clang API Documentation

SValBuilder.h
Go to the documentation of this file.
00001 // SValBuilder.h - Construction of SVals from evaluating expressions -*- C++ -*-
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 //  This file defines SValBuilder, a class that defines the interface for
00011 //  "symbolical evaluators" which construct an SVal from an expression.
00012 //
00013 //===----------------------------------------------------------------------===//
00014 
00015 #ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_SVALBUILDER_H
00016 #define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_SVALBUILDER_H
00017 
00018 #include "clang/AST/ASTContext.h"
00019 #include "clang/AST/Expr.h"
00020 #include "clang/AST/ExprObjC.h"
00021 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
00022 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
00023 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
00024 
00025 namespace clang {
00026 
00027 class CXXBoolLiteralExpr;
00028 
00029 namespace ento {
00030 
00031 class SValBuilder {
00032   virtual void anchor();
00033 protected:
00034   ASTContext &Context;
00035   
00036   /// Manager of APSInt values.
00037   BasicValueFactory BasicVals;
00038 
00039   /// Manages the creation of symbols.
00040   SymbolManager SymMgr;
00041 
00042   /// Manages the creation of memory regions.
00043   MemRegionManager MemMgr;
00044 
00045   ProgramStateManager &StateMgr;
00046 
00047   /// The scalar type to use for array indices.
00048   const QualType ArrayIndexTy;
00049   
00050   /// The width of the scalar type used for array indices.
00051   const unsigned ArrayIndexWidth;
00052 
00053   virtual SVal evalCastFromNonLoc(NonLoc val, QualType castTy) = 0;
00054   virtual SVal evalCastFromLoc(Loc val, QualType castTy) = 0;
00055 
00056 public:
00057   // FIXME: Make these protected again once RegionStoreManager correctly
00058   // handles loads from different bound value types.
00059   virtual SVal dispatchCast(SVal val, QualType castTy) = 0;
00060 
00061 public:
00062   SValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
00063               ProgramStateManager &stateMgr)
00064     : Context(context), BasicVals(context, alloc),
00065       SymMgr(context, BasicVals, alloc),
00066       MemMgr(context, alloc),
00067       StateMgr(stateMgr),
00068       ArrayIndexTy(context.IntTy),
00069       ArrayIndexWidth(context.getTypeSize(ArrayIndexTy)) {}
00070 
00071   virtual ~SValBuilder() {}
00072 
00073   bool haveSameType(const SymExpr *Sym1, const SymExpr *Sym2) {
00074     return haveSameType(Sym1->getType(), Sym2->getType());
00075   }
00076 
00077   bool haveSameType(QualType Ty1, QualType Ty2) {
00078     // FIXME: Remove the second disjunct when we support symbolic
00079     // truncation/extension.
00080     return (Context.getCanonicalType(Ty1) == Context.getCanonicalType(Ty2) ||
00081             (Ty1->isIntegralOrEnumerationType() &&
00082              Ty2->isIntegralOrEnumerationType()));
00083   }
00084 
00085   SVal evalCast(SVal val, QualType castTy, QualType originalType);
00086   
00087   virtual SVal evalMinus(NonLoc val) = 0;
00088 
00089   virtual SVal evalComplement(NonLoc val) = 0;
00090 
00091   /// Create a new value which represents a binary expression with two non-
00092   /// location operands.
00093   virtual SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
00094                            NonLoc lhs, NonLoc rhs, QualType resultTy) = 0;
00095 
00096   /// Create a new value which represents a binary expression with two memory
00097   /// location operands.
00098   virtual SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
00099                            Loc lhs, Loc rhs, QualType resultTy) = 0;
00100 
00101   /// Create a new value which represents a binary expression with a memory
00102   /// location and non-location operands. For example, this would be used to
00103   /// evaluate a pointer arithmetic operation.
00104   virtual SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
00105                            Loc lhs, NonLoc rhs, QualType resultTy) = 0;
00106 
00107   /// Evaluates a given SVal. If the SVal has only one possible (integer) value,
00108   /// that value is returned. Otherwise, returns NULL.
00109   virtual const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal val) = 0;
00110   
00111   /// Constructs a symbolic expression for two non-location values.
00112   SVal makeSymExprValNN(ProgramStateRef state, BinaryOperator::Opcode op,
00113                       NonLoc lhs, NonLoc rhs, QualType resultTy);
00114 
00115   SVal evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
00116                  SVal lhs, SVal rhs, QualType type);
00117   
00118   DefinedOrUnknownSVal evalEQ(ProgramStateRef state, DefinedOrUnknownSVal lhs,
00119                               DefinedOrUnknownSVal rhs);
00120 
00121   ASTContext &getContext() { return Context; }
00122   const ASTContext &getContext() const { return Context; }
00123 
00124   ProgramStateManager &getStateManager() { return StateMgr; }
00125   
00126   QualType getConditionType() const {
00127     return Context.getLangOpts().CPlusPlus ? Context.BoolTy : Context.IntTy;
00128   }
00129   
00130   QualType getArrayIndexType() const {
00131     return ArrayIndexTy;
00132   }
00133 
00134   BasicValueFactory &getBasicValueFactory() { return BasicVals; }
00135   const BasicValueFactory &getBasicValueFactory() const { return BasicVals; }
00136 
00137   SymbolManager &getSymbolManager() { return SymMgr; }
00138   const SymbolManager &getSymbolManager() const { return SymMgr; }
00139 
00140   MemRegionManager &getRegionManager() { return MemMgr; }
00141   const MemRegionManager &getRegionManager() const { return MemMgr; }
00142 
00143   // Forwarding methods to SymbolManager.
00144 
00145   const SymbolConjured* conjureSymbol(const Stmt *stmt,
00146                                       const LocationContext *LCtx,
00147                                       QualType type,
00148                                       unsigned visitCount,
00149                                       const void *symbolTag = nullptr) {
00150     return SymMgr.conjureSymbol(stmt, LCtx, type, visitCount, symbolTag);
00151   }
00152 
00153   const SymbolConjured* conjureSymbol(const Expr *expr,
00154                                       const LocationContext *LCtx,
00155                                       unsigned visitCount,
00156                                       const void *symbolTag = nullptr) {
00157     return SymMgr.conjureSymbol(expr, LCtx, visitCount, symbolTag);
00158   }
00159 
00160   /// Construct an SVal representing '0' for the specified type.
00161   DefinedOrUnknownSVal makeZeroVal(QualType type);
00162 
00163   /// Make a unique symbol for value of region.
00164   DefinedOrUnknownSVal getRegionValueSymbolVal(const TypedValueRegion *region);
00165 
00166   /// \brief Create a new symbol with a unique 'name'.
00167   ///
00168   /// We resort to conjured symbols when we cannot construct a derived symbol.
00169   /// The advantage of symbols derived/built from other symbols is that we
00170   /// preserve the relation between related(or even equivalent) expressions, so
00171   /// conjured symbols should be used sparingly.
00172   DefinedOrUnknownSVal conjureSymbolVal(const void *symbolTag,
00173                                         const Expr *expr,
00174                                         const LocationContext *LCtx,
00175                                         unsigned count);
00176   DefinedOrUnknownSVal conjureSymbolVal(const void *symbolTag,
00177                                         const Expr *expr,
00178                                         const LocationContext *LCtx,
00179                                         QualType type,
00180                                         unsigned count);
00181   
00182   DefinedOrUnknownSVal conjureSymbolVal(const Stmt *stmt,
00183                                         const LocationContext *LCtx,
00184                                         QualType type,
00185                                         unsigned visitCount);
00186   /// \brief Conjure a symbol representing heap allocated memory region.
00187   ///
00188   /// Note, the expression should represent a location.
00189   DefinedOrUnknownSVal getConjuredHeapSymbolVal(const Expr *E,
00190                                                 const LocationContext *LCtx,
00191                                                 unsigned Count);
00192 
00193   DefinedOrUnknownSVal getDerivedRegionValueSymbolVal(
00194       SymbolRef parentSymbol, const TypedValueRegion *region);
00195 
00196   DefinedSVal getMetadataSymbolVal(
00197       const void *symbolTag, const MemRegion *region,
00198       const Expr *expr, QualType type, unsigned count);
00199 
00200   DefinedSVal getFunctionPointer(const FunctionDecl *func);
00201   
00202   DefinedSVal getBlockPointer(const BlockDecl *block, CanQualType locTy,
00203                               const LocationContext *locContext,
00204                               unsigned blockCount);
00205 
00206   /// Returns the value of \p E, if it can be determined in a non-path-sensitive
00207   /// manner.
00208   ///
00209   /// If \p E is not a constant or cannot be modeled, returns \c None.
00210   Optional<SVal> getConstantVal(const Expr *E);
00211 
00212   NonLoc makeCompoundVal(QualType type, llvm::ImmutableList<SVal> vals) {
00213     return nonloc::CompoundVal(BasicVals.getCompoundValData(type, vals));
00214   }
00215 
00216   NonLoc makeLazyCompoundVal(const StoreRef &store, 
00217                              const TypedValueRegion *region) {
00218     return nonloc::LazyCompoundVal(
00219         BasicVals.getLazyCompoundValData(store, region));
00220   }
00221 
00222   NonLoc makeZeroArrayIndex() {
00223     return nonloc::ConcreteInt(BasicVals.getValue(0, ArrayIndexTy));
00224   }
00225 
00226   NonLoc makeArrayIndex(uint64_t idx) {
00227     return nonloc::ConcreteInt(BasicVals.getValue(idx, ArrayIndexTy));
00228   }
00229 
00230   SVal convertToArrayIndex(SVal val);
00231 
00232   nonloc::ConcreteInt makeIntVal(const IntegerLiteral* integer) {
00233     return nonloc::ConcreteInt(
00234         BasicVals.getValue(integer->getValue(),
00235                      integer->getType()->isUnsignedIntegerOrEnumerationType()));
00236   }
00237 
00238   nonloc::ConcreteInt makeBoolVal(const ObjCBoolLiteralExpr *boolean) {
00239     return makeTruthVal(boolean->getValue(), boolean->getType());
00240   }
00241 
00242   nonloc::ConcreteInt makeBoolVal(const CXXBoolLiteralExpr *boolean);
00243 
00244   nonloc::ConcreteInt makeIntVal(const llvm::APSInt& integer) {
00245     return nonloc::ConcreteInt(BasicVals.getValue(integer));
00246   }
00247 
00248   loc::ConcreteInt makeIntLocVal(const llvm::APSInt &integer) {
00249     return loc::ConcreteInt(BasicVals.getValue(integer));
00250   }
00251 
00252   NonLoc makeIntVal(const llvm::APInt& integer, bool isUnsigned) {
00253     return nonloc::ConcreteInt(BasicVals.getValue(integer, isUnsigned));
00254   }
00255 
00256   DefinedSVal makeIntVal(uint64_t integer, QualType type) {
00257     if (Loc::isLocType(type))
00258       return loc::ConcreteInt(BasicVals.getValue(integer, type));
00259 
00260     return nonloc::ConcreteInt(BasicVals.getValue(integer, type));
00261   }
00262 
00263   NonLoc makeIntVal(uint64_t integer, bool isUnsigned) {
00264     return nonloc::ConcreteInt(BasicVals.getIntValue(integer, isUnsigned));
00265   }
00266 
00267   NonLoc makeIntValWithPtrWidth(uint64_t integer, bool isUnsigned) {
00268     return nonloc::ConcreteInt(
00269         BasicVals.getIntWithPtrWidth(integer, isUnsigned));
00270   }
00271 
00272   NonLoc makeLocAsInteger(Loc loc, unsigned bits) {
00273     return nonloc::LocAsInteger(BasicVals.getPersistentSValWithData(loc, bits));
00274   }
00275 
00276   NonLoc makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
00277                     const llvm::APSInt& rhs, QualType type);
00278 
00279   NonLoc makeNonLoc(const llvm::APSInt& rhs, BinaryOperator::Opcode op,
00280                     const SymExpr *lhs, QualType type);
00281 
00282   NonLoc makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
00283                     const SymExpr *rhs, QualType type);
00284 
00285   /// \brief Create a NonLoc value for cast.
00286   NonLoc makeNonLoc(const SymExpr *operand, QualType fromTy, QualType toTy);
00287 
00288   nonloc::ConcreteInt makeTruthVal(bool b, QualType type) {
00289     return nonloc::ConcreteInt(BasicVals.getTruthValue(b, type));
00290   }
00291 
00292   nonloc::ConcreteInt makeTruthVal(bool b) {
00293     return nonloc::ConcreteInt(BasicVals.getTruthValue(b));
00294   }
00295 
00296   Loc makeNull() {
00297     return loc::ConcreteInt(BasicVals.getZeroWithPtrWidth());
00298   }
00299 
00300   Loc makeLoc(SymbolRef sym) {
00301     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
00302   }
00303 
00304   Loc makeLoc(const MemRegion* region) {
00305     return loc::MemRegionVal(region);
00306   }
00307 
00308   Loc makeLoc(const AddrLabelExpr *expr) {
00309     return loc::GotoLabel(expr->getLabel());
00310   }
00311 
00312   Loc makeLoc(const llvm::APSInt& integer) {
00313     return loc::ConcreteInt(BasicVals.getValue(integer));
00314   }
00315 
00316   /// Return a memory region for the 'this' object reference.
00317   loc::MemRegionVal getCXXThis(const CXXMethodDecl *D,
00318                                const StackFrameContext *SFC);
00319 
00320   /// Return a memory region for the 'this' object reference.
00321   loc::MemRegionVal getCXXThis(const CXXRecordDecl *D,
00322                                const StackFrameContext *SFC);
00323 };
00324 
00325 SValBuilder* createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
00326                                      ASTContext &context,
00327                                      ProgramStateManager &stateMgr);
00328 
00329 } // end GR namespace
00330 
00331 } // end clang namespace
00332 
00333 #endif