clang API Documentation
00001 //===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // These classes implement wrappers around llvm::Value in order to 00011 // fully represent the range of values for C L- and R- values. 00012 // 00013 //===----------------------------------------------------------------------===// 00014 00015 #ifndef LLVM_CLANG_LIB_CODEGEN_CGVALUE_H 00016 #define LLVM_CLANG_LIB_CODEGEN_CGVALUE_H 00017 00018 #include "clang/AST/ASTContext.h" 00019 #include "clang/AST/CharUnits.h" 00020 #include "clang/AST/Type.h" 00021 #include "llvm/IR/Value.h" 00022 00023 namespace llvm { 00024 class Constant; 00025 class MDNode; 00026 } 00027 00028 namespace clang { 00029 namespace CodeGen { 00030 class AggValueSlot; 00031 struct CGBitFieldInfo; 00032 00033 /// RValue - This trivial value class is used to represent the result of an 00034 /// expression that is evaluated. It can be one of three things: either a 00035 /// simple LLVM SSA value, a pair of SSA values for complex numbers, or the 00036 /// address of an aggregate value in memory. 00037 class RValue { 00038 enum Flavor { Scalar, Complex, Aggregate }; 00039 00040 // Stores first value and flavor. 00041 llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1; 00042 // Stores second value and volatility. 00043 llvm::PointerIntPair<llvm::Value *, 1, bool> V2; 00044 00045 public: 00046 bool isScalar() const { return V1.getInt() == Scalar; } 00047 bool isComplex() const { return V1.getInt() == Complex; } 00048 bool isAggregate() const { return V1.getInt() == Aggregate; } 00049 00050 bool isVolatileQualified() const { return V2.getInt(); } 00051 00052 /// getScalarVal() - Return the Value* of this scalar value. 00053 llvm::Value *getScalarVal() const { 00054 assert(isScalar() && "Not a scalar!"); 00055 return V1.getPointer(); 00056 } 00057 00058 /// getComplexVal - Return the real/imag components of this complex value. 00059 /// 00060 std::pair<llvm::Value *, llvm::Value *> getComplexVal() const { 00061 return std::make_pair(V1.getPointer(), V2.getPointer()); 00062 } 00063 00064 /// getAggregateAddr() - Return the Value* of the address of the aggregate. 00065 llvm::Value *getAggregateAddr() const { 00066 assert(isAggregate() && "Not an aggregate!"); 00067 return V1.getPointer(); 00068 } 00069 00070 static RValue get(llvm::Value *V) { 00071 RValue ER; 00072 ER.V1.setPointer(V); 00073 ER.V1.setInt(Scalar); 00074 ER.V2.setInt(false); 00075 return ER; 00076 } 00077 static RValue getComplex(llvm::Value *V1, llvm::Value *V2) { 00078 RValue ER; 00079 ER.V1.setPointer(V1); 00080 ER.V2.setPointer(V2); 00081 ER.V1.setInt(Complex); 00082 ER.V2.setInt(false); 00083 return ER; 00084 } 00085 static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) { 00086 return getComplex(C.first, C.second); 00087 } 00088 // FIXME: Aggregate rvalues need to retain information about whether they are 00089 // volatile or not. Remove default to find all places that probably get this 00090 // wrong. 00091 static RValue getAggregate(llvm::Value *V, bool Volatile = false) { 00092 RValue ER; 00093 ER.V1.setPointer(V); 00094 ER.V1.setInt(Aggregate); 00095 ER.V2.setInt(Volatile); 00096 return ER; 00097 } 00098 }; 00099 00100 /// Does an ARC strong l-value have precise lifetime? 00101 enum ARCPreciseLifetime_t { 00102 ARCImpreciseLifetime, ARCPreciseLifetime 00103 }; 00104 00105 /// LValue - This represents an lvalue references. Because C/C++ allow 00106 /// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a 00107 /// bitrange. 00108 class LValue { 00109 enum { 00110 Simple, // This is a normal l-value, use getAddress(). 00111 VectorElt, // This is a vector element l-value (V[i]), use getVector* 00112 BitField, // This is a bitfield l-value, use getBitfield*. 00113 ExtVectorElt, // This is an extended vector subset, use getExtVectorComp 00114 GlobalReg // This is a register l-value, use getGlobalReg() 00115 } LVType; 00116 00117 llvm::Value *V; 00118 00119 union { 00120 // Index into a vector subscript: V[i] 00121 llvm::Value *VectorIdx; 00122 00123 // ExtVector element subset: V.xyx 00124 llvm::Constant *VectorElts; 00125 00126 // BitField start bit and size 00127 const CGBitFieldInfo *BitFieldInfo; 00128 }; 00129 00130 QualType Type; 00131 00132 // 'const' is unused here 00133 Qualifiers Quals; 00134 00135 // The alignment to use when accessing this lvalue. (For vector elements, 00136 // this is the alignment of the whole vector.) 00137 int64_t Alignment; 00138 00139 // objective-c's ivar 00140 bool Ivar:1; 00141 00142 // objective-c's ivar is an array 00143 bool ObjIsArray:1; 00144 00145 // LValue is non-gc'able for any reason, including being a parameter or local 00146 // variable. 00147 bool NonGC: 1; 00148 00149 // Lvalue is a global reference of an objective-c object 00150 bool GlobalObjCRef : 1; 00151 00152 // Lvalue is a thread local reference 00153 bool ThreadLocalRef : 1; 00154 00155 // Lvalue has ARC imprecise lifetime. We store this inverted to try 00156 // to make the default bitfield pattern all-zeroes. 00157 bool ImpreciseLifetime : 1; 00158 00159 Expr *BaseIvarExp; 00160 00161 /// Used by struct-path-aware TBAA. 00162 QualType TBAABaseType; 00163 /// Offset relative to the base type. 00164 uint64_t TBAAOffset; 00165 00166 /// TBAAInfo - TBAA information to attach to dereferences of this LValue. 00167 llvm::MDNode *TBAAInfo; 00168 00169 private: 00170 void Initialize(QualType Type, Qualifiers Quals, 00171 CharUnits Alignment, 00172 llvm::MDNode *TBAAInfo = nullptr) { 00173 this->Type = Type; 00174 this->Quals = Quals; 00175 this->Alignment = Alignment.getQuantity(); 00176 assert(this->Alignment == Alignment.getQuantity() && 00177 "Alignment exceeds allowed max!"); 00178 00179 // Initialize Objective-C flags. 00180 this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false; 00181 this->ImpreciseLifetime = false; 00182 this->ThreadLocalRef = false; 00183 this->BaseIvarExp = nullptr; 00184 00185 // Initialize fields for TBAA. 00186 this->TBAABaseType = Type; 00187 this->TBAAOffset = 0; 00188 this->TBAAInfo = TBAAInfo; 00189 } 00190 00191 public: 00192 bool isSimple() const { return LVType == Simple; } 00193 bool isVectorElt() const { return LVType == VectorElt; } 00194 bool isBitField() const { return LVType == BitField; } 00195 bool isExtVectorElt() const { return LVType == ExtVectorElt; } 00196 bool isGlobalReg() const { return LVType == GlobalReg; } 00197 00198 bool isVolatileQualified() const { return Quals.hasVolatile(); } 00199 bool isRestrictQualified() const { return Quals.hasRestrict(); } 00200 unsigned getVRQualifiers() const { 00201 return Quals.getCVRQualifiers() & ~Qualifiers::Const; 00202 } 00203 00204 QualType getType() const { return Type; } 00205 00206 Qualifiers::ObjCLifetime getObjCLifetime() const { 00207 return Quals.getObjCLifetime(); 00208 } 00209 00210 bool isObjCIvar() const { return Ivar; } 00211 void setObjCIvar(bool Value) { Ivar = Value; } 00212 00213 bool isObjCArray() const { return ObjIsArray; } 00214 void setObjCArray(bool Value) { ObjIsArray = Value; } 00215 00216 bool isNonGC () const { return NonGC; } 00217 void setNonGC(bool Value) { NonGC = Value; } 00218 00219 bool isGlobalObjCRef() const { return GlobalObjCRef; } 00220 void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; } 00221 00222 bool isThreadLocalRef() const { return ThreadLocalRef; } 00223 void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;} 00224 00225 ARCPreciseLifetime_t isARCPreciseLifetime() const { 00226 return ARCPreciseLifetime_t(!ImpreciseLifetime); 00227 } 00228 void setARCPreciseLifetime(ARCPreciseLifetime_t value) { 00229 ImpreciseLifetime = (value == ARCImpreciseLifetime); 00230 } 00231 00232 bool isObjCWeak() const { 00233 return Quals.getObjCGCAttr() == Qualifiers::Weak; 00234 } 00235 bool isObjCStrong() const { 00236 return Quals.getObjCGCAttr() == Qualifiers::Strong; 00237 } 00238 00239 bool isVolatile() const { 00240 return Quals.hasVolatile(); 00241 } 00242 00243 Expr *getBaseIvarExp() const { return BaseIvarExp; } 00244 void setBaseIvarExp(Expr *V) { BaseIvarExp = V; } 00245 00246 QualType getTBAABaseType() const { return TBAABaseType; } 00247 void setTBAABaseType(QualType T) { TBAABaseType = T; } 00248 00249 uint64_t getTBAAOffset() const { return TBAAOffset; } 00250 void setTBAAOffset(uint64_t O) { TBAAOffset = O; } 00251 00252 llvm::MDNode *getTBAAInfo() const { return TBAAInfo; } 00253 void setTBAAInfo(llvm::MDNode *N) { TBAAInfo = N; } 00254 00255 const Qualifiers &getQuals() const { return Quals; } 00256 Qualifiers &getQuals() { return Quals; } 00257 00258 unsigned getAddressSpace() const { return Quals.getAddressSpace(); } 00259 00260 CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); } 00261 void setAlignment(CharUnits A) { Alignment = A.getQuantity(); } 00262 00263 // simple lvalue 00264 llvm::Value *getAddress() const { assert(isSimple()); return V; } 00265 void setAddress(llvm::Value *address) { 00266 assert(isSimple()); 00267 V = address; 00268 } 00269 00270 // vector elt lvalue 00271 llvm::Value *getVectorAddr() const { assert(isVectorElt()); return V; } 00272 llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; } 00273 00274 // extended vector elements. 00275 llvm::Value *getExtVectorAddr() const { assert(isExtVectorElt()); return V; } 00276 llvm::Constant *getExtVectorElts() const { 00277 assert(isExtVectorElt()); 00278 return VectorElts; 00279 } 00280 00281 // bitfield lvalue 00282 llvm::Value *getBitFieldAddr() const { 00283 assert(isBitField()); 00284 return V; 00285 } 00286 const CGBitFieldInfo &getBitFieldInfo() const { 00287 assert(isBitField()); 00288 return *BitFieldInfo; 00289 } 00290 00291 // global register lvalue 00292 llvm::Value *getGlobalReg() const { assert(isGlobalReg()); return V; } 00293 00294 static LValue MakeAddr(llvm::Value *address, QualType type, 00295 CharUnits alignment, ASTContext &Context, 00296 llvm::MDNode *TBAAInfo = nullptr) { 00297 Qualifiers qs = type.getQualifiers(); 00298 qs.setObjCGCAttr(Context.getObjCGCAttrKind(type)); 00299 00300 LValue R; 00301 R.LVType = Simple; 00302 R.V = address; 00303 R.Initialize(type, qs, alignment, TBAAInfo); 00304 return R; 00305 } 00306 00307 static LValue MakeVectorElt(llvm::Value *Vec, llvm::Value *Idx, 00308 QualType type, CharUnits Alignment) { 00309 LValue R; 00310 R.LVType = VectorElt; 00311 R.V = Vec; 00312 R.VectorIdx = Idx; 00313 R.Initialize(type, type.getQualifiers(), Alignment); 00314 return R; 00315 } 00316 00317 static LValue MakeExtVectorElt(llvm::Value *Vec, llvm::Constant *Elts, 00318 QualType type, CharUnits Alignment) { 00319 LValue R; 00320 R.LVType = ExtVectorElt; 00321 R.V = Vec; 00322 R.VectorElts = Elts; 00323 R.Initialize(type, type.getQualifiers(), Alignment); 00324 return R; 00325 } 00326 00327 /// \brief Create a new object to represent a bit-field access. 00328 /// 00329 /// \param Addr - The base address of the bit-field sequence this 00330 /// bit-field refers to. 00331 /// \param Info - The information describing how to perform the bit-field 00332 /// access. 00333 static LValue MakeBitfield(llvm::Value *Addr, 00334 const CGBitFieldInfo &Info, 00335 QualType type, CharUnits Alignment) { 00336 LValue R; 00337 R.LVType = BitField; 00338 R.V = Addr; 00339 R.BitFieldInfo = &Info; 00340 R.Initialize(type, type.getQualifiers(), Alignment); 00341 return R; 00342 } 00343 00344 static LValue MakeGlobalReg(llvm::Value *Reg, 00345 QualType type, 00346 CharUnits Alignment) { 00347 LValue R; 00348 R.LVType = GlobalReg; 00349 R.V = Reg; 00350 R.Initialize(type, type.getQualifiers(), Alignment); 00351 return R; 00352 } 00353 00354 RValue asAggregateRValue() const { 00355 // FIMXE: Alignment 00356 return RValue::getAggregate(getAddress(), isVolatileQualified()); 00357 } 00358 }; 00359 00360 /// An aggregate value slot. 00361 class AggValueSlot { 00362 /// The address. 00363 llvm::Value *Addr; 00364 00365 // Qualifiers 00366 Qualifiers Quals; 00367 00368 unsigned short Alignment; 00369 00370 /// DestructedFlag - This is set to true if some external code is 00371 /// responsible for setting up a destructor for the slot. Otherwise 00372 /// the code which constructs it should push the appropriate cleanup. 00373 bool DestructedFlag : 1; 00374 00375 /// ObjCGCFlag - This is set to true if writing to the memory in the 00376 /// slot might require calling an appropriate Objective-C GC 00377 /// barrier. The exact interaction here is unnecessarily mysterious. 00378 bool ObjCGCFlag : 1; 00379 00380 /// ZeroedFlag - This is set to true if the memory in the slot is 00381 /// known to be zero before the assignment into it. This means that 00382 /// zero fields don't need to be set. 00383 bool ZeroedFlag : 1; 00384 00385 /// AliasedFlag - This is set to true if the slot might be aliased 00386 /// and it's not undefined behavior to access it through such an 00387 /// alias. Note that it's always undefined behavior to access a C++ 00388 /// object that's under construction through an alias derived from 00389 /// outside the construction process. 00390 /// 00391 /// This flag controls whether calls that produce the aggregate 00392 /// value may be evaluated directly into the slot, or whether they 00393 /// must be evaluated into an unaliased temporary and then memcpy'ed 00394 /// over. Since it's invalid in general to memcpy a non-POD C++ 00395 /// object, it's important that this flag never be set when 00396 /// evaluating an expression which constructs such an object. 00397 bool AliasedFlag : 1; 00398 00399 public: 00400 enum IsAliased_t { IsNotAliased, IsAliased }; 00401 enum IsDestructed_t { IsNotDestructed, IsDestructed }; 00402 enum IsZeroed_t { IsNotZeroed, IsZeroed }; 00403 enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers }; 00404 00405 /// ignored - Returns an aggregate value slot indicating that the 00406 /// aggregate value is being ignored. 00407 static AggValueSlot ignored() { 00408 return forAddr(nullptr, CharUnits(), Qualifiers(), IsNotDestructed, 00409 DoesNotNeedGCBarriers, IsNotAliased); 00410 } 00411 00412 /// forAddr - Make a slot for an aggregate value. 00413 /// 00414 /// \param quals - The qualifiers that dictate how the slot should 00415 /// be initialied. Only 'volatile' and the Objective-C lifetime 00416 /// qualifiers matter. 00417 /// 00418 /// \param isDestructed - true if something else is responsible 00419 /// for calling destructors on this object 00420 /// \param needsGC - true if the slot is potentially located 00421 /// somewhere that ObjC GC calls should be emitted for 00422 static AggValueSlot forAddr(llvm::Value *addr, CharUnits align, 00423 Qualifiers quals, 00424 IsDestructed_t isDestructed, 00425 NeedsGCBarriers_t needsGC, 00426 IsAliased_t isAliased, 00427 IsZeroed_t isZeroed = IsNotZeroed) { 00428 AggValueSlot AV; 00429 AV.Addr = addr; 00430 AV.Alignment = align.getQuantity(); 00431 AV.Quals = quals; 00432 AV.DestructedFlag = isDestructed; 00433 AV.ObjCGCFlag = needsGC; 00434 AV.ZeroedFlag = isZeroed; 00435 AV.AliasedFlag = isAliased; 00436 return AV; 00437 } 00438 00439 static AggValueSlot forLValue(const LValue &LV, 00440 IsDestructed_t isDestructed, 00441 NeedsGCBarriers_t needsGC, 00442 IsAliased_t isAliased, 00443 IsZeroed_t isZeroed = IsNotZeroed) { 00444 return forAddr(LV.getAddress(), LV.getAlignment(), 00445 LV.getQuals(), isDestructed, needsGC, isAliased, isZeroed); 00446 } 00447 00448 IsDestructed_t isExternallyDestructed() const { 00449 return IsDestructed_t(DestructedFlag); 00450 } 00451 void setExternallyDestructed(bool destructed = true) { 00452 DestructedFlag = destructed; 00453 } 00454 00455 Qualifiers getQualifiers() const { return Quals; } 00456 00457 bool isVolatile() const { 00458 return Quals.hasVolatile(); 00459 } 00460 00461 void setVolatile(bool flag) { 00462 Quals.setVolatile(flag); 00463 } 00464 00465 Qualifiers::ObjCLifetime getObjCLifetime() const { 00466 return Quals.getObjCLifetime(); 00467 } 00468 00469 NeedsGCBarriers_t requiresGCollection() const { 00470 return NeedsGCBarriers_t(ObjCGCFlag); 00471 } 00472 00473 llvm::Value *getAddr() const { 00474 return Addr; 00475 } 00476 00477 bool isIgnored() const { 00478 return Addr == nullptr; 00479 } 00480 00481 CharUnits getAlignment() const { 00482 return CharUnits::fromQuantity(Alignment); 00483 } 00484 00485 IsAliased_t isPotentiallyAliased() const { 00486 return IsAliased_t(AliasedFlag); 00487 } 00488 00489 // FIXME: Alignment? 00490 RValue asRValue() const { 00491 return RValue::getAggregate(getAddr(), isVolatile()); 00492 } 00493 00494 void setZeroed(bool V = true) { ZeroedFlag = V; } 00495 IsZeroed_t isZeroed() const { 00496 return IsZeroed_t(ZeroedFlag); 00497 } 00498 }; 00499 00500 } // end namespace CodeGen 00501 } // end namespace clang 00502 00503 #endif