clang API Documentation

SValBuilder.cpp
Go to the documentation of this file.
00001 // SValBuilder.cpp - Basic class for all SValBuilder implementations -*- C++ -*-
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 //  This file defines SValBuilder, the base class for all (complete) SValBuilder
00011 //  implementations.
00012 //
00013 //===----------------------------------------------------------------------===//
00014 
00015 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
00016 #include "clang/AST/DeclCXX.h"
00017 #include "clang/AST/ExprCXX.h"
00018 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
00019 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
00020 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
00021 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
00022 
00023 using namespace clang;
00024 using namespace ento;
00025 
00026 //===----------------------------------------------------------------------===//
00027 // Basic SVal creation.
00028 //===----------------------------------------------------------------------===//
00029 
00030 void SValBuilder::anchor() { }
00031 
00032 DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) {
00033   if (Loc::isLocType(type))
00034     return makeNull();
00035 
00036   if (type->isIntegralOrEnumerationType())
00037     return makeIntVal(0, type);
00038 
00039   // FIXME: Handle floats.
00040   // FIXME: Handle structs.
00041   return UnknownVal();
00042 }
00043 
00044 NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
00045                                 const llvm::APSInt& rhs, QualType type) {
00046   // The Environment ensures we always get a persistent APSInt in
00047   // BasicValueFactory, so we don't need to get the APSInt from
00048   // BasicValueFactory again.
00049   assert(lhs);
00050   assert(!Loc::isLocType(type));
00051   return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
00052 }
00053 
00054 NonLoc SValBuilder::makeNonLoc(const llvm::APSInt& lhs,
00055                                BinaryOperator::Opcode op, const SymExpr *rhs,
00056                                QualType type) {
00057   assert(rhs);
00058   assert(!Loc::isLocType(type));
00059   return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type));
00060 }
00061 
00062 NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
00063                                const SymExpr *rhs, QualType type) {
00064   assert(lhs && rhs);
00065   assert(!Loc::isLocType(type));
00066   return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
00067 }
00068 
00069 NonLoc SValBuilder::makeNonLoc(const SymExpr *operand,
00070                                QualType fromTy, QualType toTy) {
00071   assert(operand);
00072   assert(!Loc::isLocType(toTy));
00073   return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy));
00074 }
00075 
00076 SVal SValBuilder::convertToArrayIndex(SVal val) {
00077   if (val.isUnknownOrUndef())
00078     return val;
00079 
00080   // Common case: we have an appropriately sized integer.
00081   if (Optional<nonloc::ConcreteInt> CI = val.getAs<nonloc::ConcreteInt>()) {
00082     const llvm::APSInt& I = CI->getValue();
00083     if (I.getBitWidth() == ArrayIndexWidth && I.isSigned())
00084       return val;
00085   }
00086 
00087   return evalCastFromNonLoc(val.castAs<NonLoc>(), ArrayIndexTy);
00088 }
00089 
00090 nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){
00091   return makeTruthVal(boolean->getValue());
00092 }
00093 
00094 DefinedOrUnknownSVal 
00095 SValBuilder::getRegionValueSymbolVal(const TypedValueRegion* region) {
00096   QualType T = region->getValueType();
00097 
00098   if (!SymbolManager::canSymbolicate(T))
00099     return UnknownVal();
00100 
00101   SymbolRef sym = SymMgr.getRegionValueSymbol(region);
00102 
00103   if (Loc::isLocType(T))
00104     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
00105 
00106   return nonloc::SymbolVal(sym);
00107 }
00108 
00109 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *SymbolTag,
00110                                                    const Expr *Ex,
00111                                                    const LocationContext *LCtx,
00112                                                    unsigned Count) {
00113   QualType T = Ex->getType();
00114 
00115   // Compute the type of the result. If the expression is not an R-value, the
00116   // result should be a location.
00117   QualType ExType = Ex->getType();
00118   if (Ex->isGLValue())
00119     T = LCtx->getAnalysisDeclContext()->getASTContext().getPointerType(ExType);
00120 
00121   return conjureSymbolVal(SymbolTag, Ex, LCtx, T, Count);
00122 }
00123 
00124 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag,
00125                                                    const Expr *expr,
00126                                                    const LocationContext *LCtx,
00127                                                    QualType type,
00128                                                    unsigned count) {
00129   if (!SymbolManager::canSymbolicate(type))
00130     return UnknownVal();
00131 
00132   SymbolRef sym = SymMgr.conjureSymbol(expr, LCtx, type, count, symbolTag);
00133 
00134   if (Loc::isLocType(type))
00135     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
00136 
00137   return nonloc::SymbolVal(sym);
00138 }
00139 
00140 
00141 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const Stmt *stmt,
00142                                                    const LocationContext *LCtx,
00143                                                    QualType type,
00144                                                    unsigned visitCount) {
00145   if (!SymbolManager::canSymbolicate(type))
00146     return UnknownVal();
00147 
00148   SymbolRef sym = SymMgr.conjureSymbol(stmt, LCtx, type, visitCount);
00149   
00150   if (Loc::isLocType(type))
00151     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
00152   
00153   return nonloc::SymbolVal(sym);
00154 }
00155 
00156 DefinedOrUnknownSVal
00157 SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
00158                                       const LocationContext *LCtx,
00159                                       unsigned VisitCount) {
00160   QualType T = E->getType();
00161   assert(Loc::isLocType(T));
00162   assert(SymbolManager::canSymbolicate(T));
00163 
00164   SymbolRef sym = SymMgr.conjureSymbol(E, LCtx, T, VisitCount);
00165   return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym));
00166 }
00167 
00168 DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag,
00169                                               const MemRegion *region,
00170                                               const Expr *expr, QualType type,
00171                                               unsigned count) {
00172   assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type");
00173 
00174   SymbolRef sym =
00175       SymMgr.getMetadataSymbol(region, expr, type, count, symbolTag);
00176 
00177   if (Loc::isLocType(type))
00178     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
00179 
00180   return nonloc::SymbolVal(sym);
00181 }
00182 
00183 DefinedOrUnknownSVal
00184 SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,
00185                                              const TypedValueRegion *region) {
00186   QualType T = region->getValueType();
00187 
00188   if (!SymbolManager::canSymbolicate(T))
00189     return UnknownVal();
00190 
00191   SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region);
00192 
00193   if (Loc::isLocType(T))
00194     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
00195 
00196   return nonloc::SymbolVal(sym);
00197 }
00198 
00199 DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) {
00200   return loc::MemRegionVal(MemMgr.getFunctionTextRegion(func));
00201 }
00202 
00203 DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block,
00204                                          CanQualType locTy,
00205                                          const LocationContext *locContext,
00206                                          unsigned blockCount) {
00207   const BlockTextRegion *BC =
00208     MemMgr.getBlockTextRegion(block, locTy, locContext->getAnalysisDeclContext());
00209   const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext,
00210                                                         blockCount);
00211   return loc::MemRegionVal(BD);
00212 }
00213 
00214 /// Return a memory region for the 'this' object reference.
00215 loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D,
00216                                           const StackFrameContext *SFC) {
00217   return loc::MemRegionVal(getRegionManager().
00218                            getCXXThisRegion(D->getThisType(getContext()), SFC));
00219 }
00220 
00221 /// Return a memory region for the 'this' object reference.
00222 loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D,
00223                                           const StackFrameContext *SFC) {
00224   const Type *T = D->getTypeForDecl();
00225   QualType PT = getContext().getPointerType(QualType(T, 0));
00226   return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC));
00227 }
00228 
00229 Optional<SVal> SValBuilder::getConstantVal(const Expr *E) {
00230   E = E->IgnoreParens();
00231 
00232   switch (E->getStmtClass()) {
00233   // Handle expressions that we treat differently from the AST's constant
00234   // evaluator.
00235   case Stmt::AddrLabelExprClass:
00236     return makeLoc(cast<AddrLabelExpr>(E));
00237 
00238   case Stmt::CXXScalarValueInitExprClass:
00239   case Stmt::ImplicitValueInitExprClass:
00240     return makeZeroVal(E->getType());
00241 
00242   case Stmt::ObjCStringLiteralClass: {
00243     const ObjCStringLiteral *SL = cast<ObjCStringLiteral>(E);
00244     return makeLoc(getRegionManager().getObjCStringRegion(SL));
00245   }
00246 
00247   case Stmt::StringLiteralClass: {
00248     const StringLiteral *SL = cast<StringLiteral>(E);
00249     return makeLoc(getRegionManager().getStringRegion(SL));
00250   }
00251 
00252   // Fast-path some expressions to avoid the overhead of going through the AST's
00253   // constant evaluator
00254   case Stmt::CharacterLiteralClass: {
00255     const CharacterLiteral *C = cast<CharacterLiteral>(E);
00256     return makeIntVal(C->getValue(), C->getType());
00257   }
00258 
00259   case Stmt::CXXBoolLiteralExprClass:
00260     return makeBoolVal(cast<CXXBoolLiteralExpr>(E));
00261 
00262   case Stmt::IntegerLiteralClass:
00263     return makeIntVal(cast<IntegerLiteral>(E));
00264 
00265   case Stmt::ObjCBoolLiteralExprClass:
00266     return makeBoolVal(cast<ObjCBoolLiteralExpr>(E));
00267 
00268   case Stmt::CXXNullPtrLiteralExprClass:
00269     return makeNull();
00270 
00271   case Stmt::ImplicitCastExprClass: {
00272     const CastExpr *CE = cast<CastExpr>(E);
00273     if (CE->getCastKind() == CK_ArrayToPointerDecay) {
00274       Optional<SVal> ArrayVal = getConstantVal(CE->getSubExpr());
00275       if (!ArrayVal)
00276         return None;
00277       return evalCast(*ArrayVal, CE->getType(), CE->getSubExpr()->getType());
00278     }
00279     // FALLTHROUGH
00280   }
00281 
00282   // If we don't have a special case, fall back to the AST's constant evaluator.
00283   default: {
00284     // Don't try to come up with a value for materialized temporaries.
00285     if (E->isGLValue())
00286       return None;
00287 
00288     ASTContext &Ctx = getContext();
00289     llvm::APSInt Result;
00290     if (E->EvaluateAsInt(Result, Ctx))
00291       return makeIntVal(Result);
00292 
00293     if (Loc::isLocType(E->getType()))
00294       if (E->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
00295         return makeNull();
00296 
00297     return None;
00298   }
00299   }
00300 }
00301 
00302 //===----------------------------------------------------------------------===//
00303 
00304 SVal SValBuilder::makeSymExprValNN(ProgramStateRef State,
00305                                    BinaryOperator::Opcode Op,
00306                                    NonLoc LHS, NonLoc RHS,
00307                                    QualType ResultTy) {
00308   if (!State->isTainted(RHS) && !State->isTainted(LHS))
00309     return UnknownVal();
00310     
00311   const SymExpr *symLHS = LHS.getAsSymExpr();
00312   const SymExpr *symRHS = RHS.getAsSymExpr();
00313   // TODO: When the Max Complexity is reached, we should conjure a symbol
00314   // instead of generating an Unknown value and propagate the taint info to it.
00315   const unsigned MaxComp = 10000; // 100000 28X
00316 
00317   if (symLHS && symRHS &&
00318       (symLHS->computeComplexity() + symRHS->computeComplexity()) <  MaxComp)
00319     return makeNonLoc(symLHS, Op, symRHS, ResultTy);
00320 
00321   if (symLHS && symLHS->computeComplexity() < MaxComp)
00322     if (Optional<nonloc::ConcreteInt> rInt = RHS.getAs<nonloc::ConcreteInt>())
00323       return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy);
00324 
00325   if (symRHS && symRHS->computeComplexity() < MaxComp)
00326     if (Optional<nonloc::ConcreteInt> lInt = LHS.getAs<nonloc::ConcreteInt>())
00327       return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy);
00328 
00329   return UnknownVal();
00330 }
00331 
00332 
00333 SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
00334                             SVal lhs, SVal rhs, QualType type) {
00335 
00336   if (lhs.isUndef() || rhs.isUndef())
00337     return UndefinedVal();
00338 
00339   if (lhs.isUnknown() || rhs.isUnknown())
00340     return UnknownVal();
00341 
00342   if (Optional<Loc> LV = lhs.getAs<Loc>()) {
00343     if (Optional<Loc> RV = rhs.getAs<Loc>())
00344       return evalBinOpLL(state, op, *LV, *RV, type);
00345 
00346     return evalBinOpLN(state, op, *LV, rhs.castAs<NonLoc>(), type);
00347   }
00348 
00349   if (Optional<Loc> RV = rhs.getAs<Loc>()) {
00350     // Support pointer arithmetic where the addend is on the left
00351     // and the pointer on the right.
00352     assert(op == BO_Add);
00353 
00354     // Commute the operands.
00355     return evalBinOpLN(state, op, *RV, lhs.castAs<NonLoc>(), type);
00356   }
00357 
00358   return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), rhs.castAs<NonLoc>(),
00359                      type);
00360 }
00361 
00362 DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state,
00363                                          DefinedOrUnknownSVal lhs,
00364                                          DefinedOrUnknownSVal rhs) {
00365   return evalBinOp(state, BO_EQ, lhs, rhs, getConditionType())
00366       .castAs<DefinedOrUnknownSVal>();
00367 }
00368 
00369 /// Recursively check if the pointer types are equal modulo const, volatile,
00370 /// and restrict qualifiers. Also, assume that all types are similar to 'void'.
00371 /// Assumes the input types are canonical.
00372 static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy,
00373                                                          QualType FromTy) {
00374   while (Context.UnwrapSimilarPointerTypes(ToTy, FromTy)) {
00375     Qualifiers Quals1, Quals2;
00376     ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1);
00377     FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2);
00378 
00379     // Make sure that non-cvr-qualifiers the other qualifiers (e.g., address
00380     // spaces) are identical.
00381     Quals1.removeCVRQualifiers();
00382     Quals2.removeCVRQualifiers();
00383     if (Quals1 != Quals2)
00384       return false;
00385   }
00386 
00387   // If we are casting to void, the 'From' value can be used to represent the
00388   // 'To' value.
00389   if (ToTy->isVoidType())
00390     return true;
00391 
00392   if (ToTy != FromTy)
00393     return false;
00394 
00395   return true;
00396 }
00397 
00398 // FIXME: should rewrite according to the cast kind.
00399 SVal SValBuilder::evalCast(SVal val, QualType castTy, QualType originalTy) {
00400   castTy = Context.getCanonicalType(castTy);
00401   originalTy = Context.getCanonicalType(originalTy);
00402   if (val.isUnknownOrUndef() || castTy == originalTy)
00403     return val;
00404 
00405   if (castTy->isBooleanType()) {
00406     if (val.isUnknownOrUndef())
00407       return val;
00408     if (val.isConstant())
00409       return makeTruthVal(!val.isZeroConstant(), castTy);
00410     if (!Loc::isLocType(originalTy) &&
00411         !originalTy->isIntegralOrEnumerationType() &&
00412         !originalTy->isMemberPointerType())
00413       return UnknownVal();
00414     if (SymbolRef Sym = val.getAsSymbol(true)) {
00415       BasicValueFactory &BVF = getBasicValueFactory();
00416       // FIXME: If we had a state here, we could see if the symbol is known to
00417       // be zero, but we don't.
00418       return makeNonLoc(Sym, BO_NE, BVF.getValue(0, Sym->getType()), castTy);
00419     }
00420     // Loc values are not always true, they could be weakly linked functions.
00421     if (Optional<Loc> L = val.getAs<Loc>())
00422       return evalCastFromLoc(*L, castTy);
00423 
00424     Loc L = val.castAs<nonloc::LocAsInteger>().getLoc();
00425     return evalCastFromLoc(L, castTy);
00426   }
00427 
00428   // For const casts, casts to void, just propagate the value.
00429   if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType())
00430     if (shouldBeModeledWithNoOp(Context, Context.getPointerType(castTy),
00431                                          Context.getPointerType(originalTy)))
00432       return val;
00433   
00434   // Check for casts from pointers to integers.
00435   if (castTy->isIntegralOrEnumerationType() && Loc::isLocType(originalTy))
00436     return evalCastFromLoc(val.castAs<Loc>(), castTy);
00437 
00438   // Check for casts from integers to pointers.
00439   if (Loc::isLocType(castTy) && originalTy->isIntegralOrEnumerationType()) {
00440     if (Optional<nonloc::LocAsInteger> LV = val.getAs<nonloc::LocAsInteger>()) {
00441       if (const MemRegion *R = LV->getLoc().getAsRegion()) {
00442         StoreManager &storeMgr = StateMgr.getStoreManager();
00443         R = storeMgr.castRegion(R, castTy);
00444         return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
00445       }
00446       return LV->getLoc();
00447     }
00448     return dispatchCast(val, castTy);
00449   }
00450 
00451   // Just pass through function and block pointers.
00452   if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) {
00453     assert(Loc::isLocType(castTy));
00454     return val;
00455   }
00456 
00457   // Check for casts from array type to another type.
00458   if (const ArrayType *arrayT =
00459                       dyn_cast<ArrayType>(originalTy.getCanonicalType())) {
00460     // We will always decay to a pointer.
00461     QualType elemTy = arrayT->getElementType();
00462     val = StateMgr.ArrayToPointer(val.castAs<Loc>(), elemTy);
00463 
00464     // Are we casting from an array to a pointer?  If so just pass on
00465     // the decayed value.
00466     if (castTy->isPointerType() || castTy->isReferenceType())
00467       return val;
00468 
00469     // Are we casting from an array to an integer?  If so, cast the decayed
00470     // pointer value to an integer.
00471     assert(castTy->isIntegralOrEnumerationType());
00472 
00473     // FIXME: Keep these here for now in case we decide soon that we
00474     // need the original decayed type.
00475     //    QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
00476     //    QualType pointerTy = C.getPointerType(elemTy);
00477     return evalCastFromLoc(val.castAs<Loc>(), castTy);
00478   }
00479 
00480   // Check for casts from a region to a specific type.
00481   if (const MemRegion *R = val.getAsRegion()) {
00482     // Handle other casts of locations to integers.
00483     if (castTy->isIntegralOrEnumerationType())
00484       return evalCastFromLoc(loc::MemRegionVal(R), castTy);
00485 
00486     // FIXME: We should handle the case where we strip off view layers to get
00487     //  to a desugared type.
00488     if (!Loc::isLocType(castTy)) {
00489       // FIXME: There can be gross cases where one casts the result of a function
00490       // (that returns a pointer) to some other value that happens to fit
00491       // within that pointer value.  We currently have no good way to
00492       // model such operations.  When this happens, the underlying operation
00493       // is that the caller is reasoning about bits.  Conceptually we are
00494       // layering a "view" of a location on top of those bits.  Perhaps
00495       // we need to be more lazy about mutual possible views, even on an
00496       // SVal?  This may be necessary for bit-level reasoning as well.
00497       return UnknownVal();
00498     }
00499 
00500     // We get a symbolic function pointer for a dereference of a function
00501     // pointer, but it is of function type. Example:
00502 
00503     //  struct FPRec {
00504     //    void (*my_func)(int * x);
00505     //  };
00506     //
00507     //  int bar(int x);
00508     //
00509     //  int f1_a(struct FPRec* foo) {
00510     //    int x;
00511     //    (*foo->my_func)(&x);
00512     //    return bar(x)+1; // no-warning
00513     //  }
00514 
00515     assert(Loc::isLocType(originalTy) || originalTy->isFunctionType() ||
00516            originalTy->isBlockPointerType() || castTy->isReferenceType());
00517 
00518     StoreManager &storeMgr = StateMgr.getStoreManager();
00519 
00520     // Delegate to store manager to get the result of casting a region to a
00521     // different type.  If the MemRegion* returned is NULL, this expression
00522     // Evaluates to UnknownVal.
00523     R = storeMgr.castRegion(R, castTy);
00524     return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
00525   }
00526 
00527   return dispatchCast(val, castTy);
00528 }