clang API Documentation

ParseStmt.cpp
Go to the documentation of this file.
00001 //===--- ParseStmt.cpp - Statement and Block Parser -----------------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file implements the Statement and Block portions of the Parser
00011 // interface.
00012 //
00013 //===----------------------------------------------------------------------===//
00014 
00015 #include "clang/Parse/Parser.h"
00016 #include "RAIIObjectsForParser.h"
00017 #include "clang/AST/ASTContext.h"
00018 #include "clang/Basic/Attributes.h"
00019 #include "clang/Basic/Diagnostic.h"
00020 #include "clang/Basic/PrettyStackTrace.h"
00021 #include "clang/Sema/DeclSpec.h"
00022 #include "clang/Sema/LoopHint.h"
00023 #include "clang/Sema/PrettyDeclStackTrace.h"
00024 #include "clang/Sema/Scope.h"
00025 #include "clang/Sema/TypoCorrection.h"
00026 #include "llvm/ADT/SmallString.h"
00027 using namespace clang;
00028 
00029 //===----------------------------------------------------------------------===//
00030 // C99 6.8: Statements and Blocks.
00031 //===----------------------------------------------------------------------===//
00032 
00033 /// \brief Parse a standalone statement (for instance, as the body of an 'if',
00034 /// 'while', or 'for').
00035 StmtResult Parser::ParseStatement(SourceLocation *TrailingElseLoc) {
00036   StmtResult Res;
00037 
00038   // We may get back a null statement if we found a #pragma. Keep going until
00039   // we get an actual statement.
00040   do {
00041     StmtVector Stmts;
00042     Res = ParseStatementOrDeclaration(Stmts, true, TrailingElseLoc);
00043   } while (!Res.isInvalid() && !Res.get());
00044 
00045   return Res;
00046 }
00047 
00048 /// ParseStatementOrDeclaration - Read 'statement' or 'declaration'.
00049 ///       StatementOrDeclaration:
00050 ///         statement
00051 ///         declaration
00052 ///
00053 ///       statement:
00054 ///         labeled-statement
00055 ///         compound-statement
00056 ///         expression-statement
00057 ///         selection-statement
00058 ///         iteration-statement
00059 ///         jump-statement
00060 /// [C++]   declaration-statement
00061 /// [C++]   try-block
00062 /// [MS]    seh-try-block
00063 /// [OBC]   objc-throw-statement
00064 /// [OBC]   objc-try-catch-statement
00065 /// [OBC]   objc-synchronized-statement
00066 /// [GNU]   asm-statement
00067 /// [OMP]   openmp-construct             [TODO]
00068 ///
00069 ///       labeled-statement:
00070 ///         identifier ':' statement
00071 ///         'case' constant-expression ':' statement
00072 ///         'default' ':' statement
00073 ///
00074 ///       selection-statement:
00075 ///         if-statement
00076 ///         switch-statement
00077 ///
00078 ///       iteration-statement:
00079 ///         while-statement
00080 ///         do-statement
00081 ///         for-statement
00082 ///
00083 ///       expression-statement:
00084 ///         expression[opt] ';'
00085 ///
00086 ///       jump-statement:
00087 ///         'goto' identifier ';'
00088 ///         'continue' ';'
00089 ///         'break' ';'
00090 ///         'return' expression[opt] ';'
00091 /// [GNU]   'goto' '*' expression ';'
00092 ///
00093 /// [OBC] objc-throw-statement:
00094 /// [OBC]   '@' 'throw' expression ';'
00095 /// [OBC]   '@' 'throw' ';'
00096 ///
00097 StmtResult
00098 Parser::ParseStatementOrDeclaration(StmtVector &Stmts, bool OnlyStatement,
00099                                     SourceLocation *TrailingElseLoc) {
00100 
00101   ParenBraceBracketBalancer BalancerRAIIObj(*this);
00102 
00103   ParsedAttributesWithRange Attrs(AttrFactory);
00104   MaybeParseCXX11Attributes(Attrs, nullptr, /*MightBeObjCMessageSend*/ true);
00105 
00106   StmtResult Res = ParseStatementOrDeclarationAfterAttributes(Stmts,
00107                                  OnlyStatement, TrailingElseLoc, Attrs);
00108 
00109   assert((Attrs.empty() || Res.isInvalid() || Res.isUsable()) &&
00110          "attributes on empty statement");
00111 
00112   if (Attrs.empty() || Res.isInvalid())
00113     return Res;
00114 
00115   return Actions.ProcessStmtAttributes(Res.get(), Attrs.getList(), Attrs.Range);
00116 }
00117 
00118 namespace {
00119 class StatementFilterCCC : public CorrectionCandidateCallback {
00120 public:
00121   StatementFilterCCC(Token nextTok) : NextToken(nextTok) {
00122     WantTypeSpecifiers = nextTok.is(tok::l_paren) || nextTok.is(tok::less) ||
00123                          nextTok.is(tok::identifier) || nextTok.is(tok::star) ||
00124                          nextTok.is(tok::amp) || nextTok.is(tok::l_square);
00125     WantExpressionKeywords = nextTok.is(tok::l_paren) ||
00126                              nextTok.is(tok::identifier) ||
00127                              nextTok.is(tok::arrow) || nextTok.is(tok::period);
00128     WantRemainingKeywords = nextTok.is(tok::l_paren) || nextTok.is(tok::semi) ||
00129                             nextTok.is(tok::identifier) ||
00130                             nextTok.is(tok::l_brace);
00131     WantCXXNamedCasts = false;
00132   }
00133 
00134   bool ValidateCandidate(const TypoCorrection &candidate) override {
00135     if (FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>())
00136       return !candidate.getCorrectionSpecifier() || isa<ObjCIvarDecl>(FD);
00137     if (NextToken.is(tok::equal))
00138       return candidate.getCorrectionDeclAs<VarDecl>();
00139     if (NextToken.is(tok::period) &&
00140         candidate.getCorrectionDeclAs<NamespaceDecl>())
00141       return false;
00142     return CorrectionCandidateCallback::ValidateCandidate(candidate);
00143   }
00144 
00145 private:
00146   Token NextToken;
00147 };
00148 }
00149 
00150 StmtResult
00151 Parser::ParseStatementOrDeclarationAfterAttributes(StmtVector &Stmts,
00152           bool OnlyStatement, SourceLocation *TrailingElseLoc,
00153           ParsedAttributesWithRange &Attrs) {
00154   const char *SemiError = nullptr;
00155   StmtResult Res;
00156 
00157   // Cases in this switch statement should fall through if the parser expects
00158   // the token to end in a semicolon (in which case SemiError should be set),
00159   // or they directly 'return;' if not.
00160 Retry:
00161   tok::TokenKind Kind  = Tok.getKind();
00162   SourceLocation AtLoc;
00163   switch (Kind) {
00164   case tok::at: // May be a @try or @throw statement
00165     {
00166       ProhibitAttributes(Attrs); // TODO: is it correct?
00167       AtLoc = ConsumeToken();  // consume @
00168       return ParseObjCAtStatement(AtLoc);
00169     }
00170 
00171   case tok::code_completion:
00172     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Statement);
00173     cutOffParsing();
00174     return StmtError();
00175 
00176   case tok::identifier: {
00177     Token Next = NextToken();
00178     if (Next.is(tok::colon)) { // C99 6.8.1: labeled-statement
00179       // identifier ':' statement
00180       return ParseLabeledStatement(Attrs);
00181     }
00182 
00183     // Look up the identifier, and typo-correct it to a keyword if it's not
00184     // found.
00185     if (Next.isNot(tok::coloncolon)) {
00186       // Try to limit which sets of keywords should be included in typo
00187       // correction based on what the next token is.
00188       if (TryAnnotateName(/*IsAddressOfOperand*/ false,
00189                           llvm::make_unique<StatementFilterCCC>(Next)) ==
00190           ANK_Error) {
00191         // Handle errors here by skipping up to the next semicolon or '}', and
00192         // eat the semicolon if that's what stopped us.
00193         SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
00194         if (Tok.is(tok::semi))
00195           ConsumeToken();
00196         return StmtError();
00197       }
00198 
00199       // If the identifier was typo-corrected, try again.
00200       if (Tok.isNot(tok::identifier))
00201         goto Retry;
00202     }
00203 
00204     // Fall through
00205   }
00206 
00207   default: {
00208     if ((getLangOpts().CPlusPlus || !OnlyStatement) && isDeclarationStatement()) {
00209       SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
00210       DeclGroupPtrTy Decl = ParseDeclaration(Declarator::BlockContext,
00211                                              DeclEnd, Attrs);
00212       return Actions.ActOnDeclStmt(Decl, DeclStart, DeclEnd);
00213     }
00214 
00215     if (Tok.is(tok::r_brace)) {
00216       Diag(Tok, diag::err_expected_statement);
00217       return StmtError();
00218     }
00219 
00220     return ParseExprStatement();
00221   }
00222 
00223   case tok::kw_case:                // C99 6.8.1: labeled-statement
00224     return ParseCaseStatement();
00225   case tok::kw_default:             // C99 6.8.1: labeled-statement
00226     return ParseDefaultStatement();
00227 
00228   case tok::l_brace:                // C99 6.8.2: compound-statement
00229     return ParseCompoundStatement();
00230   case tok::semi: {                 // C99 6.8.3p3: expression[opt] ';'
00231     bool HasLeadingEmptyMacro = Tok.hasLeadingEmptyMacro();
00232     return Actions.ActOnNullStmt(ConsumeToken(), HasLeadingEmptyMacro);
00233   }
00234 
00235   case tok::kw_if:                  // C99 6.8.4.1: if-statement
00236     return ParseIfStatement(TrailingElseLoc);
00237   case tok::kw_switch:              // C99 6.8.4.2: switch-statement
00238     return ParseSwitchStatement(TrailingElseLoc);
00239 
00240   case tok::kw_while:               // C99 6.8.5.1: while-statement
00241     return ParseWhileStatement(TrailingElseLoc);
00242   case tok::kw_do:                  // C99 6.8.5.2: do-statement
00243     Res = ParseDoStatement();
00244     SemiError = "do/while";
00245     break;
00246   case tok::kw_for:                 // C99 6.8.5.3: for-statement
00247     return ParseForStatement(TrailingElseLoc);
00248 
00249   case tok::kw_goto:                // C99 6.8.6.1: goto-statement
00250     Res = ParseGotoStatement();
00251     SemiError = "goto";
00252     break;
00253   case tok::kw_continue:            // C99 6.8.6.2: continue-statement
00254     Res = ParseContinueStatement();
00255     SemiError = "continue";
00256     break;
00257   case tok::kw_break:               // C99 6.8.6.3: break-statement
00258     Res = ParseBreakStatement();
00259     SemiError = "break";
00260     break;
00261   case tok::kw_return:              // C99 6.8.6.4: return-statement
00262     Res = ParseReturnStatement();
00263     SemiError = "return";
00264     break;
00265 
00266   case tok::kw_asm: {
00267     ProhibitAttributes(Attrs);
00268     bool msAsm = false;
00269     Res = ParseAsmStatement(msAsm);
00270     Res = Actions.ActOnFinishFullStmt(Res.get());
00271     if (msAsm) return Res;
00272     SemiError = "asm";
00273     break;
00274   }
00275 
00276   case tok::kw___if_exists:
00277   case tok::kw___if_not_exists:
00278     ProhibitAttributes(Attrs);
00279     ParseMicrosoftIfExistsStatement(Stmts);
00280     // An __if_exists block is like a compound statement, but it doesn't create
00281     // a new scope.
00282     return StmtEmpty();
00283 
00284   case tok::kw_try:                 // C++ 15: try-block
00285     return ParseCXXTryBlock();
00286 
00287   case tok::kw___try:
00288     ProhibitAttributes(Attrs); // TODO: is it correct?
00289     return ParseSEHTryBlock();
00290 
00291   case tok::kw___leave:
00292     Res = ParseSEHLeaveStatement();
00293     SemiError = "__leave";
00294     break;
00295 
00296   case tok::annot_pragma_vis:
00297     ProhibitAttributes(Attrs);
00298     HandlePragmaVisibility();
00299     return StmtEmpty();
00300 
00301   case tok::annot_pragma_pack:
00302     ProhibitAttributes(Attrs);
00303     HandlePragmaPack();
00304     return StmtEmpty();
00305 
00306   case tok::annot_pragma_msstruct:
00307     ProhibitAttributes(Attrs);
00308     HandlePragmaMSStruct();
00309     return StmtEmpty();
00310 
00311   case tok::annot_pragma_align:
00312     ProhibitAttributes(Attrs);
00313     HandlePragmaAlign();
00314     return StmtEmpty();
00315 
00316   case tok::annot_pragma_weak:
00317     ProhibitAttributes(Attrs);
00318     HandlePragmaWeak();
00319     return StmtEmpty();
00320 
00321   case tok::annot_pragma_weakalias:
00322     ProhibitAttributes(Attrs);
00323     HandlePragmaWeakAlias();
00324     return StmtEmpty();
00325 
00326   case tok::annot_pragma_redefine_extname:
00327     ProhibitAttributes(Attrs);
00328     HandlePragmaRedefineExtname();
00329     return StmtEmpty();
00330 
00331   case tok::annot_pragma_fp_contract:
00332     ProhibitAttributes(Attrs);
00333     Diag(Tok, diag::err_pragma_fp_contract_scope);
00334     ConsumeToken();
00335     return StmtError();
00336 
00337   case tok::annot_pragma_opencl_extension:
00338     ProhibitAttributes(Attrs);
00339     HandlePragmaOpenCLExtension();
00340     return StmtEmpty();
00341 
00342   case tok::annot_pragma_captured:
00343     ProhibitAttributes(Attrs);
00344     return HandlePragmaCaptured();
00345 
00346   case tok::annot_pragma_openmp:
00347     ProhibitAttributes(Attrs);
00348     return ParseOpenMPDeclarativeOrExecutableDirective(!OnlyStatement);
00349 
00350   case tok::annot_pragma_ms_pointers_to_members:
00351     ProhibitAttributes(Attrs);
00352     HandlePragmaMSPointersToMembers();
00353     return StmtEmpty();
00354 
00355   case tok::annot_pragma_ms_pragma:
00356     ProhibitAttributes(Attrs);
00357     HandlePragmaMSPragma();
00358     return StmtEmpty();
00359 
00360   case tok::annot_pragma_loop_hint:
00361     ProhibitAttributes(Attrs);
00362     return ParsePragmaLoopHint(Stmts, OnlyStatement, TrailingElseLoc, Attrs);
00363   }
00364 
00365   // If we reached this code, the statement must end in a semicolon.
00366   if (!TryConsumeToken(tok::semi) && !Res.isInvalid()) {
00367     // If the result was valid, then we do want to diagnose this.  Use
00368     // ExpectAndConsume to emit the diagnostic, even though we know it won't
00369     // succeed.
00370     ExpectAndConsume(tok::semi, diag::err_expected_semi_after_stmt, SemiError);
00371     // Skip until we see a } or ;, but don't eat it.
00372     SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
00373   }
00374 
00375   return Res;
00376 }
00377 
00378 /// \brief Parse an expression statement.
00379 StmtResult Parser::ParseExprStatement() {
00380   // If a case keyword is missing, this is where it should be inserted.
00381   Token OldToken = Tok;
00382 
00383   // expression[opt] ';'
00384   ExprResult Expr(ParseExpression());
00385   if (Expr.isInvalid()) {
00386     // If the expression is invalid, skip ahead to the next semicolon or '}'.
00387     // Not doing this opens us up to the possibility of infinite loops if
00388     // ParseExpression does not consume any tokens.
00389     SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
00390     if (Tok.is(tok::semi))
00391       ConsumeToken();
00392     return Actions.ActOnExprStmtError();
00393   }
00394 
00395   if (Tok.is(tok::colon) && getCurScope()->isSwitchScope() &&
00396       Actions.CheckCaseExpression(Expr.get())) {
00397     // If a constant expression is followed by a colon inside a switch block,
00398     // suggest a missing case keyword.
00399     Diag(OldToken, diag::err_expected_case_before_expression)
00400       << FixItHint::CreateInsertion(OldToken.getLocation(), "case ");
00401 
00402     // Recover parsing as a case statement.
00403     return ParseCaseStatement(/*MissingCase=*/true, Expr);
00404   }
00405 
00406   // Otherwise, eat the semicolon.
00407   ExpectAndConsumeSemi(diag::err_expected_semi_after_expr);
00408   return Actions.ActOnExprStmt(Expr);
00409 }
00410 
00411 StmtResult Parser::ParseSEHTryBlock() {
00412   assert(Tok.is(tok::kw___try) && "Expected '__try'");
00413   SourceLocation Loc = ConsumeToken();
00414   return ParseSEHTryBlockCommon(Loc);
00415 }
00416 
00417 /// ParseSEHTryBlockCommon
00418 ///
00419 /// seh-try-block:
00420 ///   '__try' compound-statement seh-handler
00421 ///
00422 /// seh-handler:
00423 ///   seh-except-block
00424 ///   seh-finally-block
00425 ///
00426 StmtResult Parser::ParseSEHTryBlockCommon(SourceLocation TryLoc) {
00427   if(Tok.isNot(tok::l_brace))
00428     return StmtError(Diag(Tok, diag::err_expected) << tok::l_brace);
00429 
00430   StmtResult TryBlock(ParseCompoundStatement(/*isStmtExpr=*/false,
00431                       Scope::DeclScope | Scope::SEHTryScope));
00432   if(TryBlock.isInvalid())
00433     return TryBlock;
00434 
00435   StmtResult Handler;
00436   if (Tok.is(tok::identifier) &&
00437       Tok.getIdentifierInfo() == getSEHExceptKeyword()) {
00438     SourceLocation Loc = ConsumeToken();
00439     Handler = ParseSEHExceptBlock(Loc);
00440   } else if (Tok.is(tok::kw___finally)) {
00441     SourceLocation Loc = ConsumeToken();
00442     Handler = ParseSEHFinallyBlock(Loc);
00443   } else {
00444     return StmtError(Diag(Tok,diag::err_seh_expected_handler));
00445   }
00446 
00447   if(Handler.isInvalid())
00448     return Handler;
00449 
00450   return Actions.ActOnSEHTryBlock(false /* IsCXXTry */,
00451                                   TryLoc,
00452                                   TryBlock.get(),
00453                                   Handler.get());
00454 }
00455 
00456 /// ParseSEHExceptBlock - Handle __except
00457 ///
00458 /// seh-except-block:
00459 ///   '__except' '(' seh-filter-expression ')' compound-statement
00460 ///
00461 StmtResult Parser::ParseSEHExceptBlock(SourceLocation ExceptLoc) {
00462   PoisonIdentifierRAIIObject raii(Ident__exception_code, false),
00463     raii2(Ident___exception_code, false),
00464     raii3(Ident_GetExceptionCode, false);
00465 
00466   if (ExpectAndConsume(tok::l_paren))
00467     return StmtError();
00468 
00469   ParseScope ExpectScope(this, Scope::DeclScope | Scope::ControlScope);
00470 
00471   if (getLangOpts().Borland) {
00472     Ident__exception_info->setIsPoisoned(false);
00473     Ident___exception_info->setIsPoisoned(false);
00474     Ident_GetExceptionInfo->setIsPoisoned(false);
00475   }
00476   ExprResult FilterExpr(ParseExpression());
00477 
00478   if (getLangOpts().Borland) {
00479     Ident__exception_info->setIsPoisoned(true);
00480     Ident___exception_info->setIsPoisoned(true);
00481     Ident_GetExceptionInfo->setIsPoisoned(true);
00482   }
00483 
00484   if(FilterExpr.isInvalid())
00485     return StmtError();
00486 
00487   if (ExpectAndConsume(tok::r_paren))
00488     return StmtError();
00489 
00490   StmtResult Block(ParseCompoundStatement());
00491 
00492   if(Block.isInvalid())
00493     return Block;
00494 
00495   return Actions.ActOnSEHExceptBlock(ExceptLoc, FilterExpr.get(), Block.get());
00496 }
00497 
00498 /// ParseSEHFinallyBlock - Handle __finally
00499 ///
00500 /// seh-finally-block:
00501 ///   '__finally' compound-statement
00502 ///
00503 StmtResult Parser::ParseSEHFinallyBlock(SourceLocation FinallyBlock) {
00504   PoisonIdentifierRAIIObject raii(Ident__abnormal_termination, false),
00505     raii2(Ident___abnormal_termination, false),
00506     raii3(Ident_AbnormalTermination, false);
00507 
00508   StmtResult Block(ParseCompoundStatement());
00509   if(Block.isInvalid())
00510     return Block;
00511 
00512   return Actions.ActOnSEHFinallyBlock(FinallyBlock,Block.get());
00513 }
00514 
00515 /// Handle __leave
00516 ///
00517 /// seh-leave-statement:
00518 ///   '__leave' ';'
00519 ///
00520 StmtResult Parser::ParseSEHLeaveStatement() {
00521   SourceLocation LeaveLoc = ConsumeToken();  // eat the '__leave'.
00522   return Actions.ActOnSEHLeaveStmt(LeaveLoc, getCurScope());
00523 }
00524 
00525 /// ParseLabeledStatement - We have an identifier and a ':' after it.
00526 ///
00527 ///       labeled-statement:
00528 ///         identifier ':' statement
00529 /// [GNU]   identifier ':' attributes[opt] statement
00530 ///
00531 StmtResult Parser::ParseLabeledStatement(ParsedAttributesWithRange &attrs) {
00532   assert(Tok.is(tok::identifier) && Tok.getIdentifierInfo() &&
00533          "Not an identifier!");
00534 
00535   Token IdentTok = Tok;  // Save the whole token.
00536   ConsumeToken();  // eat the identifier.
00537 
00538   assert(Tok.is(tok::colon) && "Not a label!");
00539 
00540   // identifier ':' statement
00541   SourceLocation ColonLoc = ConsumeToken();
00542 
00543   // Read label attributes, if present.
00544   StmtResult SubStmt;
00545   if (Tok.is(tok::kw___attribute)) {
00546     ParsedAttributesWithRange TempAttrs(AttrFactory);
00547     ParseGNUAttributes(TempAttrs);
00548 
00549     // In C++, GNU attributes only apply to the label if they are followed by a
00550     // semicolon, to disambiguate label attributes from attributes on a labeled
00551     // declaration.
00552     //
00553     // This doesn't quite match what GCC does; if the attribute list is empty
00554     // and followed by a semicolon, GCC will reject (it appears to parse the
00555     // attributes as part of a statement in that case). That looks like a bug.
00556     if (!getLangOpts().CPlusPlus || Tok.is(tok::semi))
00557       attrs.takeAllFrom(TempAttrs);
00558     else if (isDeclarationStatement()) {
00559       StmtVector Stmts;
00560       // FIXME: We should do this whether or not we have a declaration
00561       // statement, but that doesn't work correctly (because ProhibitAttributes
00562       // can't handle GNU attributes), so only call it in the one case where
00563       // GNU attributes are allowed.
00564       SubStmt = ParseStatementOrDeclarationAfterAttributes(
00565           Stmts, /*OnlyStmts*/ true, nullptr, TempAttrs);
00566       if (!TempAttrs.empty() && !SubStmt.isInvalid())
00567         SubStmt = Actions.ProcessStmtAttributes(
00568             SubStmt.get(), TempAttrs.getList(), TempAttrs.Range);
00569     } else {
00570       Diag(Tok, diag::err_expected_after) << "__attribute__" << tok::semi;
00571     }
00572   }
00573 
00574   // If we've not parsed a statement yet, parse one now.
00575   if (!SubStmt.isInvalid() && !SubStmt.isUsable())
00576     SubStmt = ParseStatement();
00577 
00578   // Broken substmt shouldn't prevent the label from being added to the AST.
00579   if (SubStmt.isInvalid())
00580     SubStmt = Actions.ActOnNullStmt(ColonLoc);
00581 
00582   LabelDecl *LD = Actions.LookupOrCreateLabel(IdentTok.getIdentifierInfo(),
00583                                               IdentTok.getLocation());
00584   if (AttributeList *Attrs = attrs.getList()) {
00585     Actions.ProcessDeclAttributeList(Actions.CurScope, LD, Attrs);
00586     attrs.clear();
00587   }
00588 
00589   return Actions.ActOnLabelStmt(IdentTok.getLocation(), LD, ColonLoc,
00590                                 SubStmt.get());
00591 }
00592 
00593 /// ParseCaseStatement
00594 ///       labeled-statement:
00595 ///         'case' constant-expression ':' statement
00596 /// [GNU]   'case' constant-expression '...' constant-expression ':' statement
00597 ///
00598 StmtResult Parser::ParseCaseStatement(bool MissingCase, ExprResult Expr) {
00599   assert((MissingCase || Tok.is(tok::kw_case)) && "Not a case stmt!");
00600 
00601   // It is very very common for code to contain many case statements recursively
00602   // nested, as in (but usually without indentation):
00603   //  case 1:
00604   //    case 2:
00605   //      case 3:
00606   //         case 4:
00607   //           case 5: etc.
00608   //
00609   // Parsing this naively works, but is both inefficient and can cause us to run
00610   // out of stack space in our recursive descent parser.  As a special case,
00611   // flatten this recursion into an iterative loop.  This is complex and gross,
00612   // but all the grossness is constrained to ParseCaseStatement (and some
00613   // weirdness in the actions), so this is just local grossness :).
00614 
00615   // TopLevelCase - This is the highest level we have parsed.  'case 1' in the
00616   // example above.
00617   StmtResult TopLevelCase(true);
00618 
00619   // DeepestParsedCaseStmt - This is the deepest statement we have parsed, which
00620   // gets updated each time a new case is parsed, and whose body is unset so
00621   // far.  When parsing 'case 4', this is the 'case 3' node.
00622   Stmt *DeepestParsedCaseStmt = nullptr;
00623 
00624   // While we have case statements, eat and stack them.
00625   SourceLocation ColonLoc;
00626   do {
00627     SourceLocation CaseLoc = MissingCase ? Expr.get()->getExprLoc() :
00628                                            ConsumeToken();  // eat the 'case'.
00629     ColonLoc = SourceLocation();
00630 
00631     if (Tok.is(tok::code_completion)) {
00632       Actions.CodeCompleteCase(getCurScope());
00633       cutOffParsing();
00634       return StmtError();
00635     }
00636 
00637     /// We don't want to treat 'case x : y' as a potential typo for 'case x::y'.
00638     /// Disable this form of error recovery while we're parsing the case
00639     /// expression.
00640     ColonProtectionRAIIObject ColonProtection(*this);
00641 
00642     ExprResult LHS;
00643     if (!MissingCase) {
00644       LHS = ParseConstantExpression();
00645       if (LHS.isInvalid()) {
00646         // If constant-expression is parsed unsuccessfully, recover by skipping
00647         // current case statement (moving to the colon that ends it).
00648         if (SkipUntil(tok::colon, tok::r_brace, StopAtSemi | StopBeforeMatch)) {
00649           TryConsumeToken(tok::colon, ColonLoc);
00650           continue;
00651         }
00652         return StmtError();
00653       }
00654     } else {
00655       LHS = Expr;
00656       MissingCase = false;
00657     }
00658 
00659     // GNU case range extension.
00660     SourceLocation DotDotDotLoc;
00661     ExprResult RHS;
00662     if (TryConsumeToken(tok::ellipsis, DotDotDotLoc)) {
00663       Diag(DotDotDotLoc, diag::ext_gnu_case_range);
00664       RHS = ParseConstantExpression();
00665       if (RHS.isInvalid()) {
00666         if (SkipUntil(tok::colon, tok::r_brace, StopAtSemi | StopBeforeMatch)) {
00667           TryConsumeToken(tok::colon, ColonLoc);
00668           continue;
00669         }
00670         return StmtError();
00671       }
00672     }
00673 
00674     ColonProtection.restore();
00675 
00676     if (TryConsumeToken(tok::colon, ColonLoc)) {
00677     } else if (TryConsumeToken(tok::semi, ColonLoc) ||
00678                TryConsumeToken(tok::coloncolon, ColonLoc)) {
00679       // Treat "case blah;" or "case blah::" as a typo for "case blah:".
00680       Diag(ColonLoc, diag::err_expected_after)
00681           << "'case'" << tok::colon
00682           << FixItHint::CreateReplacement(ColonLoc, ":");
00683     } else {
00684       SourceLocation ExpectedLoc = PP.getLocForEndOfToken(PrevTokLocation);
00685       Diag(ExpectedLoc, diag::err_expected_after)
00686           << "'case'" << tok::colon
00687           << FixItHint::CreateInsertion(ExpectedLoc, ":");
00688       ColonLoc = ExpectedLoc;
00689     }
00690 
00691     StmtResult Case =
00692       Actions.ActOnCaseStmt(CaseLoc, LHS.get(), DotDotDotLoc,
00693                             RHS.get(), ColonLoc);
00694 
00695     // If we had a sema error parsing this case, then just ignore it and
00696     // continue parsing the sub-stmt.
00697     if (Case.isInvalid()) {
00698       if (TopLevelCase.isInvalid())  // No parsed case stmts.
00699         return ParseStatement();
00700       // Otherwise, just don't add it as a nested case.
00701     } else {
00702       // If this is the first case statement we parsed, it becomes TopLevelCase.
00703       // Otherwise we link it into the current chain.
00704       Stmt *NextDeepest = Case.get();
00705       if (TopLevelCase.isInvalid())
00706         TopLevelCase = Case;
00707       else
00708         Actions.ActOnCaseStmtBody(DeepestParsedCaseStmt, Case.get());
00709       DeepestParsedCaseStmt = NextDeepest;
00710     }
00711 
00712     // Handle all case statements.
00713   } while (Tok.is(tok::kw_case));
00714 
00715   // If we found a non-case statement, start by parsing it.
00716   StmtResult SubStmt;
00717 
00718   if (Tok.isNot(tok::r_brace)) {
00719     SubStmt = ParseStatement();
00720   } else {
00721     // Nicely diagnose the common error "switch (X) { case 4: }", which is
00722     // not valid.  If ColonLoc doesn't point to a valid text location, there was
00723     // another parsing error, so avoid producing extra diagnostics.
00724     if (ColonLoc.isValid()) {
00725       SourceLocation AfterColonLoc = PP.getLocForEndOfToken(ColonLoc);
00726       Diag(AfterColonLoc, diag::err_label_end_of_compound_statement)
00727         << FixItHint::CreateInsertion(AfterColonLoc, " ;");
00728     }
00729     SubStmt = StmtError();
00730   }
00731 
00732   // Install the body into the most deeply-nested case.
00733   if (DeepestParsedCaseStmt) {
00734     // Broken sub-stmt shouldn't prevent forming the case statement properly.
00735     if (SubStmt.isInvalid())
00736       SubStmt = Actions.ActOnNullStmt(SourceLocation());
00737     Actions.ActOnCaseStmtBody(DeepestParsedCaseStmt, SubStmt.get());
00738   }
00739 
00740   // Return the top level parsed statement tree.
00741   return TopLevelCase;
00742 }
00743 
00744 /// ParseDefaultStatement
00745 ///       labeled-statement:
00746 ///         'default' ':' statement
00747 /// Note that this does not parse the 'statement' at the end.
00748 ///
00749 StmtResult Parser::ParseDefaultStatement() {
00750   assert(Tok.is(tok::kw_default) && "Not a default stmt!");
00751   SourceLocation DefaultLoc = ConsumeToken();  // eat the 'default'.
00752 
00753   SourceLocation ColonLoc;
00754   if (TryConsumeToken(tok::colon, ColonLoc)) {
00755   } else if (TryConsumeToken(tok::semi, ColonLoc)) {
00756     // Treat "default;" as a typo for "default:".
00757     Diag(ColonLoc, diag::err_expected_after)
00758         << "'default'" << tok::colon
00759         << FixItHint::CreateReplacement(ColonLoc, ":");
00760   } else {
00761     SourceLocation ExpectedLoc = PP.getLocForEndOfToken(PrevTokLocation);
00762     Diag(ExpectedLoc, diag::err_expected_after)
00763         << "'default'" << tok::colon
00764         << FixItHint::CreateInsertion(ExpectedLoc, ":");
00765     ColonLoc = ExpectedLoc;
00766   }
00767 
00768   StmtResult SubStmt;
00769 
00770   if (Tok.isNot(tok::r_brace)) {
00771     SubStmt = ParseStatement();
00772   } else {
00773     // Diagnose the common error "switch (X) {... default: }", which is
00774     // not valid.
00775     SourceLocation AfterColonLoc = PP.getLocForEndOfToken(ColonLoc);
00776     Diag(AfterColonLoc, diag::err_label_end_of_compound_statement)
00777       << FixItHint::CreateInsertion(AfterColonLoc, " ;");
00778     SubStmt = true;
00779   }
00780 
00781   // Broken sub-stmt shouldn't prevent forming the case statement properly.
00782   if (SubStmt.isInvalid())
00783     SubStmt = Actions.ActOnNullStmt(ColonLoc);
00784 
00785   return Actions.ActOnDefaultStmt(DefaultLoc, ColonLoc,
00786                                   SubStmt.get(), getCurScope());
00787 }
00788 
00789 StmtResult Parser::ParseCompoundStatement(bool isStmtExpr) {
00790   return ParseCompoundStatement(isStmtExpr, Scope::DeclScope);
00791 }
00792 
00793 /// ParseCompoundStatement - Parse a "{}" block.
00794 ///
00795 ///       compound-statement: [C99 6.8.2]
00796 ///         { block-item-list[opt] }
00797 /// [GNU]   { label-declarations block-item-list } [TODO]
00798 ///
00799 ///       block-item-list:
00800 ///         block-item
00801 ///         block-item-list block-item
00802 ///
00803 ///       block-item:
00804 ///         declaration
00805 /// [GNU]   '__extension__' declaration
00806 ///         statement
00807 ///
00808 /// [GNU] label-declarations:
00809 /// [GNU]   label-declaration
00810 /// [GNU]   label-declarations label-declaration
00811 ///
00812 /// [GNU] label-declaration:
00813 /// [GNU]   '__label__' identifier-list ';'
00814 ///
00815 StmtResult Parser::ParseCompoundStatement(bool isStmtExpr,
00816                                           unsigned ScopeFlags) {
00817   assert(Tok.is(tok::l_brace) && "Not a compount stmt!");
00818 
00819   // Enter a scope to hold everything within the compound stmt.  Compound
00820   // statements can always hold declarations.
00821   ParseScope CompoundScope(this, ScopeFlags);
00822 
00823   // Parse the statements in the body.
00824   return ParseCompoundStatementBody(isStmtExpr);
00825 }
00826 
00827 /// Parse any pragmas at the start of the compound expression. We handle these
00828 /// separately since some pragmas (FP_CONTRACT) must appear before any C
00829 /// statement in the compound, but may be intermingled with other pragmas.
00830 void Parser::ParseCompoundStatementLeadingPragmas() {
00831   bool checkForPragmas = true;
00832   while (checkForPragmas) {
00833     switch (Tok.getKind()) {
00834     case tok::annot_pragma_vis:
00835       HandlePragmaVisibility();
00836       break;
00837     case tok::annot_pragma_pack:
00838       HandlePragmaPack();
00839       break;
00840     case tok::annot_pragma_msstruct:
00841       HandlePragmaMSStruct();
00842       break;
00843     case tok::annot_pragma_align:
00844       HandlePragmaAlign();
00845       break;
00846     case tok::annot_pragma_weak:
00847       HandlePragmaWeak();
00848       break;
00849     case tok::annot_pragma_weakalias:
00850       HandlePragmaWeakAlias();
00851       break;
00852     case tok::annot_pragma_redefine_extname:
00853       HandlePragmaRedefineExtname();
00854       break;
00855     case tok::annot_pragma_opencl_extension:
00856       HandlePragmaOpenCLExtension();
00857       break;
00858     case tok::annot_pragma_fp_contract:
00859       HandlePragmaFPContract();
00860       break;
00861     case tok::annot_pragma_ms_pointers_to_members:
00862       HandlePragmaMSPointersToMembers();
00863       break;
00864     case tok::annot_pragma_ms_pragma:
00865       HandlePragmaMSPragma();
00866       break;
00867     default:
00868       checkForPragmas = false;
00869       break;
00870     }
00871   }
00872 
00873 }
00874 
00875 /// ParseCompoundStatementBody - Parse a sequence of statements and invoke the
00876 /// ActOnCompoundStmt action.  This expects the '{' to be the current token, and
00877 /// consume the '}' at the end of the block.  It does not manipulate the scope
00878 /// stack.
00879 StmtResult Parser::ParseCompoundStatementBody(bool isStmtExpr) {
00880   PrettyStackTraceLoc CrashInfo(PP.getSourceManager(),
00881                                 Tok.getLocation(),
00882                                 "in compound statement ('{}')");
00883 
00884   // Record the state of the FP_CONTRACT pragma, restore on leaving the
00885   // compound statement.
00886   Sema::FPContractStateRAII SaveFPContractState(Actions);
00887 
00888   InMessageExpressionRAIIObject InMessage(*this, false);
00889   BalancedDelimiterTracker T(*this, tok::l_brace);
00890   if (T.consumeOpen())
00891     return StmtError();
00892 
00893   Sema::CompoundScopeRAII CompoundScope(Actions);
00894 
00895   // Parse any pragmas at the beginning of the compound statement.
00896   ParseCompoundStatementLeadingPragmas();
00897 
00898   StmtVector Stmts;
00899 
00900   // "__label__ X, Y, Z;" is the GNU "Local Label" extension.  These are
00901   // only allowed at the start of a compound stmt regardless of the language.
00902   while (Tok.is(tok::kw___label__)) {
00903     SourceLocation LabelLoc = ConsumeToken();
00904 
00905     SmallVector<Decl *, 8> DeclsInGroup;
00906     while (1) {
00907       if (Tok.isNot(tok::identifier)) {
00908         Diag(Tok, diag::err_expected) << tok::identifier;
00909         break;
00910       }
00911 
00912       IdentifierInfo *II = Tok.getIdentifierInfo();
00913       SourceLocation IdLoc = ConsumeToken();
00914       DeclsInGroup.push_back(Actions.LookupOrCreateLabel(II, IdLoc, LabelLoc));
00915 
00916       if (!TryConsumeToken(tok::comma))
00917         break;
00918     }
00919 
00920     DeclSpec DS(AttrFactory);
00921     DeclGroupPtrTy Res =
00922         Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
00923     StmtResult R = Actions.ActOnDeclStmt(Res, LabelLoc, Tok.getLocation());
00924 
00925     ExpectAndConsumeSemi(diag::err_expected_semi_declaration);
00926     if (R.isUsable())
00927       Stmts.push_back(R.get());
00928   }
00929 
00930   while (Tok.isNot(tok::r_brace) && !isEofOrEom()) {
00931     if (Tok.is(tok::annot_pragma_unused)) {
00932       HandlePragmaUnused();
00933       continue;
00934     }
00935 
00936     StmtResult R;
00937     if (Tok.isNot(tok::kw___extension__)) {
00938       R = ParseStatementOrDeclaration(Stmts, false);
00939     } else {
00940       // __extension__ can start declarations and it can also be a unary
00941       // operator for expressions.  Consume multiple __extension__ markers here
00942       // until we can determine which is which.
00943       // FIXME: This loses extension expressions in the AST!
00944       SourceLocation ExtLoc = ConsumeToken();
00945       while (Tok.is(tok::kw___extension__))
00946         ConsumeToken();
00947 
00948       ParsedAttributesWithRange attrs(AttrFactory);
00949       MaybeParseCXX11Attributes(attrs, nullptr,
00950                                 /*MightBeObjCMessageSend*/ true);
00951 
00952       // If this is the start of a declaration, parse it as such.
00953       if (isDeclarationStatement()) {
00954         // __extension__ silences extension warnings in the subdeclaration.
00955         // FIXME: Save the __extension__ on the decl as a node somehow?
00956         ExtensionRAIIObject O(Diags);
00957 
00958         SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
00959         DeclGroupPtrTy Res = ParseDeclaration(Declarator::BlockContext, DeclEnd,
00960                                               attrs);
00961         R = Actions.ActOnDeclStmt(Res, DeclStart, DeclEnd);
00962       } else {
00963         // Otherwise this was a unary __extension__ marker.
00964         ExprResult Res(ParseExpressionWithLeadingExtension(ExtLoc));
00965 
00966         if (Res.isInvalid()) {
00967           SkipUntil(tok::semi);
00968           continue;
00969         }
00970 
00971         // FIXME: Use attributes?
00972         // Eat the semicolon at the end of stmt and convert the expr into a
00973         // statement.
00974         ExpectAndConsumeSemi(diag::err_expected_semi_after_expr);
00975         R = Actions.ActOnExprStmt(Res);
00976       }
00977     }
00978 
00979     if (R.isUsable())
00980       Stmts.push_back(R.get());
00981   }
00982 
00983   SourceLocation CloseLoc = Tok.getLocation();
00984 
00985   // We broke out of the while loop because we found a '}' or EOF.
00986   if (!T.consumeClose())
00987     // Recover by creating a compound statement with what we parsed so far,
00988     // instead of dropping everything and returning StmtError();
00989     CloseLoc = T.getCloseLocation();
00990 
00991   return Actions.ActOnCompoundStmt(T.getOpenLocation(), CloseLoc,
00992                                    Stmts, isStmtExpr);
00993 }
00994 
00995 /// ParseParenExprOrCondition:
00996 /// [C  ]     '(' expression ')'
00997 /// [C++]     '(' condition ')'       [not allowed if OnlyAllowCondition=true]
00998 ///
00999 /// This function parses and performs error recovery on the specified condition
01000 /// or expression (depending on whether we're in C++ or C mode).  This function
01001 /// goes out of its way to recover well.  It returns true if there was a parser
01002 /// error (the right paren couldn't be found), which indicates that the caller
01003 /// should try to recover harder.  It returns false if the condition is
01004 /// successfully parsed.  Note that a successful parse can still have semantic
01005 /// errors in the condition.
01006 bool Parser::ParseParenExprOrCondition(ExprResult &ExprResult,
01007                                        Decl *&DeclResult,
01008                                        SourceLocation Loc,
01009                                        bool ConvertToBoolean) {
01010   BalancedDelimiterTracker T(*this, tok::l_paren);
01011   T.consumeOpen();
01012 
01013   if (getLangOpts().CPlusPlus)
01014     ParseCXXCondition(ExprResult, DeclResult, Loc, ConvertToBoolean);
01015   else {
01016     ExprResult = ParseExpression();
01017     DeclResult = nullptr;
01018 
01019     // If required, convert to a boolean value.
01020     if (!ExprResult.isInvalid() && ConvertToBoolean)
01021       ExprResult
01022         = Actions.ActOnBooleanCondition(getCurScope(), Loc, ExprResult.get());
01023   }
01024 
01025   // If the parser was confused by the condition and we don't have a ')', try to
01026   // recover by skipping ahead to a semi and bailing out.  If condexp is
01027   // semantically invalid but we have well formed code, keep going.
01028   if (ExprResult.isInvalid() && !DeclResult && Tok.isNot(tok::r_paren)) {
01029     SkipUntil(tok::semi);
01030     // Skipping may have stopped if it found the containing ')'.  If so, we can
01031     // continue parsing the if statement.
01032     if (Tok.isNot(tok::r_paren))
01033       return true;
01034   }
01035 
01036   // Otherwise the condition is valid or the rparen is present.
01037   T.consumeClose();
01038 
01039   // Check for extraneous ')'s to catch things like "if (foo())) {".  We know
01040   // that all callers are looking for a statement after the condition, so ")"
01041   // isn't valid.
01042   while (Tok.is(tok::r_paren)) {
01043     Diag(Tok, diag::err_extraneous_rparen_in_condition)
01044       << FixItHint::CreateRemoval(Tok.getLocation());
01045     ConsumeParen();
01046   }
01047 
01048   return false;
01049 }
01050 
01051 
01052 /// ParseIfStatement
01053 ///       if-statement: [C99 6.8.4.1]
01054 ///         'if' '(' expression ')' statement
01055 ///         'if' '(' expression ')' statement 'else' statement
01056 /// [C++]   'if' '(' condition ')' statement
01057 /// [C++]   'if' '(' condition ')' statement 'else' statement
01058 ///
01059 StmtResult Parser::ParseIfStatement(SourceLocation *TrailingElseLoc) {
01060   assert(Tok.is(tok::kw_if) && "Not an if stmt!");
01061   SourceLocation IfLoc = ConsumeToken();  // eat the 'if'.
01062 
01063   if (Tok.isNot(tok::l_paren)) {
01064     Diag(Tok, diag::err_expected_lparen_after) << "if";
01065     SkipUntil(tok::semi);
01066     return StmtError();
01067   }
01068 
01069   bool C99orCXX = getLangOpts().C99 || getLangOpts().CPlusPlus;
01070 
01071   // C99 6.8.4p3 - In C99, the if statement is a block.  This is not
01072   // the case for C90.
01073   //
01074   // C++ 6.4p3:
01075   // A name introduced by a declaration in a condition is in scope from its
01076   // point of declaration until the end of the substatements controlled by the
01077   // condition.
01078   // C++ 3.3.2p4:
01079   // Names declared in the for-init-statement, and in the condition of if,
01080   // while, for, and switch statements are local to the if, while, for, or
01081   // switch statement (including the controlled statement).
01082   //
01083   ParseScope IfScope(this, Scope::DeclScope | Scope::ControlScope, C99orCXX);
01084 
01085   // Parse the condition.
01086   ExprResult CondExp;
01087   Decl *CondVar = nullptr;
01088   if (ParseParenExprOrCondition(CondExp, CondVar, IfLoc, true))
01089     return StmtError();
01090 
01091   FullExprArg FullCondExp(Actions.MakeFullExpr(CondExp.get(), IfLoc));
01092 
01093   // C99 6.8.4p3 - In C99, the body of the if statement is a scope, even if
01094   // there is no compound stmt.  C90 does not have this clause.  We only do this
01095   // if the body isn't a compound statement to avoid push/pop in common cases.
01096   //
01097   // C++ 6.4p1:
01098   // The substatement in a selection-statement (each substatement, in the else
01099   // form of the if statement) implicitly defines a local scope.
01100   //
01101   // For C++ we create a scope for the condition and a new scope for
01102   // substatements because:
01103   // -When the 'then' scope exits, we want the condition declaration to still be
01104   //    active for the 'else' scope too.
01105   // -Sema will detect name clashes by considering declarations of a
01106   //    'ControlScope' as part of its direct subscope.
01107   // -If we wanted the condition and substatement to be in the same scope, we
01108   //    would have to notify ParseStatement not to create a new scope. It's
01109   //    simpler to let it create a new scope.
01110   //
01111   ParseScope InnerScope(this, Scope::DeclScope, C99orCXX, Tok.is(tok::l_brace));
01112 
01113   // Read the 'then' stmt.
01114   SourceLocation ThenStmtLoc = Tok.getLocation();
01115 
01116   SourceLocation InnerStatementTrailingElseLoc;
01117   StmtResult ThenStmt(ParseStatement(&InnerStatementTrailingElseLoc));
01118 
01119   // Pop the 'if' scope if needed.
01120   InnerScope.Exit();
01121 
01122   // If it has an else, parse it.
01123   SourceLocation ElseLoc;
01124   SourceLocation ElseStmtLoc;
01125   StmtResult ElseStmt;
01126 
01127   if (Tok.is(tok::kw_else)) {
01128     if (TrailingElseLoc)
01129       *TrailingElseLoc = Tok.getLocation();
01130 
01131     ElseLoc = ConsumeToken();
01132     ElseStmtLoc = Tok.getLocation();
01133 
01134     // C99 6.8.4p3 - In C99, the body of the if statement is a scope, even if
01135     // there is no compound stmt.  C90 does not have this clause.  We only do
01136     // this if the body isn't a compound statement to avoid push/pop in common
01137     // cases.
01138     //
01139     // C++ 6.4p1:
01140     // The substatement in a selection-statement (each substatement, in the else
01141     // form of the if statement) implicitly defines a local scope.
01142     //
01143     ParseScope InnerScope(this, Scope::DeclScope, C99orCXX, Tok.is(tok::l_brace));
01144 
01145     ElseStmt = ParseStatement();
01146 
01147     // Pop the 'else' scope if needed.
01148     InnerScope.Exit();
01149   } else if (Tok.is(tok::code_completion)) {
01150     Actions.CodeCompleteAfterIf(getCurScope());
01151     cutOffParsing();
01152     return StmtError();
01153   } else if (InnerStatementTrailingElseLoc.isValid()) {
01154     Diag(InnerStatementTrailingElseLoc, diag::warn_dangling_else);
01155   }
01156 
01157   IfScope.Exit();
01158 
01159   // If the then or else stmt is invalid and the other is valid (and present),
01160   // make turn the invalid one into a null stmt to avoid dropping the other
01161   // part.  If both are invalid, return error.
01162   if ((ThenStmt.isInvalid() && ElseStmt.isInvalid()) ||
01163       (ThenStmt.isInvalid() && ElseStmt.get() == nullptr) ||
01164       (ThenStmt.get() == nullptr && ElseStmt.isInvalid())) {
01165     // Both invalid, or one is invalid and other is non-present: return error.
01166     return StmtError();
01167   }
01168 
01169   // Now if either are invalid, replace with a ';'.
01170   if (ThenStmt.isInvalid())
01171     ThenStmt = Actions.ActOnNullStmt(ThenStmtLoc);
01172   if (ElseStmt.isInvalid())
01173     ElseStmt = Actions.ActOnNullStmt(ElseStmtLoc);
01174 
01175   return Actions.ActOnIfStmt(IfLoc, FullCondExp, CondVar, ThenStmt.get(),
01176                              ElseLoc, ElseStmt.get());
01177 }
01178 
01179 /// ParseSwitchStatement
01180 ///       switch-statement:
01181 ///         'switch' '(' expression ')' statement
01182 /// [C++]   'switch' '(' condition ')' statement
01183 StmtResult Parser::ParseSwitchStatement(SourceLocation *TrailingElseLoc) {
01184   assert(Tok.is(tok::kw_switch) && "Not a switch stmt!");
01185   SourceLocation SwitchLoc = ConsumeToken();  // eat the 'switch'.
01186 
01187   if (Tok.isNot(tok::l_paren)) {
01188     Diag(Tok, diag::err_expected_lparen_after) << "switch";
01189     SkipUntil(tok::semi);
01190     return StmtError();
01191   }
01192 
01193   bool C99orCXX = getLangOpts().C99 || getLangOpts().CPlusPlus;
01194 
01195   // C99 6.8.4p3 - In C99, the switch statement is a block.  This is
01196   // not the case for C90.  Start the switch scope.
01197   //
01198   // C++ 6.4p3:
01199   // A name introduced by a declaration in a condition is in scope from its
01200   // point of declaration until the end of the substatements controlled by the
01201   // condition.
01202   // C++ 3.3.2p4:
01203   // Names declared in the for-init-statement, and in the condition of if,
01204   // while, for, and switch statements are local to the if, while, for, or
01205   // switch statement (including the controlled statement).
01206   //
01207   unsigned ScopeFlags = Scope::SwitchScope;
01208   if (C99orCXX)
01209     ScopeFlags |= Scope::DeclScope | Scope::ControlScope;
01210   ParseScope SwitchScope(this, ScopeFlags);
01211 
01212   // Parse the condition.
01213   ExprResult Cond;
01214   Decl *CondVar = nullptr;
01215   if (ParseParenExprOrCondition(Cond, CondVar, SwitchLoc, false))
01216     return StmtError();
01217 
01218   StmtResult Switch
01219     = Actions.ActOnStartOfSwitchStmt(SwitchLoc, Cond.get(), CondVar);
01220 
01221   if (Switch.isInvalid()) {
01222     // Skip the switch body.
01223     // FIXME: This is not optimal recovery, but parsing the body is more
01224     // dangerous due to the presence of case and default statements, which
01225     // will have no place to connect back with the switch.
01226     if (Tok.is(tok::l_brace)) {
01227       ConsumeBrace();
01228       SkipUntil(tok::r_brace);
01229     } else
01230       SkipUntil(tok::semi);
01231     return Switch;
01232   }
01233 
01234   // C99 6.8.4p3 - In C99, the body of the switch statement is a scope, even if
01235   // there is no compound stmt.  C90 does not have this clause.  We only do this
01236   // if the body isn't a compound statement to avoid push/pop in common cases.
01237   //
01238   // C++ 6.4p1:
01239   // The substatement in a selection-statement (each substatement, in the else
01240   // form of the if statement) implicitly defines a local scope.
01241   //
01242   // See comments in ParseIfStatement for why we create a scope for the
01243   // condition and a new scope for substatement in C++.
01244   //
01245   getCurScope()->AddFlags(Scope::BreakScope);
01246   ParseScope InnerScope(this, Scope::DeclScope, C99orCXX, Tok.is(tok::l_brace));
01247 
01248   // We have incremented the mangling number for the SwitchScope and the
01249   // InnerScope, which is one too many.
01250   if (C99orCXX)
01251     getCurScope()->decrementMSLocalManglingNumber();
01252 
01253   // Read the body statement.
01254   StmtResult Body(ParseStatement(TrailingElseLoc));
01255 
01256   // Pop the scopes.
01257   InnerScope.Exit();
01258   SwitchScope.Exit();
01259 
01260   return Actions.ActOnFinishSwitchStmt(SwitchLoc, Switch.get(), Body.get());
01261 }
01262 
01263 /// ParseWhileStatement
01264 ///       while-statement: [C99 6.8.5.1]
01265 ///         'while' '(' expression ')' statement
01266 /// [C++]   'while' '(' condition ')' statement
01267 StmtResult Parser::ParseWhileStatement(SourceLocation *TrailingElseLoc) {
01268   assert(Tok.is(tok::kw_while) && "Not a while stmt!");
01269   SourceLocation WhileLoc = Tok.getLocation();
01270   ConsumeToken();  // eat the 'while'.
01271 
01272   if (Tok.isNot(tok::l_paren)) {
01273     Diag(Tok, diag::err_expected_lparen_after) << "while";
01274     SkipUntil(tok::semi);
01275     return StmtError();
01276   }
01277 
01278   bool C99orCXX = getLangOpts().C99 || getLangOpts().CPlusPlus;
01279 
01280   // C99 6.8.5p5 - In C99, the while statement is a block.  This is not
01281   // the case for C90.  Start the loop scope.
01282   //
01283   // C++ 6.4p3:
01284   // A name introduced by a declaration in a condition is in scope from its
01285   // point of declaration until the end of the substatements controlled by the
01286   // condition.
01287   // C++ 3.3.2p4:
01288   // Names declared in the for-init-statement, and in the condition of if,
01289   // while, for, and switch statements are local to the if, while, for, or
01290   // switch statement (including the controlled statement).
01291   //
01292   unsigned ScopeFlags;
01293   if (C99orCXX)
01294     ScopeFlags = Scope::BreakScope | Scope::ContinueScope |
01295                  Scope::DeclScope  | Scope::ControlScope;
01296   else
01297     ScopeFlags = Scope::BreakScope | Scope::ContinueScope;
01298   ParseScope WhileScope(this, ScopeFlags);
01299 
01300   // Parse the condition.
01301   ExprResult Cond;
01302   Decl *CondVar = nullptr;
01303   if (ParseParenExprOrCondition(Cond, CondVar, WhileLoc, true))
01304     return StmtError();
01305 
01306   FullExprArg FullCond(Actions.MakeFullExpr(Cond.get(), WhileLoc));
01307 
01308   // C99 6.8.5p5 - In C99, the body of the while statement is a scope, even if
01309   // there is no compound stmt.  C90 does not have this clause.  We only do this
01310   // if the body isn't a compound statement to avoid push/pop in common cases.
01311   //
01312   // C++ 6.5p2:
01313   // The substatement in an iteration-statement implicitly defines a local scope
01314   // which is entered and exited each time through the loop.
01315   //
01316   // See comments in ParseIfStatement for why we create a scope for the
01317   // condition and a new scope for substatement in C++.
01318   //
01319   ParseScope InnerScope(this, Scope::DeclScope, C99orCXX, Tok.is(tok::l_brace));
01320 
01321   // Read the body statement.
01322   StmtResult Body(ParseStatement(TrailingElseLoc));
01323 
01324   // Pop the body scope if needed.
01325   InnerScope.Exit();
01326   WhileScope.Exit();
01327 
01328   if ((Cond.isInvalid() && !CondVar) || Body.isInvalid())
01329     return StmtError();
01330 
01331   return Actions.ActOnWhileStmt(WhileLoc, FullCond, CondVar, Body.get());
01332 }
01333 
01334 /// ParseDoStatement
01335 ///       do-statement: [C99 6.8.5.2]
01336 ///         'do' statement 'while' '(' expression ')' ';'
01337 /// Note: this lets the caller parse the end ';'.
01338 StmtResult Parser::ParseDoStatement() {
01339   assert(Tok.is(tok::kw_do) && "Not a do stmt!");
01340   SourceLocation DoLoc = ConsumeToken();  // eat the 'do'.
01341 
01342   // C99 6.8.5p5 - In C99, the do statement is a block.  This is not
01343   // the case for C90.  Start the loop scope.
01344   unsigned ScopeFlags;
01345   if (getLangOpts().C99)
01346     ScopeFlags = Scope::BreakScope | Scope::ContinueScope | Scope::DeclScope;
01347   else
01348     ScopeFlags = Scope::BreakScope | Scope::ContinueScope;
01349 
01350   ParseScope DoScope(this, ScopeFlags);
01351 
01352   // C99 6.8.5p5 - In C99, the body of the do statement is a scope, even if
01353   // there is no compound stmt.  C90 does not have this clause. We only do this
01354   // if the body isn't a compound statement to avoid push/pop in common cases.
01355   //
01356   // C++ 6.5p2:
01357   // The substatement in an iteration-statement implicitly defines a local scope
01358   // which is entered and exited each time through the loop.
01359   //
01360   bool C99orCXX = getLangOpts().C99 || getLangOpts().CPlusPlus;
01361   ParseScope InnerScope(this, Scope::DeclScope, C99orCXX, Tok.is(tok::l_brace));
01362 
01363   // Read the body statement.
01364   StmtResult Body(ParseStatement());
01365 
01366   // Pop the body scope if needed.
01367   InnerScope.Exit();
01368 
01369   if (Tok.isNot(tok::kw_while)) {
01370     if (!Body.isInvalid()) {
01371       Diag(Tok, diag::err_expected_while);
01372       Diag(DoLoc, diag::note_matching) << "'do'";
01373       SkipUntil(tok::semi, StopBeforeMatch);
01374     }
01375     return StmtError();
01376   }
01377   SourceLocation WhileLoc = ConsumeToken();
01378 
01379   if (Tok.isNot(tok::l_paren)) {
01380     Diag(Tok, diag::err_expected_lparen_after) << "do/while";
01381     SkipUntil(tok::semi, StopBeforeMatch);
01382     return StmtError();
01383   }
01384 
01385   // Parse the parenthesized expression.
01386   BalancedDelimiterTracker T(*this, tok::l_paren);
01387   T.consumeOpen();
01388 
01389   // A do-while expression is not a condition, so can't have attributes.
01390   DiagnoseAndSkipCXX11Attributes();
01391 
01392   ExprResult Cond = ParseExpression();
01393   T.consumeClose();
01394   DoScope.Exit();
01395 
01396   if (Cond.isInvalid() || Body.isInvalid())
01397     return StmtError();
01398 
01399   return Actions.ActOnDoStmt(DoLoc, Body.get(), WhileLoc, T.getOpenLocation(),
01400                              Cond.get(), T.getCloseLocation());
01401 }
01402 
01403 bool Parser::isForRangeIdentifier() {
01404   assert(Tok.is(tok::identifier));
01405 
01406   const Token &Next = NextToken();
01407   if (Next.is(tok::colon))
01408     return true;
01409 
01410   if (Next.is(tok::l_square) || Next.is(tok::kw_alignas)) {
01411     TentativeParsingAction PA(*this);
01412     ConsumeToken();
01413     SkipCXX11Attributes();
01414     bool Result = Tok.is(tok::colon);
01415     PA.Revert();
01416     return Result;
01417   }
01418 
01419   return false;
01420 }
01421 
01422 /// ParseForStatement
01423 ///       for-statement: [C99 6.8.5.3]
01424 ///         'for' '(' expr[opt] ';' expr[opt] ';' expr[opt] ')' statement
01425 ///         'for' '(' declaration expr[opt] ';' expr[opt] ')' statement
01426 /// [C++]   'for' '(' for-init-statement condition[opt] ';' expression[opt] ')'
01427 /// [C++]       statement
01428 /// [C++0x] 'for' '(' for-range-declaration : for-range-initializer ) statement
01429 /// [OBJC2] 'for' '(' declaration 'in' expr ')' statement
01430 /// [OBJC2] 'for' '(' expr 'in' expr ')' statement
01431 ///
01432 /// [C++] for-init-statement:
01433 /// [C++]   expression-statement
01434 /// [C++]   simple-declaration
01435 ///
01436 /// [C++0x] for-range-declaration:
01437 /// [C++0x]   attribute-specifier-seq[opt] type-specifier-seq declarator
01438 /// [C++0x] for-range-initializer:
01439 /// [C++0x]   expression
01440 /// [C++0x]   braced-init-list            [TODO]
01441 StmtResult Parser::ParseForStatement(SourceLocation *TrailingElseLoc) {
01442   assert(Tok.is(tok::kw_for) && "Not a for stmt!");
01443   SourceLocation ForLoc = ConsumeToken();  // eat the 'for'.
01444 
01445   if (Tok.isNot(tok::l_paren)) {
01446     Diag(Tok, diag::err_expected_lparen_after) << "for";
01447     SkipUntil(tok::semi);
01448     return StmtError();
01449   }
01450 
01451   bool C99orCXXorObjC = getLangOpts().C99 || getLangOpts().CPlusPlus ||
01452     getLangOpts().ObjC1;
01453 
01454   // C99 6.8.5p5 - In C99, the for statement is a block.  This is not
01455   // the case for C90.  Start the loop scope.
01456   //
01457   // C++ 6.4p3:
01458   // A name introduced by a declaration in a condition is in scope from its
01459   // point of declaration until the end of the substatements controlled by the
01460   // condition.
01461   // C++ 3.3.2p4:
01462   // Names declared in the for-init-statement, and in the condition of if,
01463   // while, for, and switch statements are local to the if, while, for, or
01464   // switch statement (including the controlled statement).
01465   // C++ 6.5.3p1:
01466   // Names declared in the for-init-statement are in the same declarative-region
01467   // as those declared in the condition.
01468   //
01469   unsigned ScopeFlags = 0;
01470   if (C99orCXXorObjC)
01471     ScopeFlags = Scope::DeclScope | Scope::ControlScope;
01472 
01473   ParseScope ForScope(this, ScopeFlags);
01474 
01475   BalancedDelimiterTracker T(*this, tok::l_paren);
01476   T.consumeOpen();
01477 
01478   ExprResult Value;
01479 
01480   bool ForEach = false, ForRange = false;
01481   StmtResult FirstPart;
01482   bool SecondPartIsInvalid = false;
01483   FullExprArg SecondPart(Actions);
01484   ExprResult Collection;
01485   ForRangeInit ForRangeInit;
01486   FullExprArg ThirdPart(Actions);
01487   Decl *SecondVar = nullptr;
01488 
01489   if (Tok.is(tok::code_completion)) {
01490     Actions.CodeCompleteOrdinaryName(getCurScope(),
01491                                      C99orCXXorObjC? Sema::PCC_ForInit
01492                                                    : Sema::PCC_Expression);
01493     cutOffParsing();
01494     return StmtError();
01495   }
01496 
01497   ParsedAttributesWithRange attrs(AttrFactory);
01498   MaybeParseCXX11Attributes(attrs);
01499 
01500   // Parse the first part of the for specifier.
01501   if (Tok.is(tok::semi)) {  // for (;
01502     ProhibitAttributes(attrs);
01503     // no first part, eat the ';'.
01504     ConsumeToken();
01505   } else if (getLangOpts().CPlusPlus && Tok.is(tok::identifier) &&
01506              isForRangeIdentifier()) {
01507     ProhibitAttributes(attrs);
01508     IdentifierInfo *Name = Tok.getIdentifierInfo();
01509     SourceLocation Loc = ConsumeToken();
01510     MaybeParseCXX11Attributes(attrs);
01511 
01512     ForRangeInit.ColonLoc = ConsumeToken();
01513     if (Tok.is(tok::l_brace))
01514       ForRangeInit.RangeExpr = ParseBraceInitializer();
01515     else
01516       ForRangeInit.RangeExpr = ParseExpression();
01517 
01518     Diag(Loc, getLangOpts().CPlusPlus1z
01519                   ? diag::warn_cxx14_compat_for_range_identifier
01520                   : diag::ext_for_range_identifier)
01521       << ((getLangOpts().CPlusPlus11 && !getLangOpts().CPlusPlus1z)
01522               ? FixItHint::CreateInsertion(Loc, "auto &&")
01523               : FixItHint());
01524 
01525     FirstPart = Actions.ActOnCXXForRangeIdentifier(getCurScope(), Loc, Name,
01526                                                    attrs, attrs.Range.getEnd());
01527     ForRange = true;
01528   } else if (isForInitDeclaration()) {  // for (int X = 4;
01529     // Parse declaration, which eats the ';'.
01530     if (!C99orCXXorObjC)   // Use of C99-style for loops in C90 mode?
01531       Diag(Tok, diag::ext_c99_variable_decl_in_for_loop);
01532 
01533     // In C++0x, "for (T NS:a" might not be a typo for ::
01534     bool MightBeForRangeStmt = getLangOpts().CPlusPlus;
01535     ColonProtectionRAIIObject ColonProtection(*this, MightBeForRangeStmt);
01536 
01537     SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
01538     DeclGroupPtrTy DG = ParseSimpleDeclaration(
01539         Declarator::ForContext, DeclEnd, attrs, false,
01540         MightBeForRangeStmt ? &ForRangeInit : nullptr);
01541     FirstPart = Actions.ActOnDeclStmt(DG, DeclStart, Tok.getLocation());
01542     if (ForRangeInit.ParsedForRangeDecl()) {
01543       Diag(ForRangeInit.ColonLoc, getLangOpts().CPlusPlus11 ?
01544            diag::warn_cxx98_compat_for_range : diag::ext_for_range);
01545 
01546       ForRange = true;
01547     } else if (Tok.is(tok::semi)) {  // for (int x = 4;
01548       ConsumeToken();
01549     } else if ((ForEach = isTokIdentifier_in())) {
01550       Actions.ActOnForEachDeclStmt(DG);
01551       // ObjC: for (id x in expr)
01552       ConsumeToken(); // consume 'in'
01553 
01554       if (Tok.is(tok::code_completion)) {
01555         Actions.CodeCompleteObjCForCollection(getCurScope(), DG);
01556         cutOffParsing();
01557         return StmtError();
01558       }
01559       Collection = ParseExpression();
01560     } else {
01561       Diag(Tok, diag::err_expected_semi_for);
01562     }
01563   } else {
01564     ProhibitAttributes(attrs);
01565     Value = ParseExpression();
01566 
01567     ForEach = isTokIdentifier_in();
01568 
01569     // Turn the expression into a stmt.
01570     if (!Value.isInvalid()) {
01571       if (ForEach)
01572         FirstPart = Actions.ActOnForEachLValueExpr(Value.get());
01573       else
01574         FirstPart = Actions.ActOnExprStmt(Value);
01575     }
01576 
01577     if (Tok.is(tok::semi)) {
01578       ConsumeToken();
01579     } else if (ForEach) {
01580       ConsumeToken(); // consume 'in'
01581 
01582       if (Tok.is(tok::code_completion)) {
01583         Actions.CodeCompleteObjCForCollection(getCurScope(), DeclGroupPtrTy());
01584         cutOffParsing();
01585         return StmtError();
01586       }
01587       Collection = ParseExpression();
01588     } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::colon) && FirstPart.get()) {
01589       // User tried to write the reasonable, but ill-formed, for-range-statement
01590       //   for (expr : expr) { ... }
01591       Diag(Tok, diag::err_for_range_expected_decl)
01592         << FirstPart.get()->getSourceRange();
01593       SkipUntil(tok::r_paren, StopBeforeMatch);
01594       SecondPartIsInvalid = true;
01595     } else {
01596       if (!Value.isInvalid()) {
01597         Diag(Tok, diag::err_expected_semi_for);
01598       } else {
01599         // Skip until semicolon or rparen, don't consume it.
01600         SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
01601         if (Tok.is(tok::semi))
01602           ConsumeToken();
01603       }
01604     }
01605   }
01606 
01607   // Parse the second part of the for specifier.
01608   getCurScope()->AddFlags(Scope::BreakScope | Scope::ContinueScope);
01609   if (!ForEach && !ForRange) {
01610     assert(!SecondPart.get() && "Shouldn't have a second expression yet.");
01611     // Parse the second part of the for specifier.
01612     if (Tok.is(tok::semi)) {  // for (...;;
01613       // no second part.
01614     } else if (Tok.is(tok::r_paren)) {
01615       // missing both semicolons.
01616     } else {
01617       ExprResult Second;
01618       if (getLangOpts().CPlusPlus)
01619         ParseCXXCondition(Second, SecondVar, ForLoc, true);
01620       else {
01621         Second = ParseExpression();
01622         if (!Second.isInvalid())
01623           Second = Actions.ActOnBooleanCondition(getCurScope(), ForLoc,
01624                                                  Second.get());
01625       }
01626       SecondPartIsInvalid = Second.isInvalid();
01627       SecondPart = Actions.MakeFullExpr(Second.get(), ForLoc);
01628     }
01629 
01630     if (Tok.isNot(tok::semi)) {
01631       if (!SecondPartIsInvalid || SecondVar)
01632         Diag(Tok, diag::err_expected_semi_for);
01633       else
01634         // Skip until semicolon or rparen, don't consume it.
01635         SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
01636     }
01637 
01638     if (Tok.is(tok::semi)) {
01639       ConsumeToken();
01640     }
01641 
01642     // Parse the third part of the for specifier.
01643     if (Tok.isNot(tok::r_paren)) {   // for (...;...;)
01644       ExprResult Third = ParseExpression();
01645       // FIXME: The C++11 standard doesn't actually say that this is a
01646       // discarded-value expression, but it clearly should be.
01647       ThirdPart = Actions.MakeFullDiscardedValueExpr(Third.get());
01648     }
01649   }
01650   // Match the ')'.
01651   T.consumeClose();
01652 
01653   // We need to perform most of the semantic analysis for a C++0x for-range
01654   // statememt before parsing the body, in order to be able to deduce the type
01655   // of an auto-typed loop variable.
01656   StmtResult ForRangeStmt;
01657   StmtResult ForEachStmt;
01658 
01659   if (ForRange) {
01660     ForRangeStmt = Actions.ActOnCXXForRangeStmt(ForLoc, FirstPart.get(),
01661                                                 ForRangeInit.ColonLoc,
01662                                                 ForRangeInit.RangeExpr.get(),
01663                                                 T.getCloseLocation(),
01664                                                 Sema::BFRK_Build);
01665 
01666 
01667   // Similarly, we need to do the semantic analysis for a for-range
01668   // statement immediately in order to close over temporaries correctly.
01669   } else if (ForEach) {
01670     ForEachStmt = Actions.ActOnObjCForCollectionStmt(ForLoc,
01671                                                      FirstPart.get(),
01672                                                      Collection.get(),
01673                                                      T.getCloseLocation());
01674   }
01675 
01676   // C99 6.8.5p5 - In C99, the body of the for statement is a scope, even if
01677   // there is no compound stmt.  C90 does not have this clause.  We only do this
01678   // if the body isn't a compound statement to avoid push/pop in common cases.
01679   //
01680   // C++ 6.5p2:
01681   // The substatement in an iteration-statement implicitly defines a local scope
01682   // which is entered and exited each time through the loop.
01683   //
01684   // See comments in ParseIfStatement for why we create a scope for
01685   // for-init-statement/condition and a new scope for substatement in C++.
01686   //
01687   ParseScope InnerScope(this, Scope::DeclScope, C99orCXXorObjC,
01688                         Tok.is(tok::l_brace));
01689 
01690   // The body of the for loop has the same local mangling number as the
01691   // for-init-statement.
01692   // It will only be incremented if the body contains other things that would
01693   // normally increment the mangling number (like a compound statement).
01694   if (C99orCXXorObjC)
01695     getCurScope()->decrementMSLocalManglingNumber();
01696 
01697   // Read the body statement.
01698   StmtResult Body(ParseStatement(TrailingElseLoc));
01699 
01700   // Pop the body scope if needed.
01701   InnerScope.Exit();
01702 
01703   // Leave the for-scope.
01704   ForScope.Exit();
01705 
01706   if (Body.isInvalid())
01707     return StmtError();
01708 
01709   if (ForEach)
01710    return Actions.FinishObjCForCollectionStmt(ForEachStmt.get(),
01711                                               Body.get());
01712 
01713   if (ForRange)
01714     return Actions.FinishCXXForRangeStmt(ForRangeStmt.get(), Body.get());
01715 
01716   return Actions.ActOnForStmt(ForLoc, T.getOpenLocation(), FirstPart.get(),
01717                               SecondPart, SecondVar, ThirdPart,
01718                               T.getCloseLocation(), Body.get());
01719 }
01720 
01721 /// ParseGotoStatement
01722 ///       jump-statement:
01723 ///         'goto' identifier ';'
01724 /// [GNU]   'goto' '*' expression ';'
01725 ///
01726 /// Note: this lets the caller parse the end ';'.
01727 ///
01728 StmtResult Parser::ParseGotoStatement() {
01729   assert(Tok.is(tok::kw_goto) && "Not a goto stmt!");
01730   SourceLocation GotoLoc = ConsumeToken();  // eat the 'goto'.
01731 
01732   StmtResult Res;
01733   if (Tok.is(tok::identifier)) {
01734     LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
01735                                                 Tok.getLocation());
01736     Res = Actions.ActOnGotoStmt(GotoLoc, Tok.getLocation(), LD);
01737     ConsumeToken();
01738   } else if (Tok.is(tok::star)) {
01739     // GNU indirect goto extension.
01740     Diag(Tok, diag::ext_gnu_indirect_goto);
01741     SourceLocation StarLoc = ConsumeToken();
01742     ExprResult R(ParseExpression());
01743     if (R.isInvalid()) {  // Skip to the semicolon, but don't consume it.
01744       SkipUntil(tok::semi, StopBeforeMatch);
01745       return StmtError();
01746     }
01747     Res = Actions.ActOnIndirectGotoStmt(GotoLoc, StarLoc, R.get());
01748   } else {
01749     Diag(Tok, diag::err_expected) << tok::identifier;
01750     return StmtError();
01751   }
01752 
01753   return Res;
01754 }
01755 
01756 /// ParseContinueStatement
01757 ///       jump-statement:
01758 ///         'continue' ';'
01759 ///
01760 /// Note: this lets the caller parse the end ';'.
01761 ///
01762 StmtResult Parser::ParseContinueStatement() {
01763   SourceLocation ContinueLoc = ConsumeToken();  // eat the 'continue'.
01764   return Actions.ActOnContinueStmt(ContinueLoc, getCurScope());
01765 }
01766 
01767 /// ParseBreakStatement
01768 ///       jump-statement:
01769 ///         'break' ';'
01770 ///
01771 /// Note: this lets the caller parse the end ';'.
01772 ///
01773 StmtResult Parser::ParseBreakStatement() {
01774   SourceLocation BreakLoc = ConsumeToken();  // eat the 'break'.
01775   return Actions.ActOnBreakStmt(BreakLoc, getCurScope());
01776 }
01777 
01778 /// ParseReturnStatement
01779 ///       jump-statement:
01780 ///         'return' expression[opt] ';'
01781 StmtResult Parser::ParseReturnStatement() {
01782   assert(Tok.is(tok::kw_return) && "Not a return stmt!");
01783   SourceLocation ReturnLoc = ConsumeToken();  // eat the 'return'.
01784 
01785   ExprResult R;
01786   if (Tok.isNot(tok::semi)) {
01787     if (Tok.is(tok::code_completion)) {
01788       Actions.CodeCompleteReturn(getCurScope());
01789       cutOffParsing();
01790       return StmtError();
01791     }
01792 
01793     if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus) {
01794       R = ParseInitializer();
01795       if (R.isUsable())
01796         Diag(R.get()->getLocStart(), getLangOpts().CPlusPlus11 ?
01797              diag::warn_cxx98_compat_generalized_initializer_lists :
01798              diag::ext_generalized_initializer_lists)
01799           << R.get()->getSourceRange();
01800     } else
01801         R = ParseExpression();
01802     if (R.isInvalid()) {
01803       SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
01804       return StmtError();
01805     }
01806   }
01807   return Actions.ActOnReturnStmt(ReturnLoc, R.get(), getCurScope());
01808 }
01809 
01810 StmtResult Parser::ParsePragmaLoopHint(StmtVector &Stmts, bool OnlyStatement,
01811                                        SourceLocation *TrailingElseLoc,
01812                                        ParsedAttributesWithRange &Attrs) {
01813   // Create temporary attribute list.
01814   ParsedAttributesWithRange TempAttrs(AttrFactory);
01815 
01816   // Get loop hints and consume annotated token.
01817   while (Tok.is(tok::annot_pragma_loop_hint)) {
01818     LoopHint Hint;
01819     if (!HandlePragmaLoopHint(Hint))
01820       continue;
01821 
01822     ArgsUnion ArgHints[] = {Hint.PragmaNameLoc, Hint.OptionLoc, Hint.StateLoc,
01823                             ArgsUnion(Hint.ValueExpr)};
01824     TempAttrs.addNew(Hint.PragmaNameLoc->Ident, Hint.Range, nullptr,
01825                      Hint.PragmaNameLoc->Loc, ArgHints, 4,
01826                      AttributeList::AS_Pragma);
01827   }
01828 
01829   // Get the next statement.
01830   MaybeParseCXX11Attributes(Attrs);
01831 
01832   StmtResult S = ParseStatementOrDeclarationAfterAttributes(
01833       Stmts, OnlyStatement, TrailingElseLoc, Attrs);
01834 
01835   Attrs.takeAllFrom(TempAttrs);
01836   return S;
01837 }
01838 
01839 Decl *Parser::ParseFunctionStatementBody(Decl *Decl, ParseScope &BodyScope) {
01840   assert(Tok.is(tok::l_brace));
01841   SourceLocation LBraceLoc = Tok.getLocation();
01842 
01843   if (SkipFunctionBodies && (!Decl || Actions.canSkipFunctionBody(Decl)) &&
01844       trySkippingFunctionBody()) {
01845     BodyScope.Exit();
01846     return Actions.ActOnSkippedFunctionBody(Decl);
01847   }
01848 
01849   PrettyDeclStackTraceEntry CrashInfo(Actions, Decl, LBraceLoc,
01850                                       "parsing function body");
01851 
01852   // Do not enter a scope for the brace, as the arguments are in the same scope
01853   // (the function body) as the body itself.  Instead, just read the statement
01854   // list and put it into a CompoundStmt for safe keeping.
01855   StmtResult FnBody(ParseCompoundStatementBody());
01856 
01857   // If the function body could not be parsed, make a bogus compoundstmt.
01858   if (FnBody.isInvalid()) {
01859     Sema::CompoundScopeRAII CompoundScope(Actions);
01860     FnBody = Actions.ActOnCompoundStmt(LBraceLoc, LBraceLoc, None, false);
01861   }
01862 
01863   BodyScope.Exit();
01864   return Actions.ActOnFinishFunctionBody(Decl, FnBody.get());
01865 }
01866 
01867 /// ParseFunctionTryBlock - Parse a C++ function-try-block.
01868 ///
01869 ///       function-try-block:
01870 ///         'try' ctor-initializer[opt] compound-statement handler-seq
01871 ///
01872 Decl *Parser::ParseFunctionTryBlock(Decl *Decl, ParseScope &BodyScope) {
01873   assert(Tok.is(tok::kw_try) && "Expected 'try'");
01874   SourceLocation TryLoc = ConsumeToken();
01875 
01876   PrettyDeclStackTraceEntry CrashInfo(Actions, Decl, TryLoc,
01877                                       "parsing function try block");
01878 
01879   // Constructor initializer list?
01880   if (Tok.is(tok::colon))
01881     ParseConstructorInitializer(Decl);
01882   else
01883     Actions.ActOnDefaultCtorInitializers(Decl);
01884 
01885   if (SkipFunctionBodies && Actions.canSkipFunctionBody(Decl) &&
01886       trySkippingFunctionBody()) {
01887     BodyScope.Exit();
01888     return Actions.ActOnSkippedFunctionBody(Decl);
01889   }
01890 
01891   SourceLocation LBraceLoc = Tok.getLocation();
01892   StmtResult FnBody(ParseCXXTryBlockCommon(TryLoc, /*FnTry*/true));
01893   // If we failed to parse the try-catch, we just give the function an empty
01894   // compound statement as the body.
01895   if (FnBody.isInvalid()) {
01896     Sema::CompoundScopeRAII CompoundScope(Actions);
01897     FnBody = Actions.ActOnCompoundStmt(LBraceLoc, LBraceLoc, None, false);
01898   }
01899 
01900   BodyScope.Exit();
01901   return Actions.ActOnFinishFunctionBody(Decl, FnBody.get());
01902 }
01903 
01904 bool Parser::trySkippingFunctionBody() {
01905   assert(Tok.is(tok::l_brace));
01906   assert(SkipFunctionBodies &&
01907          "Should only be called when SkipFunctionBodies is enabled");
01908 
01909   if (!PP.isCodeCompletionEnabled()) {
01910     ConsumeBrace();
01911     SkipUntil(tok::r_brace);
01912     return true;
01913   }
01914 
01915   // We're in code-completion mode. Skip parsing for all function bodies unless
01916   // the body contains the code-completion point.
01917   TentativeParsingAction PA(*this);
01918   ConsumeBrace();
01919   if (SkipUntil(tok::r_brace, StopAtCodeCompletion)) {
01920     PA.Commit();
01921     return true;
01922   }
01923 
01924   PA.Revert();
01925   return false;
01926 }
01927 
01928 /// ParseCXXTryBlock - Parse a C++ try-block.
01929 ///
01930 ///       try-block:
01931 ///         'try' compound-statement handler-seq
01932 ///
01933 StmtResult Parser::ParseCXXTryBlock() {
01934   assert(Tok.is(tok::kw_try) && "Expected 'try'");
01935 
01936   SourceLocation TryLoc = ConsumeToken();
01937   return ParseCXXTryBlockCommon(TryLoc);
01938 }
01939 
01940 /// ParseCXXTryBlockCommon - Parse the common part of try-block and
01941 /// function-try-block.
01942 ///
01943 ///       try-block:
01944 ///         'try' compound-statement handler-seq
01945 ///
01946 ///       function-try-block:
01947 ///         'try' ctor-initializer[opt] compound-statement handler-seq
01948 ///
01949 ///       handler-seq:
01950 ///         handler handler-seq[opt]
01951 ///
01952 ///       [Borland] try-block:
01953 ///         'try' compound-statement seh-except-block
01954 ///         'try' compound-statement seh-finally-block
01955 ///
01956 StmtResult Parser::ParseCXXTryBlockCommon(SourceLocation TryLoc, bool FnTry) {
01957   if (Tok.isNot(tok::l_brace))
01958     return StmtError(Diag(Tok, diag::err_expected) << tok::l_brace);
01959   // FIXME: Possible draft standard bug: attribute-specifier should be allowed?
01960 
01961   StmtResult TryBlock(ParseCompoundStatement(/*isStmtExpr=*/false,
01962                       Scope::DeclScope | Scope::TryScope |
01963                         (FnTry ? Scope::FnTryCatchScope : 0)));
01964   if (TryBlock.isInvalid())
01965     return TryBlock;
01966 
01967   // Borland allows SEH-handlers with 'try'
01968 
01969   if ((Tok.is(tok::identifier) &&
01970        Tok.getIdentifierInfo() == getSEHExceptKeyword()) ||
01971       Tok.is(tok::kw___finally)) {
01972     // TODO: Factor into common return ParseSEHHandlerCommon(...)
01973     StmtResult Handler;
01974     if(Tok.getIdentifierInfo() == getSEHExceptKeyword()) {
01975       SourceLocation Loc = ConsumeToken();
01976       Handler = ParseSEHExceptBlock(Loc);
01977     }
01978     else {
01979       SourceLocation Loc = ConsumeToken();
01980       Handler = ParseSEHFinallyBlock(Loc);
01981     }
01982     if(Handler.isInvalid())
01983       return Handler;
01984 
01985     return Actions.ActOnSEHTryBlock(true /* IsCXXTry */,
01986                                     TryLoc,
01987                                     TryBlock.get(),
01988                                     Handler.get());
01989   }
01990   else {
01991     StmtVector Handlers;
01992 
01993     // C++11 attributes can't appear here, despite this context seeming
01994     // statement-like.
01995     DiagnoseAndSkipCXX11Attributes();
01996 
01997     if (Tok.isNot(tok::kw_catch))
01998       return StmtError(Diag(Tok, diag::err_expected_catch));
01999     while (Tok.is(tok::kw_catch)) {
02000       StmtResult Handler(ParseCXXCatchBlock(FnTry));
02001       if (!Handler.isInvalid())
02002         Handlers.push_back(Handler.get());
02003     }
02004     // Don't bother creating the full statement if we don't have any usable
02005     // handlers.
02006     if (Handlers.empty())
02007       return StmtError();
02008 
02009     return Actions.ActOnCXXTryBlock(TryLoc, TryBlock.get(), Handlers);
02010   }
02011 }
02012 
02013 /// ParseCXXCatchBlock - Parse a C++ catch block, called handler in the standard
02014 ///
02015 ///   handler:
02016 ///     'catch' '(' exception-declaration ')' compound-statement
02017 ///
02018 ///   exception-declaration:
02019 ///     attribute-specifier-seq[opt] type-specifier-seq declarator
02020 ///     attribute-specifier-seq[opt] type-specifier-seq abstract-declarator[opt]
02021 ///     '...'
02022 ///
02023 StmtResult Parser::ParseCXXCatchBlock(bool FnCatch) {
02024   assert(Tok.is(tok::kw_catch) && "Expected 'catch'");
02025 
02026   SourceLocation CatchLoc = ConsumeToken();
02027 
02028   BalancedDelimiterTracker T(*this, tok::l_paren);
02029   if (T.expectAndConsume())
02030     return StmtError();
02031 
02032   // C++ 3.3.2p3:
02033   // The name in a catch exception-declaration is local to the handler and
02034   // shall not be redeclared in the outermost block of the handler.
02035   ParseScope CatchScope(this, Scope::DeclScope | Scope::ControlScope |
02036                           (FnCatch ? Scope::FnTryCatchScope : 0));
02037 
02038   // exception-declaration is equivalent to '...' or a parameter-declaration
02039   // without default arguments.
02040   Decl *ExceptionDecl = nullptr;
02041   if (Tok.isNot(tok::ellipsis)) {
02042     ParsedAttributesWithRange Attributes(AttrFactory);
02043     MaybeParseCXX11Attributes(Attributes);
02044 
02045     DeclSpec DS(AttrFactory);
02046     DS.takeAttributesFrom(Attributes);
02047 
02048     if (ParseCXXTypeSpecifierSeq(DS))
02049       return StmtError();
02050 
02051     Declarator ExDecl(DS, Declarator::CXXCatchContext);
02052     ParseDeclarator(ExDecl);
02053     ExceptionDecl = Actions.ActOnExceptionDeclarator(getCurScope(), ExDecl);
02054   } else
02055     ConsumeToken();
02056 
02057   T.consumeClose();
02058   if (T.getCloseLocation().isInvalid())
02059     return StmtError();
02060 
02061   if (Tok.isNot(tok::l_brace))
02062     return StmtError(Diag(Tok, diag::err_expected) << tok::l_brace);
02063 
02064   // FIXME: Possible draft standard bug: attribute-specifier should be allowed?
02065   StmtResult Block(ParseCompoundStatement());
02066   if (Block.isInvalid())
02067     return Block;
02068 
02069   return Actions.ActOnCXXCatchBlock(CatchLoc, ExceptionDecl, Block.get());
02070 }
02071 
02072 void Parser::ParseMicrosoftIfExistsStatement(StmtVector &Stmts) {
02073   IfExistsCondition Result;
02074   if (ParseMicrosoftIfExistsCondition(Result))
02075     return;
02076 
02077   // Handle dependent statements by parsing the braces as a compound statement.
02078   // This is not the same behavior as Visual C++, which don't treat this as a
02079   // compound statement, but for Clang's type checking we can't have anything
02080   // inside these braces escaping to the surrounding code.
02081   if (Result.Behavior == IEB_Dependent) {
02082     if (!Tok.is(tok::l_brace)) {
02083       Diag(Tok, diag::err_expected) << tok::l_brace;
02084       return;
02085     }
02086 
02087     StmtResult Compound = ParseCompoundStatement();
02088     if (Compound.isInvalid())
02089       return;
02090 
02091     StmtResult DepResult = Actions.ActOnMSDependentExistsStmt(Result.KeywordLoc,
02092                                                               Result.IsIfExists,
02093                                                               Result.SS,
02094                                                               Result.Name,
02095                                                               Compound.get());
02096     if (DepResult.isUsable())
02097       Stmts.push_back(DepResult.get());
02098     return;
02099   }
02100 
02101   BalancedDelimiterTracker Braces(*this, tok::l_brace);
02102   if (Braces.consumeOpen()) {
02103     Diag(Tok, diag::err_expected) << tok::l_brace;
02104     return;
02105   }
02106 
02107   switch (Result.Behavior) {
02108   case IEB_Parse:
02109     // Parse the statements below.
02110     break;
02111 
02112   case IEB_Dependent:
02113     llvm_unreachable("Dependent case handled above");
02114 
02115   case IEB_Skip:
02116     Braces.skipToEnd();
02117     return;
02118   }
02119 
02120   // Condition is true, parse the statements.
02121   while (Tok.isNot(tok::r_brace)) {
02122     StmtResult R = ParseStatementOrDeclaration(Stmts, false);
02123     if (R.isUsable())
02124       Stmts.push_back(R.get());
02125   }
02126   Braces.consumeClose();
02127 }