clang API Documentation

DeltaTree.cpp
Go to the documentation of this file.
00001 //===--- DeltaTree.cpp - B-Tree for Rewrite Delta tracking ----------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file implements the DeltaTree and related classes.
00011 //
00012 //===----------------------------------------------------------------------===//
00013 
00014 #include "clang/Rewrite/Core/DeltaTree.h"
00015 #include "clang/Basic/LLVM.h"
00016 #include <cstdio>
00017 #include <cstring>
00018 using namespace clang;
00019 
00020 /// The DeltaTree class is a multiway search tree (BTree) structure with some
00021 /// fancy features.  B-Trees are generally more memory and cache efficient
00022 /// than binary trees, because they store multiple keys/values in each node.
00023 ///
00024 /// DeltaTree implements a key/value mapping from FileIndex to Delta, allowing
00025 /// fast lookup by FileIndex.  However, an added (important) bonus is that it
00026 /// can also efficiently tell us the full accumulated delta for a specific
00027 /// file offset as well, without traversing the whole tree.
00028 ///
00029 /// The nodes of the tree are made up of instances of two classes:
00030 /// DeltaTreeNode and DeltaTreeInteriorNode.  The later subclasses the
00031 /// former and adds children pointers.  Each node knows the full delta of all
00032 /// entries (recursively) contained inside of it, which allows us to get the
00033 /// full delta implied by a whole subtree in constant time.
00034 
00035 namespace {
00036   /// SourceDelta - As code in the original input buffer is added and deleted,
00037   /// SourceDelta records are used to keep track of how the input SourceLocation
00038   /// object is mapped into the output buffer.
00039   struct SourceDelta {
00040     unsigned FileLoc;
00041     int Delta;
00042 
00043     static SourceDelta get(unsigned Loc, int D) {
00044       SourceDelta Delta;
00045       Delta.FileLoc = Loc;
00046       Delta.Delta = D;
00047       return Delta;
00048     }
00049   };
00050   
00051   /// DeltaTreeNode - The common part of all nodes.
00052   ///
00053   class DeltaTreeNode {
00054   public:
00055     struct InsertResult {
00056       DeltaTreeNode *LHS, *RHS;
00057       SourceDelta Split;
00058     };
00059     
00060   private:
00061     friend class DeltaTreeInteriorNode;
00062 
00063     /// WidthFactor - This controls the number of K/V slots held in the BTree:
00064     /// how wide it is.  Each level of the BTree is guaranteed to have at least
00065     /// WidthFactor-1 K/V pairs (except the root) and may have at most
00066     /// 2*WidthFactor-1 K/V pairs.
00067     enum { WidthFactor = 8 };
00068 
00069     /// Values - This tracks the SourceDelta's currently in this node.
00070     ///
00071     SourceDelta Values[2*WidthFactor-1];
00072 
00073     /// NumValuesUsed - This tracks the number of values this node currently
00074     /// holds.
00075     unsigned char NumValuesUsed;
00076 
00077     /// IsLeaf - This is true if this is a leaf of the btree.  If false, this is
00078     /// an interior node, and is actually an instance of DeltaTreeInteriorNode.
00079     bool IsLeaf;
00080 
00081     /// FullDelta - This is the full delta of all the values in this node and
00082     /// all children nodes.
00083     int FullDelta;
00084   public:
00085     DeltaTreeNode(bool isLeaf = true)
00086       : NumValuesUsed(0), IsLeaf(isLeaf), FullDelta(0) {}
00087 
00088     bool isLeaf() const { return IsLeaf; }
00089     int getFullDelta() const { return FullDelta; }
00090     bool isFull() const { return NumValuesUsed == 2*WidthFactor-1; }
00091 
00092     unsigned getNumValuesUsed() const { return NumValuesUsed; }
00093     const SourceDelta &getValue(unsigned i) const {
00094       assert(i < NumValuesUsed && "Invalid value #");
00095       return Values[i];
00096     }
00097     SourceDelta &getValue(unsigned i) {
00098       assert(i < NumValuesUsed && "Invalid value #");
00099       return Values[i];
00100     }
00101 
00102     /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
00103     /// this node.  If insertion is easy, do it and return false.  Otherwise,
00104     /// split the node, populate InsertRes with info about the split, and return
00105     /// true.
00106     bool DoInsertion(unsigned FileIndex, int Delta, InsertResult *InsertRes);
00107 
00108     void DoSplit(InsertResult &InsertRes);
00109 
00110 
00111     /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
00112     /// local walk over our contained deltas.
00113     void RecomputeFullDeltaLocally();
00114 
00115     void Destroy();
00116   };
00117 } // end anonymous namespace
00118 
00119 namespace {
00120   /// DeltaTreeInteriorNode - When isLeaf = false, a node has child pointers.
00121   /// This class tracks them.
00122   class DeltaTreeInteriorNode : public DeltaTreeNode {
00123     DeltaTreeNode *Children[2*WidthFactor];
00124     ~DeltaTreeInteriorNode() {
00125       for (unsigned i = 0, e = NumValuesUsed+1; i != e; ++i)
00126         Children[i]->Destroy();
00127     }
00128     friend class DeltaTreeNode;
00129   public:
00130     DeltaTreeInteriorNode() : DeltaTreeNode(false /*nonleaf*/) {}
00131 
00132     DeltaTreeInteriorNode(const InsertResult &IR)
00133       : DeltaTreeNode(false /*nonleaf*/) {
00134       Children[0] = IR.LHS;
00135       Children[1] = IR.RHS;
00136       Values[0] = IR.Split;
00137       FullDelta = IR.LHS->getFullDelta()+IR.RHS->getFullDelta()+IR.Split.Delta;
00138       NumValuesUsed = 1;
00139     }
00140 
00141     const DeltaTreeNode *getChild(unsigned i) const {
00142       assert(i < getNumValuesUsed()+1 && "Invalid child");
00143       return Children[i];
00144     }
00145     DeltaTreeNode *getChild(unsigned i) {
00146       assert(i < getNumValuesUsed()+1 && "Invalid child");
00147       return Children[i];
00148     }
00149 
00150     static inline bool classof(const DeltaTreeNode *N) { return !N->isLeaf(); }
00151   };
00152 }
00153 
00154 
00155 /// Destroy - A 'virtual' destructor.
00156 void DeltaTreeNode::Destroy() {
00157   if (isLeaf())
00158     delete this;
00159   else
00160     delete cast<DeltaTreeInteriorNode>(this);
00161 }
00162 
00163 /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
00164 /// local walk over our contained deltas.
00165 void DeltaTreeNode::RecomputeFullDeltaLocally() {
00166   int NewFullDelta = 0;
00167   for (unsigned i = 0, e = getNumValuesUsed(); i != e; ++i)
00168     NewFullDelta += Values[i].Delta;
00169   if (DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(this))
00170     for (unsigned i = 0, e = getNumValuesUsed()+1; i != e; ++i)
00171       NewFullDelta += IN->getChild(i)->getFullDelta();
00172   FullDelta = NewFullDelta;
00173 }
00174 
00175 /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
00176 /// this node.  If insertion is easy, do it and return false.  Otherwise,
00177 /// split the node, populate InsertRes with info about the split, and return
00178 /// true.
00179 bool DeltaTreeNode::DoInsertion(unsigned FileIndex, int Delta,
00180                                 InsertResult *InsertRes) {
00181   // Maintain full delta for this node.
00182   FullDelta += Delta;
00183 
00184   // Find the insertion point, the first delta whose index is >= FileIndex.
00185   unsigned i = 0, e = getNumValuesUsed();
00186   while (i != e && FileIndex > getValue(i).FileLoc)
00187     ++i;
00188 
00189   // If we found an a record for exactly this file index, just merge this
00190   // value into the pre-existing record and finish early.
00191   if (i != e && getValue(i).FileLoc == FileIndex) {
00192     // NOTE: Delta could drop to zero here.  This means that the delta entry is
00193     // useless and could be removed.  Supporting erases is more complex than
00194     // leaving an entry with Delta=0, so we just leave an entry with Delta=0 in
00195     // the tree.
00196     Values[i].Delta += Delta;
00197     return false;
00198   }
00199 
00200   // Otherwise, we found an insertion point, and we know that the value at the
00201   // specified index is > FileIndex.  Handle the leaf case first.
00202   if (isLeaf()) {
00203     if (!isFull()) {
00204       // For an insertion into a non-full leaf node, just insert the value in
00205       // its sorted position.  This requires moving later values over.
00206       if (i != e)
00207         memmove(&Values[i+1], &Values[i], sizeof(Values[0])*(e-i));
00208       Values[i] = SourceDelta::get(FileIndex, Delta);
00209       ++NumValuesUsed;
00210       return false;
00211     }
00212 
00213     // Otherwise, if this is leaf is full, split the node at its median, insert
00214     // the value into one of the children, and return the result.
00215     assert(InsertRes && "No result location specified");
00216     DoSplit(*InsertRes);
00217 
00218     if (InsertRes->Split.FileLoc > FileIndex)
00219       InsertRes->LHS->DoInsertion(FileIndex, Delta, nullptr /*can't fail*/);
00220     else
00221       InsertRes->RHS->DoInsertion(FileIndex, Delta, nullptr /*can't fail*/);
00222     return true;
00223   }
00224 
00225   // Otherwise, this is an interior node.  Send the request down the tree.
00226   DeltaTreeInteriorNode *IN = cast<DeltaTreeInteriorNode>(this);
00227   if (!IN->Children[i]->DoInsertion(FileIndex, Delta, InsertRes))
00228     return false; // If there was space in the child, just return.
00229 
00230   // Okay, this split the subtree, producing a new value and two children to
00231   // insert here.  If this node is non-full, we can just insert it directly.
00232   if (!isFull()) {
00233     // Now that we have two nodes and a new element, insert the perclated value
00234     // into ourself by moving all the later values/children down, then inserting
00235     // the new one.
00236     if (i != e)
00237       memmove(&IN->Children[i+2], &IN->Children[i+1],
00238               (e-i)*sizeof(IN->Children[0]));
00239     IN->Children[i] = InsertRes->LHS;
00240     IN->Children[i+1] = InsertRes->RHS;
00241 
00242     if (e != i)
00243       memmove(&Values[i+1], &Values[i], (e-i)*sizeof(Values[0]));
00244     Values[i] = InsertRes->Split;
00245     ++NumValuesUsed;
00246     return false;
00247   }
00248 
00249   // Finally, if this interior node was full and a node is percolated up, split
00250   // ourself and return that up the chain.  Start by saving all our info to
00251   // avoid having the split clobber it.
00252   IN->Children[i] = InsertRes->LHS;
00253   DeltaTreeNode *SubRHS = InsertRes->RHS;
00254   SourceDelta SubSplit = InsertRes->Split;
00255 
00256   // Do the split.
00257   DoSplit(*InsertRes);
00258 
00259   // Figure out where to insert SubRHS/NewSplit.
00260   DeltaTreeInteriorNode *InsertSide;
00261   if (SubSplit.FileLoc < InsertRes->Split.FileLoc)
00262     InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->LHS);
00263   else
00264     InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->RHS);
00265 
00266   // We now have a non-empty interior node 'InsertSide' to insert
00267   // SubRHS/SubSplit into.  Find out where to insert SubSplit.
00268 
00269   // Find the insertion point, the first delta whose index is >SubSplit.FileLoc.
00270   i = 0; e = InsertSide->getNumValuesUsed();
00271   while (i != e && SubSplit.FileLoc > InsertSide->getValue(i).FileLoc)
00272     ++i;
00273 
00274   // Now we know that i is the place to insert the split value into.  Insert it
00275   // and the child right after it.
00276   if (i != e)
00277     memmove(&InsertSide->Children[i+2], &InsertSide->Children[i+1],
00278             (e-i)*sizeof(IN->Children[0]));
00279   InsertSide->Children[i+1] = SubRHS;
00280 
00281   if (e != i)
00282     memmove(&InsertSide->Values[i+1], &InsertSide->Values[i],
00283             (e-i)*sizeof(Values[0]));
00284   InsertSide->Values[i] = SubSplit;
00285   ++InsertSide->NumValuesUsed;
00286   InsertSide->FullDelta += SubSplit.Delta + SubRHS->getFullDelta();
00287   return true;
00288 }
00289 
00290 /// DoSplit - Split the currently full node (which has 2*WidthFactor-1 values)
00291 /// into two subtrees each with "WidthFactor-1" values and a pivot value.
00292 /// Return the pieces in InsertRes.
00293 void DeltaTreeNode::DoSplit(InsertResult &InsertRes) {
00294   assert(isFull() && "Why split a non-full node?");
00295 
00296   // Since this node is full, it contains 2*WidthFactor-1 values.  We move
00297   // the first 'WidthFactor-1' values to the LHS child (which we leave in this
00298   // node), propagate one value up, and move the last 'WidthFactor-1' values
00299   // into the RHS child.
00300 
00301   // Create the new child node.
00302   DeltaTreeNode *NewNode;
00303   if (DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(this)) {
00304     // If this is an interior node, also move over 'WidthFactor' children
00305     // into the new node.
00306     DeltaTreeInteriorNode *New = new DeltaTreeInteriorNode();
00307     memcpy(&New->Children[0], &IN->Children[WidthFactor],
00308            WidthFactor*sizeof(IN->Children[0]));
00309     NewNode = New;
00310   } else {
00311     // Just create the new leaf node.
00312     NewNode = new DeltaTreeNode();
00313   }
00314 
00315   // Move over the last 'WidthFactor-1' values from here to NewNode.
00316   memcpy(&NewNode->Values[0], &Values[WidthFactor],
00317          (WidthFactor-1)*sizeof(Values[0]));
00318 
00319   // Decrease the number of values in the two nodes.
00320   NewNode->NumValuesUsed = NumValuesUsed = WidthFactor-1;
00321 
00322   // Recompute the two nodes' full delta.
00323   NewNode->RecomputeFullDeltaLocally();
00324   RecomputeFullDeltaLocally();
00325 
00326   InsertRes.LHS = this;
00327   InsertRes.RHS = NewNode;
00328   InsertRes.Split = Values[WidthFactor-1];
00329 }
00330 
00331 
00332 
00333 //===----------------------------------------------------------------------===//
00334 //                        DeltaTree Implementation
00335 //===----------------------------------------------------------------------===//
00336 
00337 //#define VERIFY_TREE
00338 
00339 #ifdef VERIFY_TREE
00340 /// VerifyTree - Walk the btree performing assertions on various properties to
00341 /// verify consistency.  This is useful for debugging new changes to the tree.
00342 static void VerifyTree(const DeltaTreeNode *N) {
00343   const DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(N);
00344   if (IN == 0) {
00345     // Verify leaves, just ensure that FullDelta matches up and the elements
00346     // are in proper order.
00347     int FullDelta = 0;
00348     for (unsigned i = 0, e = N->getNumValuesUsed(); i != e; ++i) {
00349       if (i)
00350         assert(N->getValue(i-1).FileLoc < N->getValue(i).FileLoc);
00351       FullDelta += N->getValue(i).Delta;
00352     }
00353     assert(FullDelta == N->getFullDelta());
00354     return;
00355   }
00356 
00357   // Verify interior nodes: Ensure that FullDelta matches up and the
00358   // elements are in proper order and the children are in proper order.
00359   int FullDelta = 0;
00360   for (unsigned i = 0, e = IN->getNumValuesUsed(); i != e; ++i) {
00361     const SourceDelta &IVal = N->getValue(i);
00362     const DeltaTreeNode *IChild = IN->getChild(i);
00363     if (i)
00364       assert(IN->getValue(i-1).FileLoc < IVal.FileLoc);
00365     FullDelta += IVal.Delta;
00366     FullDelta += IChild->getFullDelta();
00367 
00368     // The largest value in child #i should be smaller than FileLoc.
00369     assert(IChild->getValue(IChild->getNumValuesUsed()-1).FileLoc <
00370            IVal.FileLoc);
00371 
00372     // The smallest value in child #i+1 should be larger than FileLoc.
00373     assert(IN->getChild(i+1)->getValue(0).FileLoc > IVal.FileLoc);
00374     VerifyTree(IChild);
00375   }
00376 
00377   FullDelta += IN->getChild(IN->getNumValuesUsed())->getFullDelta();
00378 
00379   assert(FullDelta == N->getFullDelta());
00380 }
00381 #endif  // VERIFY_TREE
00382 
00383 static DeltaTreeNode *getRoot(void *Root) {
00384   return (DeltaTreeNode*)Root;
00385 }
00386 
00387 DeltaTree::DeltaTree() {
00388   Root = new DeltaTreeNode();
00389 }
00390 DeltaTree::DeltaTree(const DeltaTree &RHS) {
00391   // Currently we only support copying when the RHS is empty.
00392   assert(getRoot(RHS.Root)->getNumValuesUsed() == 0 &&
00393          "Can only copy empty tree");
00394   Root = new DeltaTreeNode();
00395 }
00396 
00397 DeltaTree::~DeltaTree() {
00398   getRoot(Root)->Destroy();
00399 }
00400 
00401 /// getDeltaAt - Return the accumulated delta at the specified file offset.
00402 /// This includes all insertions or delections that occurred *before* the
00403 /// specified file index.
00404 int DeltaTree::getDeltaAt(unsigned FileIndex) const {
00405   const DeltaTreeNode *Node = getRoot(Root);
00406 
00407   int Result = 0;
00408 
00409   // Walk down the tree.
00410   while (1) {
00411     // For all nodes, include any local deltas before the specified file
00412     // index by summing them up directly.  Keep track of how many were
00413     // included.
00414     unsigned NumValsGreater = 0;
00415     for (unsigned e = Node->getNumValuesUsed(); NumValsGreater != e;
00416          ++NumValsGreater) {
00417       const SourceDelta &Val = Node->getValue(NumValsGreater);
00418 
00419       if (Val.FileLoc >= FileIndex)
00420         break;
00421       Result += Val.Delta;
00422     }
00423 
00424     // If we have an interior node, include information about children and
00425     // recurse.  Otherwise, if we have a leaf, we're done.
00426     const DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(Node);
00427     if (!IN) return Result;
00428 
00429     // Include any children to the left of the values we skipped, all of
00430     // their deltas should be included as well.
00431     for (unsigned i = 0; i != NumValsGreater; ++i)
00432       Result += IN->getChild(i)->getFullDelta();
00433 
00434     // If we found exactly the value we were looking for, break off the
00435     // search early.  There is no need to search the RHS of the value for
00436     // partial results.
00437     if (NumValsGreater != Node->getNumValuesUsed() &&
00438         Node->getValue(NumValsGreater).FileLoc == FileIndex)
00439       return Result+IN->getChild(NumValsGreater)->getFullDelta();
00440 
00441     // Otherwise, traverse down the tree.  The selected subtree may be
00442     // partially included in the range.
00443     Node = IN->getChild(NumValsGreater);
00444   }
00445   // NOT REACHED.
00446 }
00447 
00448 /// AddDelta - When a change is made that shifts around the text buffer,
00449 /// this method is used to record that info.  It inserts a delta of 'Delta'
00450 /// into the current DeltaTree at offset FileIndex.
00451 void DeltaTree::AddDelta(unsigned FileIndex, int Delta) {
00452   assert(Delta && "Adding a noop?");
00453   DeltaTreeNode *MyRoot = getRoot(Root);
00454 
00455   DeltaTreeNode::InsertResult InsertRes;
00456   if (MyRoot->DoInsertion(FileIndex, Delta, &InsertRes)) {
00457     Root = MyRoot = new DeltaTreeInteriorNode(InsertRes);
00458   }
00459 
00460 #ifdef VERIFY_TREE
00461   VerifyTree(MyRoot);
00462 #endif
00463 }
00464