clang API Documentation
00001 //===--- ParseInit.cpp - Initializer Parsing ------------------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements initializer parsing as specified by C99 6.7.8. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "clang/Parse/Parser.h" 00015 #include "RAIIObjectsForParser.h" 00016 #include "clang/Parse/ParseDiagnostic.h" 00017 #include "clang/Sema/Designator.h" 00018 #include "clang/Sema/Scope.h" 00019 #include "llvm/ADT/SmallString.h" 00020 #include "llvm/Support/raw_ostream.h" 00021 using namespace clang; 00022 00023 00024 /// MayBeDesignationStart - Return true if the current token might be the start 00025 /// of a designator. If we can tell it is impossible that it is a designator, 00026 /// return false. 00027 bool Parser::MayBeDesignationStart() { 00028 switch (Tok.getKind()) { 00029 default: 00030 return false; 00031 00032 case tok::period: // designator: '.' identifier 00033 return true; 00034 00035 case tok::l_square: { // designator: array-designator 00036 if (!PP.getLangOpts().CPlusPlus11) 00037 return true; 00038 00039 // C++11 lambda expressions and C99 designators can be ambiguous all the 00040 // way through the closing ']' and to the next character. Handle the easy 00041 // cases here, and fall back to tentative parsing if those fail. 00042 switch (PP.LookAhead(0).getKind()) { 00043 case tok::equal: 00044 case tok::r_square: 00045 // Definitely starts a lambda expression. 00046 return false; 00047 00048 case tok::amp: 00049 case tok::kw_this: 00050 case tok::identifier: 00051 // We have to do additional analysis, because these could be the 00052 // start of a constant expression or a lambda capture list. 00053 break; 00054 00055 default: 00056 // Anything not mentioned above cannot occur following a '[' in a 00057 // lambda expression. 00058 return true; 00059 } 00060 00061 // Handle the complicated case below. 00062 break; 00063 } 00064 case tok::identifier: // designation: identifier ':' 00065 return PP.LookAhead(0).is(tok::colon); 00066 } 00067 00068 // Parse up to (at most) the token after the closing ']' to determine 00069 // whether this is a C99 designator or a lambda. 00070 TentativeParsingAction Tentative(*this); 00071 00072 LambdaIntroducer Intro; 00073 bool SkippedInits = false; 00074 Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro, &SkippedInits)); 00075 00076 if (DiagID) { 00077 // If this can't be a lambda capture list, it's a designator. 00078 Tentative.Revert(); 00079 return true; 00080 } 00081 00082 // Once we hit the closing square bracket, we look at the next 00083 // token. If it's an '=', this is a designator. Otherwise, it's a 00084 // lambda expression. This decision favors lambdas over the older 00085 // GNU designator syntax, which allows one to omit the '=', but is 00086 // consistent with GCC. 00087 tok::TokenKind Kind = Tok.getKind(); 00088 // FIXME: If we didn't skip any inits, parse the lambda from here 00089 // rather than throwing away then reparsing the LambdaIntroducer. 00090 Tentative.Revert(); 00091 return Kind == tok::equal; 00092 } 00093 00094 static void CheckArrayDesignatorSyntax(Parser &P, SourceLocation Loc, 00095 Designation &Desig) { 00096 // If we have exactly one array designator, this used the GNU 00097 // 'designation: array-designator' extension, otherwise there should be no 00098 // designators at all! 00099 if (Desig.getNumDesignators() == 1 && 00100 (Desig.getDesignator(0).isArrayDesignator() || 00101 Desig.getDesignator(0).isArrayRangeDesignator())) 00102 P.Diag(Loc, diag::ext_gnu_missing_equal_designator); 00103 else if (Desig.getNumDesignators() > 0) 00104 P.Diag(Loc, diag::err_expected_equal_designator); 00105 } 00106 00107 /// ParseInitializerWithPotentialDesignator - Parse the 'initializer' production 00108 /// checking to see if the token stream starts with a designator. 00109 /// 00110 /// designation: 00111 /// designator-list '=' 00112 /// [GNU] array-designator 00113 /// [GNU] identifier ':' 00114 /// 00115 /// designator-list: 00116 /// designator 00117 /// designator-list designator 00118 /// 00119 /// designator: 00120 /// array-designator 00121 /// '.' identifier 00122 /// 00123 /// array-designator: 00124 /// '[' constant-expression ']' 00125 /// [GNU] '[' constant-expression '...' constant-expression ']' 00126 /// 00127 /// NOTE: [OBC] allows '[ objc-receiver objc-message-args ]' as an 00128 /// initializer (because it is an expression). We need to consider this case 00129 /// when parsing array designators. 00130 /// 00131 ExprResult Parser::ParseInitializerWithPotentialDesignator() { 00132 00133 // If this is the old-style GNU extension: 00134 // designation ::= identifier ':' 00135 // Handle it as a field designator. Otherwise, this must be the start of a 00136 // normal expression. 00137 if (Tok.is(tok::identifier)) { 00138 const IdentifierInfo *FieldName = Tok.getIdentifierInfo(); 00139 00140 SmallString<256> NewSyntax; 00141 llvm::raw_svector_ostream(NewSyntax) << '.' << FieldName->getName() 00142 << " = "; 00143 00144 SourceLocation NameLoc = ConsumeToken(); // Eat the identifier. 00145 00146 assert(Tok.is(tok::colon) && "MayBeDesignationStart not working properly!"); 00147 SourceLocation ColonLoc = ConsumeToken(); 00148 00149 Diag(NameLoc, diag::ext_gnu_old_style_field_designator) 00150 << FixItHint::CreateReplacement(SourceRange(NameLoc, ColonLoc), 00151 NewSyntax.str()); 00152 00153 Designation D; 00154 D.AddDesignator(Designator::getField(FieldName, SourceLocation(), NameLoc)); 00155 return Actions.ActOnDesignatedInitializer(D, ColonLoc, true, 00156 ParseInitializer()); 00157 } 00158 00159 // Desig - This is initialized when we see our first designator. We may have 00160 // an objc message send with no designator, so we don't want to create this 00161 // eagerly. 00162 Designation Desig; 00163 00164 // Parse each designator in the designator list until we find an initializer. 00165 while (Tok.is(tok::period) || Tok.is(tok::l_square)) { 00166 if (Tok.is(tok::period)) { 00167 // designator: '.' identifier 00168 SourceLocation DotLoc = ConsumeToken(); 00169 00170 if (Tok.isNot(tok::identifier)) { 00171 Diag(Tok.getLocation(), diag::err_expected_field_designator); 00172 return ExprError(); 00173 } 00174 00175 Desig.AddDesignator(Designator::getField(Tok.getIdentifierInfo(), DotLoc, 00176 Tok.getLocation())); 00177 ConsumeToken(); // Eat the identifier. 00178 continue; 00179 } 00180 00181 // We must have either an array designator now or an objc message send. 00182 assert(Tok.is(tok::l_square) && "Unexpected token!"); 00183 00184 // Handle the two forms of array designator: 00185 // array-designator: '[' constant-expression ']' 00186 // array-designator: '[' constant-expression '...' constant-expression ']' 00187 // 00188 // Also, we have to handle the case where the expression after the 00189 // designator an an objc message send: '[' objc-message-expr ']'. 00190 // Interesting cases are: 00191 // [foo bar] -> objc message send 00192 // [foo] -> array designator 00193 // [foo ... bar] -> array designator 00194 // [4][foo bar] -> obsolete GNU designation with objc message send. 00195 // 00196 // We do not need to check for an expression starting with [[ here. If it 00197 // contains an Objective-C message send, then it is not an ill-formed 00198 // attribute. If it is a lambda-expression within an array-designator, then 00199 // it will be rejected because a constant-expression cannot begin with a 00200 // lambda-expression. 00201 InMessageExpressionRAIIObject InMessage(*this, true); 00202 00203 BalancedDelimiterTracker T(*this, tok::l_square); 00204 T.consumeOpen(); 00205 SourceLocation StartLoc = T.getOpenLocation(); 00206 00207 ExprResult Idx; 00208 00209 // If Objective-C is enabled and this is a typename (class message 00210 // send) or send to 'super', parse this as a message send 00211 // expression. We handle C++ and C separately, since C++ requires 00212 // much more complicated parsing. 00213 if (getLangOpts().ObjC1 && getLangOpts().CPlusPlus) { 00214 // Send to 'super'. 00215 if (Tok.is(tok::identifier) && Tok.getIdentifierInfo() == Ident_super && 00216 NextToken().isNot(tok::period) && 00217 getCurScope()->isInObjcMethodScope()) { 00218 CheckArrayDesignatorSyntax(*this, StartLoc, Desig); 00219 return ParseAssignmentExprWithObjCMessageExprStart(StartLoc, 00220 ConsumeToken(), 00221 ParsedType(), 00222 nullptr); 00223 } 00224 00225 // Parse the receiver, which is either a type or an expression. 00226 bool IsExpr; 00227 void *TypeOrExpr; 00228 if (ParseObjCXXMessageReceiver(IsExpr, TypeOrExpr)) { 00229 SkipUntil(tok::r_square, StopAtSemi); 00230 return ExprError(); 00231 } 00232 00233 // If the receiver was a type, we have a class message; parse 00234 // the rest of it. 00235 if (!IsExpr) { 00236 CheckArrayDesignatorSyntax(*this, StartLoc, Desig); 00237 return ParseAssignmentExprWithObjCMessageExprStart(StartLoc, 00238 SourceLocation(), 00239 ParsedType::getFromOpaquePtr(TypeOrExpr), 00240 nullptr); 00241 } 00242 00243 // If the receiver was an expression, we still don't know 00244 // whether we have a message send or an array designator; just 00245 // adopt the expression for further analysis below. 00246 // FIXME: potentially-potentially evaluated expression above? 00247 Idx = ExprResult(static_cast<Expr*>(TypeOrExpr)); 00248 } else if (getLangOpts().ObjC1 && Tok.is(tok::identifier)) { 00249 IdentifierInfo *II = Tok.getIdentifierInfo(); 00250 SourceLocation IILoc = Tok.getLocation(); 00251 ParsedType ReceiverType; 00252 // Three cases. This is a message send to a type: [type foo] 00253 // This is a message send to super: [super foo] 00254 // This is a message sent to an expr: [super.bar foo] 00255 switch (Sema::ObjCMessageKind Kind 00256 = Actions.getObjCMessageKind(getCurScope(), II, IILoc, 00257 II == Ident_super, 00258 NextToken().is(tok::period), 00259 ReceiverType)) { 00260 case Sema::ObjCSuperMessage: 00261 case Sema::ObjCClassMessage: 00262 CheckArrayDesignatorSyntax(*this, StartLoc, Desig); 00263 if (Kind == Sema::ObjCSuperMessage) 00264 return ParseAssignmentExprWithObjCMessageExprStart(StartLoc, 00265 ConsumeToken(), 00266 ParsedType(), 00267 nullptr); 00268 ConsumeToken(); // the identifier 00269 if (!ReceiverType) { 00270 SkipUntil(tok::r_square, StopAtSemi); 00271 return ExprError(); 00272 } 00273 00274 return ParseAssignmentExprWithObjCMessageExprStart(StartLoc, 00275 SourceLocation(), 00276 ReceiverType, 00277 nullptr); 00278 00279 case Sema::ObjCInstanceMessage: 00280 // Fall through; we'll just parse the expression and 00281 // (possibly) treat this like an Objective-C message send 00282 // later. 00283 break; 00284 } 00285 } 00286 00287 // Parse the index expression, if we haven't already gotten one 00288 // above (which can only happen in Objective-C++). 00289 // Note that we parse this as an assignment expression, not a constant 00290 // expression (allowing *=, =, etc) to handle the objc case. Sema needs 00291 // to validate that the expression is a constant. 00292 // FIXME: We also need to tell Sema that we're in a 00293 // potentially-potentially evaluated context. 00294 if (!Idx.get()) { 00295 Idx = ParseAssignmentExpression(); 00296 if (Idx.isInvalid()) { 00297 SkipUntil(tok::r_square, StopAtSemi); 00298 return Idx; 00299 } 00300 } 00301 00302 // Given an expression, we could either have a designator (if the next 00303 // tokens are '...' or ']' or an objc message send. If this is an objc 00304 // message send, handle it now. An objc-message send is the start of 00305 // an assignment-expression production. 00306 if (getLangOpts().ObjC1 && Tok.isNot(tok::ellipsis) && 00307 Tok.isNot(tok::r_square)) { 00308 CheckArrayDesignatorSyntax(*this, Tok.getLocation(), Desig); 00309 return ParseAssignmentExprWithObjCMessageExprStart(StartLoc, 00310 SourceLocation(), 00311 ParsedType(), 00312 Idx.get()); 00313 } 00314 00315 // If this is a normal array designator, remember it. 00316 if (Tok.isNot(tok::ellipsis)) { 00317 Desig.AddDesignator(Designator::getArray(Idx.get(), StartLoc)); 00318 } else { 00319 // Handle the gnu array range extension. 00320 Diag(Tok, diag::ext_gnu_array_range); 00321 SourceLocation EllipsisLoc = ConsumeToken(); 00322 00323 ExprResult RHS(ParseConstantExpression()); 00324 if (RHS.isInvalid()) { 00325 SkipUntil(tok::r_square, StopAtSemi); 00326 return RHS; 00327 } 00328 Desig.AddDesignator(Designator::getArrayRange(Idx.get(), 00329 RHS.get(), 00330 StartLoc, EllipsisLoc)); 00331 } 00332 00333 T.consumeClose(); 00334 Desig.getDesignator(Desig.getNumDesignators() - 1).setRBracketLoc( 00335 T.getCloseLocation()); 00336 } 00337 00338 // Okay, we're done with the designator sequence. We know that there must be 00339 // at least one designator, because the only case we can get into this method 00340 // without a designator is when we have an objc message send. That case is 00341 // handled and returned from above. 00342 assert(!Desig.empty() && "Designator is empty?"); 00343 00344 // Handle a normal designator sequence end, which is an equal. 00345 if (Tok.is(tok::equal)) { 00346 SourceLocation EqualLoc = ConsumeToken(); 00347 return Actions.ActOnDesignatedInitializer(Desig, EqualLoc, false, 00348 ParseInitializer()); 00349 } 00350 00351 // We read some number of designators and found something that isn't an = or 00352 // an initializer. If we have exactly one array designator, this 00353 // is the GNU 'designation: array-designator' extension. Otherwise, it is a 00354 // parse error. 00355 if (Desig.getNumDesignators() == 1 && 00356 (Desig.getDesignator(0).isArrayDesignator() || 00357 Desig.getDesignator(0).isArrayRangeDesignator())) { 00358 Diag(Tok, diag::ext_gnu_missing_equal_designator) 00359 << FixItHint::CreateInsertion(Tok.getLocation(), "= "); 00360 return Actions.ActOnDesignatedInitializer(Desig, Tok.getLocation(), 00361 true, ParseInitializer()); 00362 } 00363 00364 Diag(Tok, diag::err_expected_equal_designator); 00365 return ExprError(); 00366 } 00367 00368 00369 /// ParseBraceInitializer - Called when parsing an initializer that has a 00370 /// leading open brace. 00371 /// 00372 /// initializer: [C99 6.7.8] 00373 /// '{' initializer-list '}' 00374 /// '{' initializer-list ',' '}' 00375 /// [GNU] '{' '}' 00376 /// 00377 /// initializer-list: 00378 /// designation[opt] initializer ...[opt] 00379 /// initializer-list ',' designation[opt] initializer ...[opt] 00380 /// 00381 ExprResult Parser::ParseBraceInitializer() { 00382 InMessageExpressionRAIIObject InMessage(*this, false); 00383 00384 BalancedDelimiterTracker T(*this, tok::l_brace); 00385 T.consumeOpen(); 00386 SourceLocation LBraceLoc = T.getOpenLocation(); 00387 00388 /// InitExprs - This is the actual list of expressions contained in the 00389 /// initializer. 00390 ExprVector InitExprs; 00391 00392 if (Tok.is(tok::r_brace)) { 00393 // Empty initializers are a C++ feature and a GNU extension to C. 00394 if (!getLangOpts().CPlusPlus) 00395 Diag(LBraceLoc, diag::ext_gnu_empty_initializer); 00396 // Match the '}'. 00397 return Actions.ActOnInitList(LBraceLoc, None, ConsumeBrace()); 00398 } 00399 00400 bool InitExprsOk = true; 00401 00402 while (1) { 00403 // Handle Microsoft __if_exists/if_not_exists if necessary. 00404 if (getLangOpts().MicrosoftExt && (Tok.is(tok::kw___if_exists) || 00405 Tok.is(tok::kw___if_not_exists))) { 00406 if (ParseMicrosoftIfExistsBraceInitializer(InitExprs, InitExprsOk)) { 00407 if (Tok.isNot(tok::comma)) break; 00408 ConsumeToken(); 00409 } 00410 if (Tok.is(tok::r_brace)) break; 00411 continue; 00412 } 00413 00414 // Parse: designation[opt] initializer 00415 00416 // If we know that this cannot be a designation, just parse the nested 00417 // initializer directly. 00418 ExprResult SubElt; 00419 if (MayBeDesignationStart()) 00420 SubElt = ParseInitializerWithPotentialDesignator(); 00421 else 00422 SubElt = ParseInitializer(); 00423 00424 if (Tok.is(tok::ellipsis)) 00425 SubElt = Actions.ActOnPackExpansion(SubElt.get(), ConsumeToken()); 00426 00427 // If we couldn't parse the subelement, bail out. 00428 if (!SubElt.isInvalid()) { 00429 InitExprs.push_back(SubElt.get()); 00430 } else { 00431 InitExprsOk = false; 00432 00433 // We have two ways to try to recover from this error: if the code looks 00434 // grammatically ok (i.e. we have a comma coming up) try to continue 00435 // parsing the rest of the initializer. This allows us to emit 00436 // diagnostics for later elements that we find. If we don't see a comma, 00437 // assume there is a parse error, and just skip to recover. 00438 // FIXME: This comment doesn't sound right. If there is a r_brace 00439 // immediately, it can't be an error, since there is no other way of 00440 // leaving this loop except through this if. 00441 if (Tok.isNot(tok::comma)) { 00442 SkipUntil(tok::r_brace, StopBeforeMatch); 00443 break; 00444 } 00445 } 00446 00447 // If we don't have a comma continued list, we're done. 00448 if (Tok.isNot(tok::comma)) break; 00449 00450 // TODO: save comma locations if some client cares. 00451 ConsumeToken(); 00452 00453 // Handle trailing comma. 00454 if (Tok.is(tok::r_brace)) break; 00455 } 00456 00457 bool closed = !T.consumeClose(); 00458 00459 if (InitExprsOk && closed) 00460 return Actions.ActOnInitList(LBraceLoc, InitExprs, 00461 T.getCloseLocation()); 00462 00463 return ExprError(); // an error occurred. 00464 } 00465 00466 00467 // Return true if a comma (or closing brace) is necessary after the 00468 // __if_exists/if_not_exists statement. 00469 bool Parser::ParseMicrosoftIfExistsBraceInitializer(ExprVector &InitExprs, 00470 bool &InitExprsOk) { 00471 bool trailingComma = false; 00472 IfExistsCondition Result; 00473 if (ParseMicrosoftIfExistsCondition(Result)) 00474 return false; 00475 00476 BalancedDelimiterTracker Braces(*this, tok::l_brace); 00477 if (Braces.consumeOpen()) { 00478 Diag(Tok, diag::err_expected) << tok::l_brace; 00479 return false; 00480 } 00481 00482 switch (Result.Behavior) { 00483 case IEB_Parse: 00484 // Parse the declarations below. 00485 break; 00486 00487 case IEB_Dependent: 00488 Diag(Result.KeywordLoc, diag::warn_microsoft_dependent_exists) 00489 << Result.IsIfExists; 00490 // Fall through to skip. 00491 00492 case IEB_Skip: 00493 Braces.skipToEnd(); 00494 return false; 00495 } 00496 00497 while (!isEofOrEom()) { 00498 trailingComma = false; 00499 // If we know that this cannot be a designation, just parse the nested 00500 // initializer directly. 00501 ExprResult SubElt; 00502 if (MayBeDesignationStart()) 00503 SubElt = ParseInitializerWithPotentialDesignator(); 00504 else 00505 SubElt = ParseInitializer(); 00506 00507 if (Tok.is(tok::ellipsis)) 00508 SubElt = Actions.ActOnPackExpansion(SubElt.get(), ConsumeToken()); 00509 00510 // If we couldn't parse the subelement, bail out. 00511 if (!SubElt.isInvalid()) 00512 InitExprs.push_back(SubElt.get()); 00513 else 00514 InitExprsOk = false; 00515 00516 if (Tok.is(tok::comma)) { 00517 ConsumeToken(); 00518 trailingComma = true; 00519 } 00520 00521 if (Tok.is(tok::r_brace)) 00522 break; 00523 } 00524 00525 Braces.consumeClose(); 00526 00527 return !trailingComma; 00528 }