                                             const CompoundAssignOperator *E) {
03447   ScalarExprEmitter Scalar(*this);
03448   Value *Result = nullptr;
03449   switch (E->getOpcode()) {
03450 #define COMPOUND_OP(Op)                                                       \
03451     case BO_##Op##Assign:                                                     \
03452       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
03453                                              Result)
03454   COMPOUND_OP(Mul);
03455   COMPOUND_OP(Div);
03456   COMPOUND_OP(Rem);
03457   COMPOUND_OP(Add);
03458   COMPOUND_OP(Sub);
03459   COMPOUND_OP(Shl);
03460   COMPOUND_OP(Shr);
03461   COMPOUND_OP(And);
03462   COMPOUND_OP(Xor);
03463   COMPOUND_OP(Or);
03464 #undef COMPOUND_OP
03465 
03466   case BO_PtrMemD:
03467   case BO_PtrMemI:
03468   case BO_Mul:
03469   case BO_Div:
03470   case BO_Rem:
03471   case BO_Add:
03472   case BO_Sub:
03473   case BO_Shl:
03474   case BO_Shr:
03475   case BO_LT:
03476   case BO_GT:
03477   case BO_LE:
03478   case BO_GE:
03479   case BO_EQ:
03480   case BO_NE:
03481   case BO_And:
03482   case BO_Xor:
03483   case BO_Or:
03484   case BO_LAnd:
03485   case BO_LOr:
03486   case BO_Assign:
03487   case BO_Comma:
03488     llvm_unreachable("Not valid compound assignment operators");
03489   }
03490 
03491   llvm_unreachable("Unhandled compound assignment operator");
03492 }