clang API Documentation
00001 //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file defines RangeConstraintManager, a class that tracks simple 00011 // equality and inequality constraints on symbolic values of ProgramState. 00012 // 00013 //===----------------------------------------------------------------------===// 00014 00015 #include "SimpleConstraintManager.h" 00016 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" 00017 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 00018 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 00019 #include "llvm/ADT/FoldingSet.h" 00020 #include "llvm/ADT/ImmutableSet.h" 00021 #include "llvm/Support/Debug.h" 00022 #include "llvm/Support/raw_ostream.h" 00023 00024 using namespace clang; 00025 using namespace ento; 00026 00027 /// A Range represents the closed range [from, to]. The caller must 00028 /// guarantee that from <= to. Note that Range is immutable, so as not 00029 /// to subvert RangeSet's immutability. 00030 namespace { 00031 class Range : public std::pair<const llvm::APSInt*, 00032 const llvm::APSInt*> { 00033 public: 00034 Range(const llvm::APSInt &from, const llvm::APSInt &to) 00035 : std::pair<const llvm::APSInt*, const llvm::APSInt*>(&from, &to) { 00036 assert(from <= to); 00037 } 00038 bool Includes(const llvm::APSInt &v) const { 00039 return *first <= v && v <= *second; 00040 } 00041 const llvm::APSInt &From() const { 00042 return *first; 00043 } 00044 const llvm::APSInt &To() const { 00045 return *second; 00046 } 00047 const llvm::APSInt *getConcreteValue() const { 00048 return &From() == &To() ? &From() : nullptr; 00049 } 00050 00051 void Profile(llvm::FoldingSetNodeID &ID) const { 00052 ID.AddPointer(&From()); 00053 ID.AddPointer(&To()); 00054 } 00055 }; 00056 00057 00058 class RangeTrait : public llvm::ImutContainerInfo<Range> { 00059 public: 00060 // When comparing if one Range is less than another, we should compare 00061 // the actual APSInt values instead of their pointers. This keeps the order 00062 // consistent (instead of comparing by pointer values) and can potentially 00063 // be used to speed up some of the operations in RangeSet. 00064 static inline bool isLess(key_type_ref lhs, key_type_ref rhs) { 00065 return *lhs.first < *rhs.first || (!(*rhs.first < *lhs.first) && 00066 *lhs.second < *rhs.second); 00067 } 00068 }; 00069 00070 /// RangeSet contains a set of ranges. If the set is empty, then 00071 /// there the value of a symbol is overly constrained and there are no 00072 /// possible values for that symbol. 00073 class RangeSet { 00074 typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet; 00075 PrimRangeSet ranges; // no need to make const, since it is an 00076 // ImmutableSet - this allows default operator= 00077 // to work. 00078 public: 00079 typedef PrimRangeSet::Factory Factory; 00080 typedef PrimRangeSet::iterator iterator; 00081 00082 RangeSet(PrimRangeSet RS) : ranges(RS) {} 00083 00084 iterator begin() const { return ranges.begin(); } 00085 iterator end() const { return ranges.end(); } 00086 00087 bool isEmpty() const { return ranges.isEmpty(); } 00088 00089 /// Construct a new RangeSet representing '{ [from, to] }'. 00090 RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to) 00091 : ranges(F.add(F.getEmptySet(), Range(from, to))) {} 00092 00093 /// Profile - Generates a hash profile of this RangeSet for use 00094 /// by FoldingSet. 00095 void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); } 00096 00097 /// getConcreteValue - If a symbol is contrained to equal a specific integer 00098 /// constant then this method returns that value. Otherwise, it returns 00099 /// NULL. 00100 const llvm::APSInt* getConcreteValue() const { 00101 return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : nullptr; 00102 } 00103 00104 private: 00105 void IntersectInRange(BasicValueFactory &BV, Factory &F, 00106 const llvm::APSInt &Lower, 00107 const llvm::APSInt &Upper, 00108 PrimRangeSet &newRanges, 00109 PrimRangeSet::iterator &i, 00110 PrimRangeSet::iterator &e) const { 00111 // There are six cases for each range R in the set: 00112 // 1. R is entirely before the intersection range. 00113 // 2. R is entirely after the intersection range. 00114 // 3. R contains the entire intersection range. 00115 // 4. R starts before the intersection range and ends in the middle. 00116 // 5. R starts in the middle of the intersection range and ends after it. 00117 // 6. R is entirely contained in the intersection range. 00118 // These correspond to each of the conditions below. 00119 for (/* i = begin(), e = end() */; i != e; ++i) { 00120 if (i->To() < Lower) { 00121 continue; 00122 } 00123 if (i->From() > Upper) { 00124 break; 00125 } 00126 00127 if (i->Includes(Lower)) { 00128 if (i->Includes(Upper)) { 00129 newRanges = F.add(newRanges, Range(BV.getValue(Lower), 00130 BV.getValue(Upper))); 00131 break; 00132 } else 00133 newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To())); 00134 } else { 00135 if (i->Includes(Upper)) { 00136 newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper))); 00137 break; 00138 } else 00139 newRanges = F.add(newRanges, *i); 00140 } 00141 } 00142 } 00143 00144 const llvm::APSInt &getMinValue() const { 00145 assert(!isEmpty()); 00146 return ranges.begin()->From(); 00147 } 00148 00149 bool pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const { 00150 // This function has nine cases, the cartesian product of range-testing 00151 // both the upper and lower bounds against the symbol's type. 00152 // Each case requires a different pinning operation. 00153 // The function returns false if the described range is entirely outside 00154 // the range of values for the associated symbol. 00155 APSIntType Type(getMinValue()); 00156 APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true); 00157 APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true); 00158 00159 switch (LowerTest) { 00160 case APSIntType::RTR_Below: 00161 switch (UpperTest) { 00162 case APSIntType::RTR_Below: 00163 // The entire range is outside the symbol's set of possible values. 00164 // If this is a conventionally-ordered range, the state is infeasible. 00165 if (Lower < Upper) 00166 return false; 00167 00168 // However, if the range wraps around, it spans all possible values. 00169 Lower = Type.getMinValue(); 00170 Upper = Type.getMaxValue(); 00171 break; 00172 case APSIntType::RTR_Within: 00173 // The range starts below what's possible but ends within it. Pin. 00174 Lower = Type.getMinValue(); 00175 Type.apply(Upper); 00176 break; 00177 case APSIntType::RTR_Above: 00178 // The range spans all possible values for the symbol. Pin. 00179 Lower = Type.getMinValue(); 00180 Upper = Type.getMaxValue(); 00181 break; 00182 } 00183 break; 00184 case APSIntType::RTR_Within: 00185 switch (UpperTest) { 00186 case APSIntType::RTR_Below: 00187 // The range wraps around, but all lower values are not possible. 00188 Type.apply(Lower); 00189 Upper = Type.getMaxValue(); 00190 break; 00191 case APSIntType::RTR_Within: 00192 // The range may or may not wrap around, but both limits are valid. 00193 Type.apply(Lower); 00194 Type.apply(Upper); 00195 break; 00196 case APSIntType::RTR_Above: 00197 // The range starts within what's possible but ends above it. Pin. 00198 Type.apply(Lower); 00199 Upper = Type.getMaxValue(); 00200 break; 00201 } 00202 break; 00203 case APSIntType::RTR_Above: 00204 switch (UpperTest) { 00205 case APSIntType::RTR_Below: 00206 // The range wraps but is outside the symbol's set of possible values. 00207 return false; 00208 case APSIntType::RTR_Within: 00209 // The range starts above what's possible but ends within it (wrap). 00210 Lower = Type.getMinValue(); 00211 Type.apply(Upper); 00212 break; 00213 case APSIntType::RTR_Above: 00214 // The entire range is outside the symbol's set of possible values. 00215 // If this is a conventionally-ordered range, the state is infeasible. 00216 if (Lower < Upper) 00217 return false; 00218 00219 // However, if the range wraps around, it spans all possible values. 00220 Lower = Type.getMinValue(); 00221 Upper = Type.getMaxValue(); 00222 break; 00223 } 00224 break; 00225 } 00226 00227 return true; 00228 } 00229 00230 public: 00231 // Returns a set containing the values in the receiving set, intersected with 00232 // the closed range [Lower, Upper]. Unlike the Range type, this range uses 00233 // modular arithmetic, corresponding to the common treatment of C integer 00234 // overflow. Thus, if the Lower bound is greater than the Upper bound, the 00235 // range is taken to wrap around. This is equivalent to taking the 00236 // intersection with the two ranges [Min, Upper] and [Lower, Max], 00237 // or, alternatively, /removing/ all integers between Upper and Lower. 00238 RangeSet Intersect(BasicValueFactory &BV, Factory &F, 00239 llvm::APSInt Lower, llvm::APSInt Upper) const { 00240 if (!pin(Lower, Upper)) 00241 return F.getEmptySet(); 00242 00243 PrimRangeSet newRanges = F.getEmptySet(); 00244 00245 PrimRangeSet::iterator i = begin(), e = end(); 00246 if (Lower <= Upper) 00247 IntersectInRange(BV, F, Lower, Upper, newRanges, i, e); 00248 else { 00249 // The order of the next two statements is important! 00250 // IntersectInRange() does not reset the iteration state for i and e. 00251 // Therefore, the lower range most be handled first. 00252 IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e); 00253 IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e); 00254 } 00255 00256 return newRanges; 00257 } 00258 00259 void print(raw_ostream &os) const { 00260 bool isFirst = true; 00261 os << "{ "; 00262 for (iterator i = begin(), e = end(); i != e; ++i) { 00263 if (isFirst) 00264 isFirst = false; 00265 else 00266 os << ", "; 00267 00268 os << '[' << i->From().toString(10) << ", " << i->To().toString(10) 00269 << ']'; 00270 } 00271 os << " }"; 00272 } 00273 00274 bool operator==(const RangeSet &other) const { 00275 return ranges == other.ranges; 00276 } 00277 }; 00278 } // end anonymous namespace 00279 00280 REGISTER_TRAIT_WITH_PROGRAMSTATE(ConstraintRange, 00281 CLANG_ENTO_PROGRAMSTATE_MAP(SymbolRef, 00282 RangeSet)) 00283 00284 namespace { 00285 class RangeConstraintManager : public SimpleConstraintManager{ 00286 RangeSet GetRange(ProgramStateRef state, SymbolRef sym); 00287 public: 00288 RangeConstraintManager(SubEngine *subengine, SValBuilder &SVB) 00289 : SimpleConstraintManager(subengine, SVB) {} 00290 00291 ProgramStateRef assumeSymNE(ProgramStateRef state, SymbolRef sym, 00292 const llvm::APSInt& Int, 00293 const llvm::APSInt& Adjustment) override; 00294 00295 ProgramStateRef assumeSymEQ(ProgramStateRef state, SymbolRef sym, 00296 const llvm::APSInt& Int, 00297 const llvm::APSInt& Adjustment) override; 00298 00299 ProgramStateRef assumeSymLT(ProgramStateRef state, SymbolRef sym, 00300 const llvm::APSInt& Int, 00301 const llvm::APSInt& Adjustment) override; 00302 00303 ProgramStateRef assumeSymGT(ProgramStateRef state, SymbolRef sym, 00304 const llvm::APSInt& Int, 00305 const llvm::APSInt& Adjustment) override; 00306 00307 ProgramStateRef assumeSymGE(ProgramStateRef state, SymbolRef sym, 00308 const llvm::APSInt& Int, 00309 const llvm::APSInt& Adjustment) override; 00310 00311 ProgramStateRef assumeSymLE(ProgramStateRef state, SymbolRef sym, 00312 const llvm::APSInt& Int, 00313 const llvm::APSInt& Adjustment) override; 00314 00315 const llvm::APSInt* getSymVal(ProgramStateRef St, 00316 SymbolRef sym) const override; 00317 ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override; 00318 00319 ProgramStateRef removeDeadBindings(ProgramStateRef St, 00320 SymbolReaper& SymReaper) override; 00321 00322 void print(ProgramStateRef St, raw_ostream &Out, 00323 const char* nl, const char *sep) override; 00324 00325 private: 00326 RangeSet::Factory F; 00327 }; 00328 00329 } // end anonymous namespace 00330 00331 std::unique_ptr<ConstraintManager> 00332 ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, SubEngine *Eng) { 00333 return llvm::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder()); 00334 } 00335 00336 const llvm::APSInt* RangeConstraintManager::getSymVal(ProgramStateRef St, 00337 SymbolRef sym) const { 00338 const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(sym); 00339 return T ? T->getConcreteValue() : nullptr; 00340 } 00341 00342 ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State, 00343 SymbolRef Sym) { 00344 const RangeSet *Ranges = State->get<ConstraintRange>(Sym); 00345 00346 // If we don't have any information about this symbol, it's underconstrained. 00347 if (!Ranges) 00348 return ConditionTruthVal(); 00349 00350 // If we have a concrete value, see if it's zero. 00351 if (const llvm::APSInt *Value = Ranges->getConcreteValue()) 00352 return *Value == 0; 00353 00354 BasicValueFactory &BV = getBasicVals(); 00355 APSIntType IntType = BV.getAPSIntType(Sym->getType()); 00356 llvm::APSInt Zero = IntType.getZeroValue(); 00357 00358 // Check if zero is in the set of possible values. 00359 if (Ranges->Intersect(BV, F, Zero, Zero).isEmpty()) 00360 return false; 00361 00362 // Zero is a possible value, but it is not the /only/ possible value. 00363 return ConditionTruthVal(); 00364 } 00365 00366 /// Scan all symbols referenced by the constraints. If the symbol is not alive 00367 /// as marked in LSymbols, mark it as dead in DSymbols. 00368 ProgramStateRef 00369 RangeConstraintManager::removeDeadBindings(ProgramStateRef state, 00370 SymbolReaper& SymReaper) { 00371 00372 ConstraintRangeTy CR = state->get<ConstraintRange>(); 00373 ConstraintRangeTy::Factory& CRFactory = state->get_context<ConstraintRange>(); 00374 00375 for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) { 00376 SymbolRef sym = I.getKey(); 00377 if (SymReaper.maybeDead(sym)) 00378 CR = CRFactory.remove(CR, sym); 00379 } 00380 00381 return state->set<ConstraintRange>(CR); 00382 } 00383 00384 RangeSet 00385 RangeConstraintManager::GetRange(ProgramStateRef state, SymbolRef sym) { 00386 if (ConstraintRangeTy::data_type* V = state->get<ConstraintRange>(sym)) 00387 return *V; 00388 00389 // Lazily generate a new RangeSet representing all possible values for the 00390 // given symbol type. 00391 BasicValueFactory &BV = getBasicVals(); 00392 QualType T = sym->getType(); 00393 00394 RangeSet Result(F, BV.getMinValue(T), BV.getMaxValue(T)); 00395 00396 // Special case: references are known to be non-zero. 00397 if (T->isReferenceType()) { 00398 APSIntType IntType = BV.getAPSIntType(T); 00399 Result = Result.Intersect(BV, F, ++IntType.getZeroValue(), 00400 --IntType.getZeroValue()); 00401 } 00402 00403 return Result; 00404 } 00405 00406 //===------------------------------------------------------------------------=== 00407 // assumeSymX methods: public interface for RangeConstraintManager. 00408 //===------------------------------------------------------------------------===/ 00409 00410 // The syntax for ranges below is mathematical, using [x, y] for closed ranges 00411 // and (x, y) for open ranges. These ranges are modular, corresponding with 00412 // a common treatment of C integer overflow. This means that these methods 00413 // do not have to worry about overflow; RangeSet::Intersect can handle such a 00414 // "wraparound" range. 00415 // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1, 00416 // UINT_MAX, 0, 1, and 2. 00417 00418 ProgramStateRef 00419 RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym, 00420 const llvm::APSInt &Int, 00421 const llvm::APSInt &Adjustment) { 00422 // Before we do any real work, see if the value can even show up. 00423 APSIntType AdjustmentType(Adjustment); 00424 if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within) 00425 return St; 00426 00427 llvm::APSInt Lower = AdjustmentType.convert(Int) - Adjustment; 00428 llvm::APSInt Upper = Lower; 00429 --Lower; 00430 ++Upper; 00431 00432 // [Int-Adjustment+1, Int-Adjustment-1] 00433 // Notice that the lower bound is greater than the upper bound. 00434 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Upper, Lower); 00435 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 00436 } 00437 00438 ProgramStateRef 00439 RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym, 00440 const llvm::APSInt &Int, 00441 const llvm::APSInt &Adjustment) { 00442 // Before we do any real work, see if the value can even show up. 00443 APSIntType AdjustmentType(Adjustment); 00444 if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within) 00445 return nullptr; 00446 00447 // [Int-Adjustment, Int-Adjustment] 00448 llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment; 00449 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, AdjInt, AdjInt); 00450 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 00451 } 00452 00453 ProgramStateRef 00454 RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym, 00455 const llvm::APSInt &Int, 00456 const llvm::APSInt &Adjustment) { 00457 // Before we do any real work, see if the value can even show up. 00458 APSIntType AdjustmentType(Adjustment); 00459 switch (AdjustmentType.testInRange(Int, true)) { 00460 case APSIntType::RTR_Below: 00461 return nullptr; 00462 case APSIntType::RTR_Within: 00463 break; 00464 case APSIntType::RTR_Above: 00465 return St; 00466 } 00467 00468 // Special case for Int == Min. This is always false. 00469 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 00470 llvm::APSInt Min = AdjustmentType.getMinValue(); 00471 if (ComparisonVal == Min) 00472 return nullptr; 00473 00474 llvm::APSInt Lower = Min-Adjustment; 00475 llvm::APSInt Upper = ComparisonVal-Adjustment; 00476 --Upper; 00477 00478 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper); 00479 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 00480 } 00481 00482 ProgramStateRef 00483 RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym, 00484 const llvm::APSInt &Int, 00485 const llvm::APSInt &Adjustment) { 00486 // Before we do any real work, see if the value can even show up. 00487 APSIntType AdjustmentType(Adjustment); 00488 switch (AdjustmentType.testInRange(Int, true)) { 00489 case APSIntType::RTR_Below: 00490 return St; 00491 case APSIntType::RTR_Within: 00492 break; 00493 case APSIntType::RTR_Above: 00494 return nullptr; 00495 } 00496 00497 // Special case for Int == Max. This is always false. 00498 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 00499 llvm::APSInt Max = AdjustmentType.getMaxValue(); 00500 if (ComparisonVal == Max) 00501 return nullptr; 00502 00503 llvm::APSInt Lower = ComparisonVal-Adjustment; 00504 llvm::APSInt Upper = Max-Adjustment; 00505 ++Lower; 00506 00507 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper); 00508 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 00509 } 00510 00511 ProgramStateRef 00512 RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym, 00513 const llvm::APSInt &Int, 00514 const llvm::APSInt &Adjustment) { 00515 // Before we do any real work, see if the value can even show up. 00516 APSIntType AdjustmentType(Adjustment); 00517 switch (AdjustmentType.testInRange(Int, true)) { 00518 case APSIntType::RTR_Below: 00519 return St; 00520 case APSIntType::RTR_Within: 00521 break; 00522 case APSIntType::RTR_Above: 00523 return nullptr; 00524 } 00525 00526 // Special case for Int == Min. This is always feasible. 00527 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 00528 llvm::APSInt Min = AdjustmentType.getMinValue(); 00529 if (ComparisonVal == Min) 00530 return St; 00531 00532 llvm::APSInt Max = AdjustmentType.getMaxValue(); 00533 llvm::APSInt Lower = ComparisonVal-Adjustment; 00534 llvm::APSInt Upper = Max-Adjustment; 00535 00536 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper); 00537 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 00538 } 00539 00540 ProgramStateRef 00541 RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym, 00542 const llvm::APSInt &Int, 00543 const llvm::APSInt &Adjustment) { 00544 // Before we do any real work, see if the value can even show up. 00545 APSIntType AdjustmentType(Adjustment); 00546 switch (AdjustmentType.testInRange(Int, true)) { 00547 case APSIntType::RTR_Below: 00548 return nullptr; 00549 case APSIntType::RTR_Within: 00550 break; 00551 case APSIntType::RTR_Above: 00552 return St; 00553 } 00554 00555 // Special case for Int == Max. This is always feasible. 00556 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 00557 llvm::APSInt Max = AdjustmentType.getMaxValue(); 00558 if (ComparisonVal == Max) 00559 return St; 00560 00561 llvm::APSInt Min = AdjustmentType.getMinValue(); 00562 llvm::APSInt Lower = Min-Adjustment; 00563 llvm::APSInt Upper = ComparisonVal-Adjustment; 00564 00565 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper); 00566 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 00567 } 00568 00569 //===------------------------------------------------------------------------=== 00570 // Pretty-printing. 00571 //===------------------------------------------------------------------------===/ 00572 00573 void RangeConstraintManager::print(ProgramStateRef St, raw_ostream &Out, 00574 const char* nl, const char *sep) { 00575 00576 ConstraintRangeTy Ranges = St->get<ConstraintRange>(); 00577 00578 if (Ranges.isEmpty()) { 00579 Out << nl << sep << "Ranges are empty." << nl; 00580 return; 00581 } 00582 00583 Out << nl << sep << "Ranges of symbol values:"; 00584 for (ConstraintRangeTy::iterator I=Ranges.begin(), E=Ranges.end(); I!=E; ++I){ 00585 Out << nl << ' ' << I.getKey() << " : "; 00586 I.getData().print(Out); 00587 } 00588 Out << nl; 00589 }