clang API Documentation
00001 //===--- JumpDiagnostics.cpp - Protected scope jump analysis ------*- C++ -*-=// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the JumpScopeChecker class, which is used to diagnose 00011 // jumps that enter a protected scope in an invalid way. 00012 // 00013 //===----------------------------------------------------------------------===// 00014 00015 #include "clang/Sema/SemaInternal.h" 00016 #include "clang/AST/DeclCXX.h" 00017 #include "clang/AST/Expr.h" 00018 #include "clang/AST/ExprCXX.h" 00019 #include "clang/AST/StmtCXX.h" 00020 #include "clang/AST/StmtObjC.h" 00021 #include "llvm/ADT/BitVector.h" 00022 using namespace clang; 00023 00024 namespace { 00025 00026 /// JumpScopeChecker - This object is used by Sema to diagnose invalid jumps 00027 /// into VLA and other protected scopes. For example, this rejects: 00028 /// goto L; 00029 /// int a[n]; 00030 /// L: 00031 /// 00032 class JumpScopeChecker { 00033 Sema &S; 00034 00035 /// Permissive - True when recovering from errors, in which case precautions 00036 /// are taken to handle incomplete scope information. 00037 const bool Permissive; 00038 00039 /// GotoScope - This is a record that we use to keep track of all of the 00040 /// scopes that are introduced by VLAs and other things that scope jumps like 00041 /// gotos. This scope tree has nothing to do with the source scope tree, 00042 /// because you can have multiple VLA scopes per compound statement, and most 00043 /// compound statements don't introduce any scopes. 00044 struct GotoScope { 00045 /// ParentScope - The index in ScopeMap of the parent scope. This is 0 for 00046 /// the parent scope is the function body. 00047 unsigned ParentScope; 00048 00049 /// InDiag - The note to emit if there is a jump into this scope. 00050 unsigned InDiag; 00051 00052 /// OutDiag - The note to emit if there is an indirect jump out 00053 /// of this scope. Direct jumps always clean up their current scope 00054 /// in an orderly way. 00055 unsigned OutDiag; 00056 00057 /// Loc - Location to emit the diagnostic. 00058 SourceLocation Loc; 00059 00060 GotoScope(unsigned parentScope, unsigned InDiag, unsigned OutDiag, 00061 SourceLocation L) 00062 : ParentScope(parentScope), InDiag(InDiag), OutDiag(OutDiag), Loc(L) {} 00063 }; 00064 00065 SmallVector<GotoScope, 48> Scopes; 00066 llvm::DenseMap<Stmt*, unsigned> LabelAndGotoScopes; 00067 SmallVector<Stmt*, 16> Jumps; 00068 00069 SmallVector<IndirectGotoStmt*, 4> IndirectJumps; 00070 SmallVector<LabelDecl*, 4> IndirectJumpTargets; 00071 public: 00072 JumpScopeChecker(Stmt *Body, Sema &S); 00073 private: 00074 void BuildScopeInformation(Decl *D, unsigned &ParentScope); 00075 void BuildScopeInformation(VarDecl *D, const BlockDecl *BDecl, 00076 unsigned &ParentScope); 00077 void BuildScopeInformation(Stmt *S, unsigned &origParentScope); 00078 00079 void VerifyJumps(); 00080 void VerifyIndirectJumps(); 00081 void NoteJumpIntoScopes(ArrayRef<unsigned> ToScopes); 00082 void DiagnoseIndirectJump(IndirectGotoStmt *IG, unsigned IGScope, 00083 LabelDecl *Target, unsigned TargetScope); 00084 void CheckJump(Stmt *From, Stmt *To, SourceLocation DiagLoc, 00085 unsigned JumpDiag, unsigned JumpDiagWarning, 00086 unsigned JumpDiagCXX98Compat); 00087 void CheckGotoStmt(GotoStmt *GS); 00088 00089 unsigned GetDeepestCommonScope(unsigned A, unsigned B); 00090 }; 00091 } // end anonymous namespace 00092 00093 #define CHECK_PERMISSIVE(x) (assert(Permissive || !(x)), (Permissive && (x))) 00094 00095 JumpScopeChecker::JumpScopeChecker(Stmt *Body, Sema &s) 00096 : S(s), Permissive(s.hasAnyUnrecoverableErrorsInThisFunction()) { 00097 // Add a scope entry for function scope. 00098 Scopes.push_back(GotoScope(~0U, ~0U, ~0U, SourceLocation())); 00099 00100 // Build information for the top level compound statement, so that we have a 00101 // defined scope record for every "goto" and label. 00102 unsigned BodyParentScope = 0; 00103 BuildScopeInformation(Body, BodyParentScope); 00104 00105 // Check that all jumps we saw are kosher. 00106 VerifyJumps(); 00107 VerifyIndirectJumps(); 00108 } 00109 00110 /// GetDeepestCommonScope - Finds the innermost scope enclosing the 00111 /// two scopes. 00112 unsigned JumpScopeChecker::GetDeepestCommonScope(unsigned A, unsigned B) { 00113 while (A != B) { 00114 // Inner scopes are created after outer scopes and therefore have 00115 // higher indices. 00116 if (A < B) { 00117 assert(Scopes[B].ParentScope < B); 00118 B = Scopes[B].ParentScope; 00119 } else { 00120 assert(Scopes[A].ParentScope < A); 00121 A = Scopes[A].ParentScope; 00122 } 00123 } 00124 return A; 00125 } 00126 00127 typedef std::pair<unsigned,unsigned> ScopePair; 00128 00129 /// GetDiagForGotoScopeDecl - If this decl induces a new goto scope, return a 00130 /// diagnostic that should be emitted if control goes over it. If not, return 0. 00131 static ScopePair GetDiagForGotoScopeDecl(Sema &S, const Decl *D) { 00132 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 00133 unsigned InDiag = 0; 00134 unsigned OutDiag = 0; 00135 00136 if (VD->getType()->isVariablyModifiedType()) 00137 InDiag = diag::note_protected_by_vla; 00138 00139 if (VD->hasAttr<BlocksAttr>()) 00140 return ScopePair(diag::note_protected_by___block, 00141 diag::note_exits___block); 00142 00143 if (VD->hasAttr<CleanupAttr>()) 00144 return ScopePair(diag::note_protected_by_cleanup, 00145 diag::note_exits_cleanup); 00146 00147 if (VD->hasLocalStorage()) { 00148 switch (VD->getType().isDestructedType()) { 00149 case QualType::DK_objc_strong_lifetime: 00150 case QualType::DK_objc_weak_lifetime: 00151 return ScopePair(diag::note_protected_by_objc_ownership, 00152 diag::note_exits_objc_ownership); 00153 00154 case QualType::DK_cxx_destructor: 00155 OutDiag = diag::note_exits_dtor; 00156 break; 00157 00158 case QualType::DK_none: 00159 break; 00160 } 00161 } 00162 00163 const Expr *Init = VD->getInit(); 00164 if (S.Context.getLangOpts().CPlusPlus && VD->hasLocalStorage() && Init) { 00165 // C++11 [stmt.dcl]p3: 00166 // A program that jumps from a point where a variable with automatic 00167 // storage duration is not in scope to a point where it is in scope 00168 // is ill-formed unless the variable has scalar type, class type with 00169 // a trivial default constructor and a trivial destructor, a 00170 // cv-qualified version of one of these types, or an array of one of 00171 // the preceding types and is declared without an initializer. 00172 00173 // C++03 [stmt.dcl.p3: 00174 // A program that jumps from a point where a local variable 00175 // with automatic storage duration is not in scope to a point 00176 // where it is in scope is ill-formed unless the variable has 00177 // POD type and is declared without an initializer. 00178 00179 InDiag = diag::note_protected_by_variable_init; 00180 00181 // For a variable of (array of) class type declared without an 00182 // initializer, we will have call-style initialization and the initializer 00183 // will be the CXXConstructExpr with no intervening nodes. 00184 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 00185 const CXXConstructorDecl *Ctor = CCE->getConstructor(); 00186 if (Ctor->isTrivial() && Ctor->isDefaultConstructor() && 00187 VD->getInitStyle() == VarDecl::CallInit) { 00188 if (OutDiag) 00189 InDiag = diag::note_protected_by_variable_nontriv_destructor; 00190 else if (!Ctor->getParent()->isPOD()) 00191 InDiag = diag::note_protected_by_variable_non_pod; 00192 else 00193 InDiag = 0; 00194 } 00195 } 00196 } 00197 00198 return ScopePair(InDiag, OutDiag); 00199 } 00200 00201 if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) { 00202 if (TD->getUnderlyingType()->isVariablyModifiedType()) 00203 return ScopePair(isa<TypedefDecl>(TD) 00204 ? diag::note_protected_by_vla_typedef 00205 : diag::note_protected_by_vla_type_alias, 00206 0); 00207 } 00208 00209 return ScopePair(0U, 0U); 00210 } 00211 00212 /// \brief Build scope information for a declaration that is part of a DeclStmt. 00213 void JumpScopeChecker::BuildScopeInformation(Decl *D, unsigned &ParentScope) { 00214 // If this decl causes a new scope, push and switch to it. 00215 std::pair<unsigned,unsigned> Diags = GetDiagForGotoScopeDecl(S, D); 00216 if (Diags.first || Diags.second) { 00217 Scopes.push_back(GotoScope(ParentScope, Diags.first, Diags.second, 00218 D->getLocation())); 00219 ParentScope = Scopes.size()-1; 00220 } 00221 00222 // If the decl has an initializer, walk it with the potentially new 00223 // scope we just installed. 00224 if (VarDecl *VD = dyn_cast<VarDecl>(D)) 00225 if (Expr *Init = VD->getInit()) 00226 BuildScopeInformation(Init, ParentScope); 00227 } 00228 00229 /// \brief Build scope information for a captured block literal variables. 00230 void JumpScopeChecker::BuildScopeInformation(VarDecl *D, 00231 const BlockDecl *BDecl, 00232 unsigned &ParentScope) { 00233 // exclude captured __block variables; there's no destructor 00234 // associated with the block literal for them. 00235 if (D->hasAttr<BlocksAttr>()) 00236 return; 00237 QualType T = D->getType(); 00238 QualType::DestructionKind destructKind = T.isDestructedType(); 00239 if (destructKind != QualType::DK_none) { 00240 std::pair<unsigned,unsigned> Diags; 00241 switch (destructKind) { 00242 case QualType::DK_cxx_destructor: 00243 Diags = ScopePair(diag::note_enters_block_captures_cxx_obj, 00244 diag::note_exits_block_captures_cxx_obj); 00245 break; 00246 case QualType::DK_objc_strong_lifetime: 00247 Diags = ScopePair(diag::note_enters_block_captures_strong, 00248 diag::note_exits_block_captures_strong); 00249 break; 00250 case QualType::DK_objc_weak_lifetime: 00251 Diags = ScopePair(diag::note_enters_block_captures_weak, 00252 diag::note_exits_block_captures_weak); 00253 break; 00254 case QualType::DK_none: 00255 llvm_unreachable("non-lifetime captured variable"); 00256 } 00257 SourceLocation Loc = D->getLocation(); 00258 if (Loc.isInvalid()) 00259 Loc = BDecl->getLocation(); 00260 Scopes.push_back(GotoScope(ParentScope, 00261 Diags.first, Diags.second, Loc)); 00262 ParentScope = Scopes.size()-1; 00263 } 00264 } 00265 00266 /// BuildScopeInformation - The statements from CI to CE are known to form a 00267 /// coherent VLA scope with a specified parent node. Walk through the 00268 /// statements, adding any labels or gotos to LabelAndGotoScopes and recursively 00269 /// walking the AST as needed. 00270 void JumpScopeChecker::BuildScopeInformation(Stmt *S, unsigned &origParentScope) { 00271 // If this is a statement, rather than an expression, scopes within it don't 00272 // propagate out into the enclosing scope. Otherwise we have to worry 00273 // about block literals, which have the lifetime of their enclosing statement. 00274 unsigned independentParentScope = origParentScope; 00275 unsigned &ParentScope = ((isa<Expr>(S) && !isa<StmtExpr>(S)) 00276 ? origParentScope : independentParentScope); 00277 00278 bool SkipFirstSubStmt = false; 00279 00280 // If we found a label, remember that it is in ParentScope scope. 00281 switch (S->getStmtClass()) { 00282 case Stmt::AddrLabelExprClass: 00283 IndirectJumpTargets.push_back(cast<AddrLabelExpr>(S)->getLabel()); 00284 break; 00285 00286 case Stmt::IndirectGotoStmtClass: 00287 // "goto *&&lbl;" is a special case which we treat as equivalent 00288 // to a normal goto. In addition, we don't calculate scope in the 00289 // operand (to avoid recording the address-of-label use), which 00290 // works only because of the restricted set of expressions which 00291 // we detect as constant targets. 00292 if (cast<IndirectGotoStmt>(S)->getConstantTarget()) { 00293 LabelAndGotoScopes[S] = ParentScope; 00294 Jumps.push_back(S); 00295 return; 00296 } 00297 00298 LabelAndGotoScopes[S] = ParentScope; 00299 IndirectJumps.push_back(cast<IndirectGotoStmt>(S)); 00300 break; 00301 00302 case Stmt::SwitchStmtClass: 00303 // Evaluate the condition variable before entering the scope of the switch 00304 // statement. 00305 if (VarDecl *Var = cast<SwitchStmt>(S)->getConditionVariable()) { 00306 BuildScopeInformation(Var, ParentScope); 00307 SkipFirstSubStmt = true; 00308 } 00309 // Fall through 00310 00311 case Stmt::GotoStmtClass: 00312 // Remember both what scope a goto is in as well as the fact that we have 00313 // it. This makes the second scan not have to walk the AST again. 00314 LabelAndGotoScopes[S] = ParentScope; 00315 Jumps.push_back(S); 00316 break; 00317 00318 case Stmt::CXXTryStmtClass: { 00319 CXXTryStmt *TS = cast<CXXTryStmt>(S); 00320 unsigned newParentScope; 00321 Scopes.push_back(GotoScope(ParentScope, 00322 diag::note_protected_by_cxx_try, 00323 diag::note_exits_cxx_try, 00324 TS->getSourceRange().getBegin())); 00325 if (Stmt *TryBlock = TS->getTryBlock()) 00326 BuildScopeInformation(TryBlock, (newParentScope = Scopes.size()-1)); 00327 00328 // Jump from the catch into the try is not allowed either. 00329 for (unsigned I = 0, E = TS->getNumHandlers(); I != E; ++I) { 00330 CXXCatchStmt *CS = TS->getHandler(I); 00331 Scopes.push_back(GotoScope(ParentScope, 00332 diag::note_protected_by_cxx_catch, 00333 diag::note_exits_cxx_catch, 00334 CS->getSourceRange().getBegin())); 00335 BuildScopeInformation(CS->getHandlerBlock(), 00336 (newParentScope = Scopes.size()-1)); 00337 } 00338 return; 00339 } 00340 00341 default: 00342 break; 00343 } 00344 00345 for (Stmt::child_range CI = S->children(); CI; ++CI) { 00346 if (SkipFirstSubStmt) { 00347 SkipFirstSubStmt = false; 00348 continue; 00349 } 00350 00351 Stmt *SubStmt = *CI; 00352 if (!SubStmt) continue; 00353 00354 // Cases, labels, and defaults aren't "scope parents". It's also 00355 // important to handle these iteratively instead of recursively in 00356 // order to avoid blowing out the stack. 00357 while (true) { 00358 Stmt *Next; 00359 if (CaseStmt *CS = dyn_cast<CaseStmt>(SubStmt)) 00360 Next = CS->getSubStmt(); 00361 else if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SubStmt)) 00362 Next = DS->getSubStmt(); 00363 else if (LabelStmt *LS = dyn_cast<LabelStmt>(SubStmt)) 00364 Next = LS->getSubStmt(); 00365 else 00366 break; 00367 00368 LabelAndGotoScopes[SubStmt] = ParentScope; 00369 SubStmt = Next; 00370 } 00371 00372 // If this is a declstmt with a VLA definition, it defines a scope from here 00373 // to the end of the containing context. 00374 if (DeclStmt *DS = dyn_cast<DeclStmt>(SubStmt)) { 00375 // The decl statement creates a scope if any of the decls in it are VLAs 00376 // or have the cleanup attribute. 00377 for (auto *I : DS->decls()) 00378 BuildScopeInformation(I, ParentScope); 00379 continue; 00380 } 00381 // Disallow jumps into any part of an @try statement by pushing a scope and 00382 // walking all sub-stmts in that scope. 00383 if (ObjCAtTryStmt *AT = dyn_cast<ObjCAtTryStmt>(SubStmt)) { 00384 unsigned newParentScope; 00385 // Recursively walk the AST for the @try part. 00386 Scopes.push_back(GotoScope(ParentScope, 00387 diag::note_protected_by_objc_try, 00388 diag::note_exits_objc_try, 00389 AT->getAtTryLoc())); 00390 if (Stmt *TryPart = AT->getTryBody()) 00391 BuildScopeInformation(TryPart, (newParentScope = Scopes.size()-1)); 00392 00393 // Jump from the catch to the finally or try is not valid. 00394 for (unsigned I = 0, N = AT->getNumCatchStmts(); I != N; ++I) { 00395 ObjCAtCatchStmt *AC = AT->getCatchStmt(I); 00396 Scopes.push_back(GotoScope(ParentScope, 00397 diag::note_protected_by_objc_catch, 00398 diag::note_exits_objc_catch, 00399 AC->getAtCatchLoc())); 00400 // @catches are nested and it isn't 00401 BuildScopeInformation(AC->getCatchBody(), 00402 (newParentScope = Scopes.size()-1)); 00403 } 00404 00405 // Jump from the finally to the try or catch is not valid. 00406 if (ObjCAtFinallyStmt *AF = AT->getFinallyStmt()) { 00407 Scopes.push_back(GotoScope(ParentScope, 00408 diag::note_protected_by_objc_finally, 00409 diag::note_exits_objc_finally, 00410 AF->getAtFinallyLoc())); 00411 BuildScopeInformation(AF, (newParentScope = Scopes.size()-1)); 00412 } 00413 00414 continue; 00415 } 00416 00417 unsigned newParentScope; 00418 // Disallow jumps into the protected statement of an @synchronized, but 00419 // allow jumps into the object expression it protects. 00420 if (ObjCAtSynchronizedStmt *AS = dyn_cast<ObjCAtSynchronizedStmt>(SubStmt)){ 00421 // Recursively walk the AST for the @synchronized object expr, it is 00422 // evaluated in the normal scope. 00423 BuildScopeInformation(AS->getSynchExpr(), ParentScope); 00424 00425 // Recursively walk the AST for the @synchronized part, protected by a new 00426 // scope. 00427 Scopes.push_back(GotoScope(ParentScope, 00428 diag::note_protected_by_objc_synchronized, 00429 diag::note_exits_objc_synchronized, 00430 AS->getAtSynchronizedLoc())); 00431 BuildScopeInformation(AS->getSynchBody(), 00432 (newParentScope = Scopes.size()-1)); 00433 continue; 00434 } 00435 00436 // Disallow jumps into the protected statement of an @autoreleasepool. 00437 if (ObjCAutoreleasePoolStmt *AS = dyn_cast<ObjCAutoreleasePoolStmt>(SubStmt)){ 00438 // Recursively walk the AST for the @autoreleasepool part, protected by a new 00439 // scope. 00440 Scopes.push_back(GotoScope(ParentScope, 00441 diag::note_protected_by_objc_autoreleasepool, 00442 diag::note_exits_objc_autoreleasepool, 00443 AS->getAtLoc())); 00444 BuildScopeInformation(AS->getSubStmt(), (newParentScope = Scopes.size()-1)); 00445 continue; 00446 } 00447 00448 // Disallow jumps past full-expressions that use blocks with 00449 // non-trivial cleanups of their captures. This is theoretically 00450 // implementable but a lot of work which we haven't felt up to doing. 00451 if (ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(SubStmt)) { 00452 for (unsigned i = 0, e = EWC->getNumObjects(); i != e; ++i) { 00453 const BlockDecl *BDecl = EWC->getObject(i); 00454 for (const auto &CI : BDecl->captures()) { 00455 VarDecl *variable = CI.getVariable(); 00456 BuildScopeInformation(variable, BDecl, ParentScope); 00457 } 00458 } 00459 } 00460 00461 // Disallow jumps out of scopes containing temporaries lifetime-extended to 00462 // automatic storage duration. 00463 if (MaterializeTemporaryExpr *MTE = 00464 dyn_cast<MaterializeTemporaryExpr>(SubStmt)) { 00465 if (MTE->getStorageDuration() == SD_Automatic) { 00466 SmallVector<const Expr *, 4> CommaLHS; 00467 SmallVector<SubobjectAdjustment, 4> Adjustments; 00468 const Expr *ExtendedObject = 00469 MTE->GetTemporaryExpr()->skipRValueSubobjectAdjustments( 00470 CommaLHS, Adjustments); 00471 if (ExtendedObject->getType().isDestructedType()) { 00472 Scopes.push_back(GotoScope(ParentScope, 0, 00473 diag::note_exits_temporary_dtor, 00474 ExtendedObject->getExprLoc())); 00475 ParentScope = Scopes.size()-1; 00476 } 00477 } 00478 } 00479 00480 // Recursively walk the AST. 00481 BuildScopeInformation(SubStmt, ParentScope); 00482 } 00483 } 00484 00485 /// VerifyJumps - Verify each element of the Jumps array to see if they are 00486 /// valid, emitting diagnostics if not. 00487 void JumpScopeChecker::VerifyJumps() { 00488 while (!Jumps.empty()) { 00489 Stmt *Jump = Jumps.pop_back_val(); 00490 00491 // With a goto, 00492 if (GotoStmt *GS = dyn_cast<GotoStmt>(Jump)) { 00493 // The label may not have a statement if it's coming from inline MS ASM. 00494 if (GS->getLabel()->getStmt()) { 00495 CheckJump(GS, GS->getLabel()->getStmt(), GS->getGotoLoc(), 00496 diag::err_goto_into_protected_scope, 00497 diag::ext_goto_into_protected_scope, 00498 diag::warn_cxx98_compat_goto_into_protected_scope); 00499 } 00500 CheckGotoStmt(GS); 00501 continue; 00502 } 00503 00504 // We only get indirect gotos here when they have a constant target. 00505 if (IndirectGotoStmt *IGS = dyn_cast<IndirectGotoStmt>(Jump)) { 00506 LabelDecl *Target = IGS->getConstantTarget(); 00507 CheckJump(IGS, Target->getStmt(), IGS->getGotoLoc(), 00508 diag::err_goto_into_protected_scope, 00509 diag::ext_goto_into_protected_scope, 00510 diag::warn_cxx98_compat_goto_into_protected_scope); 00511 continue; 00512 } 00513 00514 SwitchStmt *SS = cast<SwitchStmt>(Jump); 00515 for (SwitchCase *SC = SS->getSwitchCaseList(); SC; 00516 SC = SC->getNextSwitchCase()) { 00517 if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(SC))) 00518 continue; 00519 SourceLocation Loc; 00520 if (CaseStmt *CS = dyn_cast<CaseStmt>(SC)) 00521 Loc = CS->getLocStart(); 00522 else if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) 00523 Loc = DS->getLocStart(); 00524 else 00525 Loc = SC->getLocStart(); 00526 CheckJump(SS, SC, Loc, diag::err_switch_into_protected_scope, 0, 00527 diag::warn_cxx98_compat_switch_into_protected_scope); 00528 } 00529 } 00530 } 00531 00532 /// VerifyIndirectJumps - Verify whether any possible indirect jump 00533 /// might cross a protection boundary. Unlike direct jumps, indirect 00534 /// jumps count cleanups as protection boundaries: since there's no 00535 /// way to know where the jump is going, we can't implicitly run the 00536 /// right cleanups the way we can with direct jumps. 00537 /// 00538 /// Thus, an indirect jump is "trivial" if it bypasses no 00539 /// initializations and no teardowns. More formally, an indirect jump 00540 /// from A to B is trivial if the path out from A to DCA(A,B) is 00541 /// trivial and the path in from DCA(A,B) to B is trivial, where 00542 /// DCA(A,B) is the deepest common ancestor of A and B. 00543 /// Jump-triviality is transitive but asymmetric. 00544 /// 00545 /// A path in is trivial if none of the entered scopes have an InDiag. 00546 /// A path out is trivial is none of the exited scopes have an OutDiag. 00547 /// 00548 /// Under these definitions, this function checks that the indirect 00549 /// jump between A and B is trivial for every indirect goto statement A 00550 /// and every label B whose address was taken in the function. 00551 void JumpScopeChecker::VerifyIndirectJumps() { 00552 if (IndirectJumps.empty()) return; 00553 00554 // If there aren't any address-of-label expressions in this function, 00555 // complain about the first indirect goto. 00556 if (IndirectJumpTargets.empty()) { 00557 S.Diag(IndirectJumps[0]->getGotoLoc(), 00558 diag::err_indirect_goto_without_addrlabel); 00559 return; 00560 } 00561 00562 // Collect a single representative of every scope containing an 00563 // indirect goto. For most code bases, this substantially cuts 00564 // down on the number of jump sites we'll have to consider later. 00565 typedef std::pair<unsigned, IndirectGotoStmt*> JumpScope; 00566 SmallVector<JumpScope, 32> JumpScopes; 00567 { 00568 llvm::DenseMap<unsigned, IndirectGotoStmt*> JumpScopesMap; 00569 for (SmallVectorImpl<IndirectGotoStmt*>::iterator 00570 I = IndirectJumps.begin(), E = IndirectJumps.end(); I != E; ++I) { 00571 IndirectGotoStmt *IG = *I; 00572 if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(IG))) 00573 continue; 00574 unsigned IGScope = LabelAndGotoScopes[IG]; 00575 IndirectGotoStmt *&Entry = JumpScopesMap[IGScope]; 00576 if (!Entry) Entry = IG; 00577 } 00578 JumpScopes.reserve(JumpScopesMap.size()); 00579 for (llvm::DenseMap<unsigned, IndirectGotoStmt*>::iterator 00580 I = JumpScopesMap.begin(), E = JumpScopesMap.end(); I != E; ++I) 00581 JumpScopes.push_back(*I); 00582 } 00583 00584 // Collect a single representative of every scope containing a 00585 // label whose address was taken somewhere in the function. 00586 // For most code bases, there will be only one such scope. 00587 llvm::DenseMap<unsigned, LabelDecl*> TargetScopes; 00588 for (SmallVectorImpl<LabelDecl*>::iterator 00589 I = IndirectJumpTargets.begin(), E = IndirectJumpTargets.end(); 00590 I != E; ++I) { 00591 LabelDecl *TheLabel = *I; 00592 if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(TheLabel->getStmt()))) 00593 continue; 00594 unsigned LabelScope = LabelAndGotoScopes[TheLabel->getStmt()]; 00595 LabelDecl *&Target = TargetScopes[LabelScope]; 00596 if (!Target) Target = TheLabel; 00597 } 00598 00599 // For each target scope, make sure it's trivially reachable from 00600 // every scope containing a jump site. 00601 // 00602 // A path between scopes always consists of exitting zero or more 00603 // scopes, then entering zero or more scopes. We build a set of 00604 // of scopes S from which the target scope can be trivially 00605 // entered, then verify that every jump scope can be trivially 00606 // exitted to reach a scope in S. 00607 llvm::BitVector Reachable(Scopes.size(), false); 00608 for (llvm::DenseMap<unsigned,LabelDecl*>::iterator 00609 TI = TargetScopes.begin(), TE = TargetScopes.end(); TI != TE; ++TI) { 00610 unsigned TargetScope = TI->first; 00611 LabelDecl *TargetLabel = TI->second; 00612 00613 Reachable.reset(); 00614 00615 // Mark all the enclosing scopes from which you can safely jump 00616 // into the target scope. 'Min' will end up being the index of 00617 // the shallowest such scope. 00618 unsigned Min = TargetScope; 00619 while (true) { 00620 Reachable.set(Min); 00621 00622 // Don't go beyond the outermost scope. 00623 if (Min == 0) break; 00624 00625 // Stop if we can't trivially enter the current scope. 00626 if (Scopes[Min].InDiag) break; 00627 00628 Min = Scopes[Min].ParentScope; 00629 } 00630 00631 // Walk through all the jump sites, checking that they can trivially 00632 // reach this label scope. 00633 for (SmallVectorImpl<JumpScope>::iterator 00634 I = JumpScopes.begin(), E = JumpScopes.end(); I != E; ++I) { 00635 unsigned Scope = I->first; 00636 00637 // Walk out the "scope chain" for this scope, looking for a scope 00638 // we've marked reachable. For well-formed code this amortizes 00639 // to O(JumpScopes.size() / Scopes.size()): we only iterate 00640 // when we see something unmarked, and in well-formed code we 00641 // mark everything we iterate past. 00642 bool IsReachable = false; 00643 while (true) { 00644 if (Reachable.test(Scope)) { 00645 // If we find something reachable, mark all the scopes we just 00646 // walked through as reachable. 00647 for (unsigned S = I->first; S != Scope; S = Scopes[S].ParentScope) 00648 Reachable.set(S); 00649 IsReachable = true; 00650 break; 00651 } 00652 00653 // Don't walk out if we've reached the top-level scope or we've 00654 // gotten shallower than the shallowest reachable scope. 00655 if (Scope == 0 || Scope < Min) break; 00656 00657 // Don't walk out through an out-diagnostic. 00658 if (Scopes[Scope].OutDiag) break; 00659 00660 Scope = Scopes[Scope].ParentScope; 00661 } 00662 00663 // Only diagnose if we didn't find something. 00664 if (IsReachable) continue; 00665 00666 DiagnoseIndirectJump(I->second, I->first, TargetLabel, TargetScope); 00667 } 00668 } 00669 } 00670 00671 /// Return true if a particular error+note combination must be downgraded to a 00672 /// warning in Microsoft mode. 00673 static bool IsMicrosoftJumpWarning(unsigned JumpDiag, unsigned InDiagNote) { 00674 return (JumpDiag == diag::err_goto_into_protected_scope && 00675 (InDiagNote == diag::note_protected_by_variable_init || 00676 InDiagNote == diag::note_protected_by_variable_nontriv_destructor)); 00677 } 00678 00679 /// Return true if a particular note should be downgraded to a compatibility 00680 /// warning in C++11 mode. 00681 static bool IsCXX98CompatWarning(Sema &S, unsigned InDiagNote) { 00682 return S.getLangOpts().CPlusPlus11 && 00683 InDiagNote == diag::note_protected_by_variable_non_pod; 00684 } 00685 00686 /// Produce primary diagnostic for an indirect jump statement. 00687 static void DiagnoseIndirectJumpStmt(Sema &S, IndirectGotoStmt *Jump, 00688 LabelDecl *Target, bool &Diagnosed) { 00689 if (Diagnosed) 00690 return; 00691 S.Diag(Jump->getGotoLoc(), diag::err_indirect_goto_in_protected_scope); 00692 S.Diag(Target->getStmt()->getIdentLoc(), diag::note_indirect_goto_target); 00693 Diagnosed = true; 00694 } 00695 00696 /// Produce note diagnostics for a jump into a protected scope. 00697 void JumpScopeChecker::NoteJumpIntoScopes(ArrayRef<unsigned> ToScopes) { 00698 if (CHECK_PERMISSIVE(ToScopes.empty())) 00699 return; 00700 for (unsigned I = 0, E = ToScopes.size(); I != E; ++I) 00701 if (Scopes[ToScopes[I]].InDiag) 00702 S.Diag(Scopes[ToScopes[I]].Loc, Scopes[ToScopes[I]].InDiag); 00703 } 00704 00705 /// Diagnose an indirect jump which is known to cross scopes. 00706 void JumpScopeChecker::DiagnoseIndirectJump(IndirectGotoStmt *Jump, 00707 unsigned JumpScope, 00708 LabelDecl *Target, 00709 unsigned TargetScope) { 00710 if (CHECK_PERMISSIVE(JumpScope == TargetScope)) 00711 return; 00712 00713 unsigned Common = GetDeepestCommonScope(JumpScope, TargetScope); 00714 bool Diagnosed = false; 00715 00716 // Walk out the scope chain until we reach the common ancestor. 00717 for (unsigned I = JumpScope; I != Common; I = Scopes[I].ParentScope) 00718 if (Scopes[I].OutDiag) { 00719 DiagnoseIndirectJumpStmt(S, Jump, Target, Diagnosed); 00720 S.Diag(Scopes[I].Loc, Scopes[I].OutDiag); 00721 } 00722 00723 SmallVector<unsigned, 10> ToScopesCXX98Compat; 00724 00725 // Now walk into the scopes containing the label whose address was taken. 00726 for (unsigned I = TargetScope; I != Common; I = Scopes[I].ParentScope) 00727 if (IsCXX98CompatWarning(S, Scopes[I].InDiag)) 00728 ToScopesCXX98Compat.push_back(I); 00729 else if (Scopes[I].InDiag) { 00730 DiagnoseIndirectJumpStmt(S, Jump, Target, Diagnosed); 00731 S.Diag(Scopes[I].Loc, Scopes[I].InDiag); 00732 } 00733 00734 // Diagnose this jump if it would be ill-formed in C++98. 00735 if (!Diagnosed && !ToScopesCXX98Compat.empty()) { 00736 S.Diag(Jump->getGotoLoc(), 00737 diag::warn_cxx98_compat_indirect_goto_in_protected_scope); 00738 S.Diag(Target->getStmt()->getIdentLoc(), diag::note_indirect_goto_target); 00739 NoteJumpIntoScopes(ToScopesCXX98Compat); 00740 } 00741 } 00742 00743 /// CheckJump - Validate that the specified jump statement is valid: that it is 00744 /// jumping within or out of its current scope, not into a deeper one. 00745 void JumpScopeChecker::CheckJump(Stmt *From, Stmt *To, SourceLocation DiagLoc, 00746 unsigned JumpDiagError, unsigned JumpDiagWarning, 00747 unsigned JumpDiagCXX98Compat) { 00748 if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(From))) 00749 return; 00750 if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(To))) 00751 return; 00752 00753 unsigned FromScope = LabelAndGotoScopes[From]; 00754 unsigned ToScope = LabelAndGotoScopes[To]; 00755 00756 // Common case: exactly the same scope, which is fine. 00757 if (FromScope == ToScope) return; 00758 00759 unsigned CommonScope = GetDeepestCommonScope(FromScope, ToScope); 00760 00761 // It's okay to jump out from a nested scope. 00762 if (CommonScope == ToScope) return; 00763 00764 // Pull out (and reverse) any scopes we might need to diagnose skipping. 00765 SmallVector<unsigned, 10> ToScopesCXX98Compat; 00766 SmallVector<unsigned, 10> ToScopesError; 00767 SmallVector<unsigned, 10> ToScopesWarning; 00768 for (unsigned I = ToScope; I != CommonScope; I = Scopes[I].ParentScope) { 00769 if (S.getLangOpts().MSVCCompat && JumpDiagWarning != 0 && 00770 IsMicrosoftJumpWarning(JumpDiagError, Scopes[I].InDiag)) 00771 ToScopesWarning.push_back(I); 00772 else if (IsCXX98CompatWarning(S, Scopes[I].InDiag)) 00773 ToScopesCXX98Compat.push_back(I); 00774 else if (Scopes[I].InDiag) 00775 ToScopesError.push_back(I); 00776 } 00777 00778 // Handle warnings. 00779 if (!ToScopesWarning.empty()) { 00780 S.Diag(DiagLoc, JumpDiagWarning); 00781 NoteJumpIntoScopes(ToScopesWarning); 00782 } 00783 00784 // Handle errors. 00785 if (!ToScopesError.empty()) { 00786 S.Diag(DiagLoc, JumpDiagError); 00787 NoteJumpIntoScopes(ToScopesError); 00788 } 00789 00790 // Handle -Wc++98-compat warnings if the jump is well-formed. 00791 if (ToScopesError.empty() && !ToScopesCXX98Compat.empty()) { 00792 S.Diag(DiagLoc, JumpDiagCXX98Compat); 00793 NoteJumpIntoScopes(ToScopesCXX98Compat); 00794 } 00795 } 00796 00797 void JumpScopeChecker::CheckGotoStmt(GotoStmt *GS) { 00798 if (GS->getLabel()->isMSAsmLabel()) { 00799 S.Diag(GS->getGotoLoc(), diag::err_goto_ms_asm_label) 00800 << GS->getLabel()->getIdentifier(); 00801 S.Diag(GS->getLabel()->getLocation(), diag::note_goto_ms_asm_label) 00802 << GS->getLabel()->getIdentifier(); 00803 } 00804 } 00805 00806 void Sema::DiagnoseInvalidJumps(Stmt *Body) { 00807 (void)JumpScopeChecker(Body, *this); 00808 }