clang API Documentation

SemaLookup.cpp
Go to the documentation of this file.
00001 //===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 //  This file implements name lookup for C, C++, Objective-C, and
00011 //  Objective-C++.
00012 //
00013 //===----------------------------------------------------------------------===//
00014 #include "clang/Sema/Lookup.h"
00015 #include "clang/AST/ASTContext.h"
00016 #include "clang/AST/CXXInheritance.h"
00017 #include "clang/AST/Decl.h"
00018 #include "clang/AST/DeclCXX.h"
00019 #include "clang/AST/DeclLookups.h"
00020 #include "clang/AST/DeclObjC.h"
00021 #include "clang/AST/DeclTemplate.h"
00022 #include "clang/AST/Expr.h"
00023 #include "clang/AST/ExprCXX.h"
00024 #include "clang/Basic/Builtins.h"
00025 #include "clang/Basic/LangOptions.h"
00026 #include "clang/Lex/ModuleLoader.h"
00027 #include "clang/Sema/DeclSpec.h"
00028 #include "clang/Sema/ExternalSemaSource.h"
00029 #include "clang/Sema/Overload.h"
00030 #include "clang/Sema/Scope.h"
00031 #include "clang/Sema/ScopeInfo.h"
00032 #include "clang/Sema/Sema.h"
00033 #include "clang/Sema/SemaInternal.h"
00034 #include "clang/Sema/TemplateDeduction.h"
00035 #include "clang/Sema/TypoCorrection.h"
00036 #include "llvm/ADT/STLExtras.h"
00037 #include "llvm/ADT/SetVector.h"
00038 #include "llvm/ADT/SmallPtrSet.h"
00039 #include "llvm/ADT/StringMap.h"
00040 #include "llvm/ADT/TinyPtrVector.h"
00041 #include "llvm/ADT/edit_distance.h"
00042 #include "llvm/Support/ErrorHandling.h"
00043 #include <algorithm>
00044 #include <iterator>
00045 #include <limits>
00046 #include <list>
00047 #include <map>
00048 #include <set>
00049 #include <utility>
00050 #include <vector>
00051 
00052 using namespace clang;
00053 using namespace sema;
00054 
00055 namespace {
00056   class UnqualUsingEntry {
00057     const DeclContext *Nominated;
00058     const DeclContext *CommonAncestor;
00059 
00060   public:
00061     UnqualUsingEntry(const DeclContext *Nominated,
00062                      const DeclContext *CommonAncestor)
00063       : Nominated(Nominated), CommonAncestor(CommonAncestor) {
00064     }
00065 
00066     const DeclContext *getCommonAncestor() const {
00067       return CommonAncestor;
00068     }
00069 
00070     const DeclContext *getNominatedNamespace() const {
00071       return Nominated;
00072     }
00073 
00074     // Sort by the pointer value of the common ancestor.
00075     struct Comparator {
00076       bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
00077         return L.getCommonAncestor() < R.getCommonAncestor();
00078       }
00079 
00080       bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
00081         return E.getCommonAncestor() < DC;
00082       }
00083 
00084       bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
00085         return DC < E.getCommonAncestor();
00086       }
00087     };
00088   };
00089 
00090   /// A collection of using directives, as used by C++ unqualified
00091   /// lookup.
00092   class UnqualUsingDirectiveSet {
00093     typedef SmallVector<UnqualUsingEntry, 8> ListTy;
00094 
00095     ListTy list;
00096     llvm::SmallPtrSet<DeclContext*, 8> visited;
00097 
00098   public:
00099     UnqualUsingDirectiveSet() {}
00100 
00101     void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
00102       // C++ [namespace.udir]p1:
00103       //   During unqualified name lookup, the names appear as if they
00104       //   were declared in the nearest enclosing namespace which contains
00105       //   both the using-directive and the nominated namespace.
00106       DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
00107       assert(InnermostFileDC && InnermostFileDC->isFileContext());
00108 
00109       for (; S; S = S->getParent()) {
00110         // C++ [namespace.udir]p1:
00111         //   A using-directive shall not appear in class scope, but may
00112         //   appear in namespace scope or in block scope.
00113         DeclContext *Ctx = S->getEntity();
00114         if (Ctx && Ctx->isFileContext()) {
00115           visit(Ctx, Ctx);
00116         } else if (!Ctx || Ctx->isFunctionOrMethod()) {
00117           for (auto *I : S->using_directives())
00118             visit(I, InnermostFileDC);
00119         }
00120       }
00121     }
00122 
00123     // Visits a context and collect all of its using directives
00124     // recursively.  Treats all using directives as if they were
00125     // declared in the context.
00126     //
00127     // A given context is only every visited once, so it is important
00128     // that contexts be visited from the inside out in order to get
00129     // the effective DCs right.
00130     void visit(DeclContext *DC, DeclContext *EffectiveDC) {
00131       if (!visited.insert(DC))
00132         return;
00133 
00134       addUsingDirectives(DC, EffectiveDC);
00135     }
00136 
00137     // Visits a using directive and collects all of its using
00138     // directives recursively.  Treats all using directives as if they
00139     // were declared in the effective DC.
00140     void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
00141       DeclContext *NS = UD->getNominatedNamespace();
00142       if (!visited.insert(NS))
00143         return;
00144 
00145       addUsingDirective(UD, EffectiveDC);
00146       addUsingDirectives(NS, EffectiveDC);
00147     }
00148 
00149     // Adds all the using directives in a context (and those nominated
00150     // by its using directives, transitively) as if they appeared in
00151     // the given effective context.
00152     void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
00153       SmallVector<DeclContext*,4> queue;
00154       while (true) {
00155         for (auto UD : DC->using_directives()) {
00156           DeclContext *NS = UD->getNominatedNamespace();
00157           if (visited.insert(NS)) {
00158             addUsingDirective(UD, EffectiveDC);
00159             queue.push_back(NS);
00160           }
00161         }
00162 
00163         if (queue.empty())
00164           return;
00165 
00166         DC = queue.pop_back_val();
00167       }
00168     }
00169 
00170     // Add a using directive as if it had been declared in the given
00171     // context.  This helps implement C++ [namespace.udir]p3:
00172     //   The using-directive is transitive: if a scope contains a
00173     //   using-directive that nominates a second namespace that itself
00174     //   contains using-directives, the effect is as if the
00175     //   using-directives from the second namespace also appeared in
00176     //   the first.
00177     void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
00178       // Find the common ancestor between the effective context and
00179       // the nominated namespace.
00180       DeclContext *Common = UD->getNominatedNamespace();
00181       while (!Common->Encloses(EffectiveDC))
00182         Common = Common->getParent();
00183       Common = Common->getPrimaryContext();
00184 
00185       list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
00186     }
00187 
00188     void done() {
00189       std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
00190     }
00191 
00192     typedef ListTy::const_iterator const_iterator;
00193 
00194     const_iterator begin() const { return list.begin(); }
00195     const_iterator end() const { return list.end(); }
00196 
00197     std::pair<const_iterator,const_iterator>
00198     getNamespacesFor(DeclContext *DC) const {
00199       return std::equal_range(begin(), end(), DC->getPrimaryContext(),
00200                               UnqualUsingEntry::Comparator());
00201     }
00202   };
00203 }
00204 
00205 // Retrieve the set of identifier namespaces that correspond to a
00206 // specific kind of name lookup.
00207 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
00208                                bool CPlusPlus,
00209                                bool Redeclaration) {
00210   unsigned IDNS = 0;
00211   switch (NameKind) {
00212   case Sema::LookupObjCImplicitSelfParam:
00213   case Sema::LookupOrdinaryName:
00214   case Sema::LookupRedeclarationWithLinkage:
00215   case Sema::LookupLocalFriendName:
00216     IDNS = Decl::IDNS_Ordinary;
00217     if (CPlusPlus) {
00218       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
00219       if (Redeclaration)
00220         IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
00221     }
00222     if (Redeclaration)
00223       IDNS |= Decl::IDNS_LocalExtern;
00224     break;
00225 
00226   case Sema::LookupOperatorName:
00227     // Operator lookup is its own crazy thing;  it is not the same
00228     // as (e.g.) looking up an operator name for redeclaration.
00229     assert(!Redeclaration && "cannot do redeclaration operator lookup");
00230     IDNS = Decl::IDNS_NonMemberOperator;
00231     break;
00232 
00233   case Sema::LookupTagName:
00234     if (CPlusPlus) {
00235       IDNS = Decl::IDNS_Type;
00236 
00237       // When looking for a redeclaration of a tag name, we add:
00238       // 1) TagFriend to find undeclared friend decls
00239       // 2) Namespace because they can't "overload" with tag decls.
00240       // 3) Tag because it includes class templates, which can't
00241       //    "overload" with tag decls.
00242       if (Redeclaration)
00243         IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
00244     } else {
00245       IDNS = Decl::IDNS_Tag;
00246     }
00247     break;
00248 
00249   case Sema::LookupLabel:
00250     IDNS = Decl::IDNS_Label;
00251     break;
00252 
00253   case Sema::LookupMemberName:
00254     IDNS = Decl::IDNS_Member;
00255     if (CPlusPlus)
00256       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
00257     break;
00258 
00259   case Sema::LookupNestedNameSpecifierName:
00260     IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
00261     break;
00262 
00263   case Sema::LookupNamespaceName:
00264     IDNS = Decl::IDNS_Namespace;
00265     break;
00266 
00267   case Sema::LookupUsingDeclName:
00268     assert(Redeclaration && "should only be used for redecl lookup");
00269     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
00270            Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
00271            Decl::IDNS_LocalExtern;
00272     break;
00273 
00274   case Sema::LookupObjCProtocolName:
00275     IDNS = Decl::IDNS_ObjCProtocol;
00276     break;
00277 
00278   case Sema::LookupAnyName:
00279     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
00280       | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
00281       | Decl::IDNS_Type;
00282     break;
00283   }
00284   return IDNS;
00285 }
00286 
00287 void LookupResult::configure() {
00288   IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
00289                  isForRedeclaration());
00290 
00291   // If we're looking for one of the allocation or deallocation
00292   // operators, make sure that the implicitly-declared new and delete
00293   // operators can be found.
00294   switch (NameInfo.getName().getCXXOverloadedOperator()) {
00295   case OO_New:
00296   case OO_Delete:
00297   case OO_Array_New:
00298   case OO_Array_Delete:
00299     getSema().DeclareGlobalNewDelete();
00300     break;
00301 
00302   default:
00303     break;
00304   }
00305 
00306   // Compiler builtins are always visible, regardless of where they end
00307   // up being declared.
00308   if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
00309     if (unsigned BuiltinID = Id->getBuiltinID()) {
00310       if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
00311         AllowHidden = true;
00312     }
00313   }
00314 }
00315 
00316 bool LookupResult::sanity() const {
00317   // This function is never called by NDEBUG builds.
00318   assert(ResultKind != NotFound || Decls.size() == 0);
00319   assert(ResultKind != Found || Decls.size() == 1);
00320   assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
00321          (Decls.size() == 1 &&
00322           isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
00323   assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
00324   assert(ResultKind != Ambiguous || Decls.size() > 1 ||
00325          (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
00326                                 Ambiguity == AmbiguousBaseSubobjectTypes)));
00327   assert((Paths != nullptr) == (ResultKind == Ambiguous &&
00328                                 (Ambiguity == AmbiguousBaseSubobjectTypes ||
00329                                  Ambiguity == AmbiguousBaseSubobjects)));
00330   return true;
00331 }
00332 
00333 // Necessary because CXXBasePaths is not complete in Sema.h
00334 void LookupResult::deletePaths(CXXBasePaths *Paths) {
00335   delete Paths;
00336 }
00337 
00338 /// Get a representative context for a declaration such that two declarations
00339 /// will have the same context if they were found within the same scope.
00340 static DeclContext *getContextForScopeMatching(Decl *D) {
00341   // For function-local declarations, use that function as the context. This
00342   // doesn't account for scopes within the function; the caller must deal with
00343   // those.
00344   DeclContext *DC = D->getLexicalDeclContext();
00345   if (DC->isFunctionOrMethod())
00346     return DC;
00347 
00348   // Otherwise, look at the semantic context of the declaration. The
00349   // declaration must have been found there.
00350   return D->getDeclContext()->getRedeclContext();
00351 }
00352 
00353 /// Resolves the result kind of this lookup.
00354 void LookupResult::resolveKind() {
00355   unsigned N = Decls.size();
00356 
00357   // Fast case: no possible ambiguity.
00358   if (N == 0) {
00359     assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
00360     return;
00361   }
00362 
00363   // If there's a single decl, we need to examine it to decide what
00364   // kind of lookup this is.
00365   if (N == 1) {
00366     NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
00367     if (isa<FunctionTemplateDecl>(D))
00368       ResultKind = FoundOverloaded;
00369     else if (isa<UnresolvedUsingValueDecl>(D))
00370       ResultKind = FoundUnresolvedValue;
00371     return;
00372   }
00373 
00374   // Don't do any extra resolution if we've already resolved as ambiguous.
00375   if (ResultKind == Ambiguous) return;
00376 
00377   llvm::SmallPtrSet<NamedDecl*, 16> Unique;
00378   llvm::SmallPtrSet<QualType, 16> UniqueTypes;
00379 
00380   bool Ambiguous = false;
00381   bool HasTag = false, HasFunction = false, HasNonFunction = false;
00382   bool HasFunctionTemplate = false, HasUnresolved = false;
00383 
00384   unsigned UniqueTagIndex = 0;
00385 
00386   unsigned I = 0;
00387   while (I < N) {
00388     NamedDecl *D = Decls[I]->getUnderlyingDecl();
00389     D = cast<NamedDecl>(D->getCanonicalDecl());
00390 
00391     // Ignore an invalid declaration unless it's the only one left.
00392     if (D->isInvalidDecl() && I < N-1) {
00393       Decls[I] = Decls[--N];
00394       continue;
00395     }
00396 
00397     // Redeclarations of types via typedef can occur both within a scope
00398     // and, through using declarations and directives, across scopes. There is
00399     // no ambiguity if they all refer to the same type, so unique based on the
00400     // canonical type.
00401     if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
00402       if (!TD->getDeclContext()->isRecord()) {
00403         QualType T = getSema().Context.getTypeDeclType(TD);
00404         if (!UniqueTypes.insert(getSema().Context.getCanonicalType(T))) {
00405           // The type is not unique; pull something off the back and continue
00406           // at this index.
00407           Decls[I] = Decls[--N];
00408           continue;
00409         }
00410       }
00411     }
00412 
00413     if (!Unique.insert(D)) {
00414       // If it's not unique, pull something off the back (and
00415       // continue at this index).
00416       Decls[I] = Decls[--N];
00417       continue;
00418     }
00419 
00420     // Otherwise, do some decl type analysis and then continue.
00421 
00422     if (isa<UnresolvedUsingValueDecl>(D)) {
00423       HasUnresolved = true;
00424     } else if (isa<TagDecl>(D)) {
00425       if (HasTag)
00426         Ambiguous = true;
00427       UniqueTagIndex = I;
00428       HasTag = true;
00429     } else if (isa<FunctionTemplateDecl>(D)) {
00430       HasFunction = true;
00431       HasFunctionTemplate = true;
00432     } else if (isa<FunctionDecl>(D)) {
00433       HasFunction = true;
00434     } else {
00435       if (HasNonFunction)
00436         Ambiguous = true;
00437       HasNonFunction = true;
00438     }
00439     I++;
00440   }
00441 
00442   // C++ [basic.scope.hiding]p2:
00443   //   A class name or enumeration name can be hidden by the name of
00444   //   an object, function, or enumerator declared in the same
00445   //   scope. If a class or enumeration name and an object, function,
00446   //   or enumerator are declared in the same scope (in any order)
00447   //   with the same name, the class or enumeration name is hidden
00448   //   wherever the object, function, or enumerator name is visible.
00449   // But it's still an error if there are distinct tag types found,
00450   // even if they're not visible. (ref?)
00451   if (HideTags && HasTag && !Ambiguous &&
00452       (HasFunction || HasNonFunction || HasUnresolved)) {
00453     if (getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
00454             getContextForScopeMatching(Decls[UniqueTagIndex ? 0 : N - 1])))
00455       Decls[UniqueTagIndex] = Decls[--N];
00456     else
00457       Ambiguous = true;
00458   }
00459 
00460   Decls.set_size(N);
00461 
00462   if (HasNonFunction && (HasFunction || HasUnresolved))
00463     Ambiguous = true;
00464 
00465   if (Ambiguous)
00466     setAmbiguous(LookupResult::AmbiguousReference);
00467   else if (HasUnresolved)
00468     ResultKind = LookupResult::FoundUnresolvedValue;
00469   else if (N > 1 || HasFunctionTemplate)
00470     ResultKind = LookupResult::FoundOverloaded;
00471   else
00472     ResultKind = LookupResult::Found;
00473 }
00474 
00475 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
00476   CXXBasePaths::const_paths_iterator I, E;
00477   for (I = P.begin(), E = P.end(); I != E; ++I)
00478     for (DeclContext::lookup_iterator DI = I->Decls.begin(),
00479          DE = I->Decls.end(); DI != DE; ++DI)
00480       addDecl(*DI);
00481 }
00482 
00483 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
00484   Paths = new CXXBasePaths;
00485   Paths->swap(P);
00486   addDeclsFromBasePaths(*Paths);
00487   resolveKind();
00488   setAmbiguous(AmbiguousBaseSubobjects);
00489 }
00490 
00491 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
00492   Paths = new CXXBasePaths;
00493   Paths->swap(P);
00494   addDeclsFromBasePaths(*Paths);
00495   resolveKind();
00496   setAmbiguous(AmbiguousBaseSubobjectTypes);
00497 }
00498 
00499 void LookupResult::print(raw_ostream &Out) {
00500   Out << Decls.size() << " result(s)";
00501   if (isAmbiguous()) Out << ", ambiguous";
00502   if (Paths) Out << ", base paths present";
00503 
00504   for (iterator I = begin(), E = end(); I != E; ++I) {
00505     Out << "\n";
00506     (*I)->print(Out, 2);
00507   }
00508 }
00509 
00510 /// \brief Lookup a builtin function, when name lookup would otherwise
00511 /// fail.
00512 static bool LookupBuiltin(Sema &S, LookupResult &R) {
00513   Sema::LookupNameKind NameKind = R.getLookupKind();
00514 
00515   // If we didn't find a use of this identifier, and if the identifier
00516   // corresponds to a compiler builtin, create the decl object for the builtin
00517   // now, injecting it into translation unit scope, and return it.
00518   if (NameKind == Sema::LookupOrdinaryName ||
00519       NameKind == Sema::LookupRedeclarationWithLinkage) {
00520     IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
00521     if (II) {
00522       if (S.getLangOpts().CPlusPlus11 && S.getLangOpts().GNUMode &&
00523           II == S.getFloat128Identifier()) {
00524         // libstdc++4.7's type_traits expects type __float128 to exist, so
00525         // insert a dummy type to make that header build in gnu++11 mode.
00526         R.addDecl(S.getASTContext().getFloat128StubType());
00527         return true;
00528       }
00529 
00530       // If this is a builtin on this (or all) targets, create the decl.
00531       if (unsigned BuiltinID = II->getBuiltinID()) {
00532         // In C++, we don't have any predefined library functions like
00533         // 'malloc'. Instead, we'll just error.
00534         if (S.getLangOpts().CPlusPlus &&
00535             S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
00536           return false;
00537 
00538         if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
00539                                                  BuiltinID, S.TUScope,
00540                                                  R.isForRedeclaration(),
00541                                                  R.getNameLoc())) {
00542           R.addDecl(D);
00543           return true;
00544         }
00545       }
00546     }
00547   }
00548 
00549   return false;
00550 }
00551 
00552 /// \brief Determine whether we can declare a special member function within
00553 /// the class at this point.
00554 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
00555   // We need to have a definition for the class.
00556   if (!Class->getDefinition() || Class->isDependentContext())
00557     return false;
00558 
00559   // We can't be in the middle of defining the class.
00560   return !Class->isBeingDefined();
00561 }
00562 
00563 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
00564   if (!CanDeclareSpecialMemberFunction(Class))
00565     return;
00566 
00567   // If the default constructor has not yet been declared, do so now.
00568   if (Class->needsImplicitDefaultConstructor())
00569     DeclareImplicitDefaultConstructor(Class);
00570 
00571   // If the copy constructor has not yet been declared, do so now.
00572   if (Class->needsImplicitCopyConstructor())
00573     DeclareImplicitCopyConstructor(Class);
00574 
00575   // If the copy assignment operator has not yet been declared, do so now.
00576   if (Class->needsImplicitCopyAssignment())
00577     DeclareImplicitCopyAssignment(Class);
00578 
00579   if (getLangOpts().CPlusPlus11) {
00580     // If the move constructor has not yet been declared, do so now.
00581     if (Class->needsImplicitMoveConstructor())
00582       DeclareImplicitMoveConstructor(Class); // might not actually do it
00583 
00584     // If the move assignment operator has not yet been declared, do so now.
00585     if (Class->needsImplicitMoveAssignment())
00586       DeclareImplicitMoveAssignment(Class); // might not actually do it
00587   }
00588 
00589   // If the destructor has not yet been declared, do so now.
00590   if (Class->needsImplicitDestructor())
00591     DeclareImplicitDestructor(Class);
00592 }
00593 
00594 /// \brief Determine whether this is the name of an implicitly-declared
00595 /// special member function.
00596 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
00597   switch (Name.getNameKind()) {
00598   case DeclarationName::CXXConstructorName:
00599   case DeclarationName::CXXDestructorName:
00600     return true;
00601 
00602   case DeclarationName::CXXOperatorName:
00603     return Name.getCXXOverloadedOperator() == OO_Equal;
00604 
00605   default:
00606     break;
00607   }
00608 
00609   return false;
00610 }
00611 
00612 /// \brief If there are any implicit member functions with the given name
00613 /// that need to be declared in the given declaration context, do so.
00614 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
00615                                                    DeclarationName Name,
00616                                                    const DeclContext *DC) {
00617   if (!DC)
00618     return;
00619 
00620   switch (Name.getNameKind()) {
00621   case DeclarationName::CXXConstructorName:
00622     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
00623       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
00624         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
00625         if (Record->needsImplicitDefaultConstructor())
00626           S.DeclareImplicitDefaultConstructor(Class);
00627         if (Record->needsImplicitCopyConstructor())
00628           S.DeclareImplicitCopyConstructor(Class);
00629         if (S.getLangOpts().CPlusPlus11 &&
00630             Record->needsImplicitMoveConstructor())
00631           S.DeclareImplicitMoveConstructor(Class);
00632       }
00633     break;
00634 
00635   case DeclarationName::CXXDestructorName:
00636     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
00637       if (Record->getDefinition() && Record->needsImplicitDestructor() &&
00638           CanDeclareSpecialMemberFunction(Record))
00639         S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
00640     break;
00641 
00642   case DeclarationName::CXXOperatorName:
00643     if (Name.getCXXOverloadedOperator() != OO_Equal)
00644       break;
00645 
00646     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
00647       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
00648         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
00649         if (Record->needsImplicitCopyAssignment())
00650           S.DeclareImplicitCopyAssignment(Class);
00651         if (S.getLangOpts().CPlusPlus11 &&
00652             Record->needsImplicitMoveAssignment())
00653           S.DeclareImplicitMoveAssignment(Class);
00654       }
00655     }
00656     break;
00657 
00658   default:
00659     break;
00660   }
00661 }
00662 
00663 // Adds all qualifying matches for a name within a decl context to the
00664 // given lookup result.  Returns true if any matches were found.
00665 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
00666   bool Found = false;
00667 
00668   // Lazily declare C++ special member functions.
00669   if (S.getLangOpts().CPlusPlus)
00670     DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
00671 
00672   // Perform lookup into this declaration context.
00673   DeclContext::lookup_const_result DR = DC->lookup(R.getLookupName());
00674   for (DeclContext::lookup_const_iterator I = DR.begin(), E = DR.end(); I != E;
00675        ++I) {
00676     NamedDecl *D = *I;
00677     if ((D = R.getAcceptableDecl(D))) {
00678       R.addDecl(D);
00679       Found = true;
00680     }
00681   }
00682 
00683   if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
00684     return true;
00685 
00686   if (R.getLookupName().getNameKind()
00687         != DeclarationName::CXXConversionFunctionName ||
00688       R.getLookupName().getCXXNameType()->isDependentType() ||
00689       !isa<CXXRecordDecl>(DC))
00690     return Found;
00691 
00692   // C++ [temp.mem]p6:
00693   //   A specialization of a conversion function template is not found by
00694   //   name lookup. Instead, any conversion function templates visible in the
00695   //   context of the use are considered. [...]
00696   const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
00697   if (!Record->isCompleteDefinition())
00698     return Found;
00699 
00700   for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
00701          UEnd = Record->conversion_end(); U != UEnd; ++U) {
00702     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
00703     if (!ConvTemplate)
00704       continue;
00705 
00706     // When we're performing lookup for the purposes of redeclaration, just
00707     // add the conversion function template. When we deduce template
00708     // arguments for specializations, we'll end up unifying the return
00709     // type of the new declaration with the type of the function template.
00710     if (R.isForRedeclaration()) {
00711       R.addDecl(ConvTemplate);
00712       Found = true;
00713       continue;
00714     }
00715 
00716     // C++ [temp.mem]p6:
00717     //   [...] For each such operator, if argument deduction succeeds
00718     //   (14.9.2.3), the resulting specialization is used as if found by
00719     //   name lookup.
00720     //
00721     // When referencing a conversion function for any purpose other than
00722     // a redeclaration (such that we'll be building an expression with the
00723     // result), perform template argument deduction and place the
00724     // specialization into the result set. We do this to avoid forcing all
00725     // callers to perform special deduction for conversion functions.
00726     TemplateDeductionInfo Info(R.getNameLoc());
00727     FunctionDecl *Specialization = nullptr;
00728 
00729     const FunctionProtoType *ConvProto
00730       = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
00731     assert(ConvProto && "Nonsensical conversion function template type");
00732 
00733     // Compute the type of the function that we would expect the conversion
00734     // function to have, if it were to match the name given.
00735     // FIXME: Calling convention!
00736     FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
00737     EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
00738     EPI.ExceptionSpec = EST_None;
00739     QualType ExpectedType
00740       = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
00741                                             None, EPI);
00742 
00743     // Perform template argument deduction against the type that we would
00744     // expect the function to have.
00745     if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
00746                                             Specialization, Info)
00747           == Sema::TDK_Success) {
00748       R.addDecl(Specialization);
00749       Found = true;
00750     }
00751   }
00752 
00753   return Found;
00754 }
00755 
00756 // Performs C++ unqualified lookup into the given file context.
00757 static bool
00758 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
00759                    DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
00760 
00761   assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
00762 
00763   // Perform direct name lookup into the LookupCtx.
00764   bool Found = LookupDirect(S, R, NS);
00765 
00766   // Perform direct name lookup into the namespaces nominated by the
00767   // using directives whose common ancestor is this namespace.
00768   UnqualUsingDirectiveSet::const_iterator UI, UEnd;
00769   std::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
00770 
00771   for (; UI != UEnd; ++UI)
00772     if (LookupDirect(S, R, UI->getNominatedNamespace()))
00773       Found = true;
00774 
00775   R.resolveKind();
00776 
00777   return Found;
00778 }
00779 
00780 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
00781   if (DeclContext *Ctx = S->getEntity())
00782     return Ctx->isFileContext();
00783   return false;
00784 }
00785 
00786 // Find the next outer declaration context from this scope. This
00787 // routine actually returns the semantic outer context, which may
00788 // differ from the lexical context (encoded directly in the Scope
00789 // stack) when we are parsing a member of a class template. In this
00790 // case, the second element of the pair will be true, to indicate that
00791 // name lookup should continue searching in this semantic context when
00792 // it leaves the current template parameter scope.
00793 static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
00794   DeclContext *DC = S->getEntity();
00795   DeclContext *Lexical = nullptr;
00796   for (Scope *OuterS = S->getParent(); OuterS;
00797        OuterS = OuterS->getParent()) {
00798     if (OuterS->getEntity()) {
00799       Lexical = OuterS->getEntity();
00800       break;
00801     }
00802   }
00803 
00804   // C++ [temp.local]p8:
00805   //   In the definition of a member of a class template that appears
00806   //   outside of the namespace containing the class template
00807   //   definition, the name of a template-parameter hides the name of
00808   //   a member of this namespace.
00809   //
00810   // Example:
00811   //
00812   //   namespace N {
00813   //     class C { };
00814   //
00815   //     template<class T> class B {
00816   //       void f(T);
00817   //     };
00818   //   }
00819   //
00820   //   template<class C> void N::B<C>::f(C) {
00821   //     C b;  // C is the template parameter, not N::C
00822   //   }
00823   //
00824   // In this example, the lexical context we return is the
00825   // TranslationUnit, while the semantic context is the namespace N.
00826   if (!Lexical || !DC || !S->getParent() ||
00827       !S->getParent()->isTemplateParamScope())
00828     return std::make_pair(Lexical, false);
00829 
00830   // Find the outermost template parameter scope.
00831   // For the example, this is the scope for the template parameters of
00832   // template<class C>.
00833   Scope *OutermostTemplateScope = S->getParent();
00834   while (OutermostTemplateScope->getParent() &&
00835          OutermostTemplateScope->getParent()->isTemplateParamScope())
00836     OutermostTemplateScope = OutermostTemplateScope->getParent();
00837 
00838   // Find the namespace context in which the original scope occurs. In
00839   // the example, this is namespace N.
00840   DeclContext *Semantic = DC;
00841   while (!Semantic->isFileContext())
00842     Semantic = Semantic->getParent();
00843 
00844   // Find the declaration context just outside of the template
00845   // parameter scope. This is the context in which the template is
00846   // being lexically declaration (a namespace context). In the
00847   // example, this is the global scope.
00848   if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
00849       Lexical->Encloses(Semantic))
00850     return std::make_pair(Semantic, true);
00851 
00852   return std::make_pair(Lexical, false);
00853 }
00854 
00855 namespace {
00856 /// An RAII object to specify that we want to find block scope extern
00857 /// declarations.
00858 struct FindLocalExternScope {
00859   FindLocalExternScope(LookupResult &R)
00860       : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
00861                                  Decl::IDNS_LocalExtern) {
00862     R.setFindLocalExtern(R.getIdentifierNamespace() & Decl::IDNS_Ordinary);
00863   }
00864   void restore() {
00865     R.setFindLocalExtern(OldFindLocalExtern);
00866   }
00867   ~FindLocalExternScope() {
00868     restore();
00869   }
00870   LookupResult &R;
00871   bool OldFindLocalExtern;
00872 };
00873 }
00874 
00875 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
00876   assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
00877 
00878   DeclarationName Name = R.getLookupName();
00879   Sema::LookupNameKind NameKind = R.getLookupKind();
00880 
00881   // If this is the name of an implicitly-declared special member function,
00882   // go through the scope stack to implicitly declare
00883   if (isImplicitlyDeclaredMemberFunctionName(Name)) {
00884     for (Scope *PreS = S; PreS; PreS = PreS->getParent())
00885       if (DeclContext *DC = PreS->getEntity())
00886         DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
00887   }
00888 
00889   // Implicitly declare member functions with the name we're looking for, if in
00890   // fact we are in a scope where it matters.
00891 
00892   Scope *Initial = S;
00893   IdentifierResolver::iterator
00894     I = IdResolver.begin(Name),
00895     IEnd = IdResolver.end();
00896 
00897   // First we lookup local scope.
00898   // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
00899   // ...During unqualified name lookup (3.4.1), the names appear as if
00900   // they were declared in the nearest enclosing namespace which contains
00901   // both the using-directive and the nominated namespace.
00902   // [Note: in this context, "contains" means "contains directly or
00903   // indirectly".
00904   //
00905   // For example:
00906   // namespace A { int i; }
00907   // void foo() {
00908   //   int i;
00909   //   {
00910   //     using namespace A;
00911   //     ++i; // finds local 'i', A::i appears at global scope
00912   //   }
00913   // }
00914   //
00915   UnqualUsingDirectiveSet UDirs;
00916   bool VisitedUsingDirectives = false;
00917   bool LeftStartingScope = false;
00918   DeclContext *OutsideOfTemplateParamDC = nullptr;
00919 
00920   // When performing a scope lookup, we want to find local extern decls.
00921   FindLocalExternScope FindLocals(R);
00922 
00923   for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
00924     DeclContext *Ctx = S->getEntity();
00925 
00926     // Check whether the IdResolver has anything in this scope.
00927     bool Found = false;
00928     for (; I != IEnd && S->isDeclScope(*I); ++I) {
00929       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
00930         if (NameKind == LookupRedeclarationWithLinkage) {
00931           // Determine whether this (or a previous) declaration is
00932           // out-of-scope.
00933           if (!LeftStartingScope && !Initial->isDeclScope(*I))
00934             LeftStartingScope = true;
00935 
00936           // If we found something outside of our starting scope that
00937           // does not have linkage, skip it. If it's a template parameter,
00938           // we still find it, so we can diagnose the invalid redeclaration.
00939           if (LeftStartingScope && !((*I)->hasLinkage()) &&
00940               !(*I)->isTemplateParameter()) {
00941             R.setShadowed();
00942             continue;
00943           }
00944         }
00945 
00946         Found = true;
00947         R.addDecl(ND);
00948       }
00949     }
00950     if (Found) {
00951       R.resolveKind();
00952       if (S->isClassScope())
00953         if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
00954           R.setNamingClass(Record);
00955       return true;
00956     }
00957 
00958     if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
00959       // C++11 [class.friend]p11:
00960       //   If a friend declaration appears in a local class and the name
00961       //   specified is an unqualified name, a prior declaration is
00962       //   looked up without considering scopes that are outside the
00963       //   innermost enclosing non-class scope.
00964       return false;
00965     }
00966 
00967     if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
00968         S->getParent() && !S->getParent()->isTemplateParamScope()) {
00969       // We've just searched the last template parameter scope and
00970       // found nothing, so look into the contexts between the
00971       // lexical and semantic declaration contexts returned by
00972       // findOuterContext(). This implements the name lookup behavior
00973       // of C++ [temp.local]p8.
00974       Ctx = OutsideOfTemplateParamDC;
00975       OutsideOfTemplateParamDC = nullptr;
00976     }
00977 
00978     if (Ctx) {
00979       DeclContext *OuterCtx;
00980       bool SearchAfterTemplateScope;
00981       std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
00982       if (SearchAfterTemplateScope)
00983         OutsideOfTemplateParamDC = OuterCtx;
00984 
00985       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
00986         // We do not directly look into transparent contexts, since
00987         // those entities will be found in the nearest enclosing
00988         // non-transparent context.
00989         if (Ctx->isTransparentContext())
00990           continue;
00991 
00992         // We do not look directly into function or method contexts,
00993         // since all of the local variables and parameters of the
00994         // function/method are present within the Scope.
00995         if (Ctx->isFunctionOrMethod()) {
00996           // If we have an Objective-C instance method, look for ivars
00997           // in the corresponding interface.
00998           if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
00999             if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
01000               if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
01001                 ObjCInterfaceDecl *ClassDeclared;
01002                 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
01003                                                  Name.getAsIdentifierInfo(),
01004                                                              ClassDeclared)) {
01005                   if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
01006                     R.addDecl(ND);
01007                     R.resolveKind();
01008                     return true;
01009                   }
01010                 }
01011               }
01012           }
01013 
01014           continue;
01015         }
01016 
01017         // If this is a file context, we need to perform unqualified name
01018         // lookup considering using directives.
01019         if (Ctx->isFileContext()) {
01020           // If we haven't handled using directives yet, do so now.
01021           if (!VisitedUsingDirectives) {
01022             // Add using directives from this context up to the top level.
01023             for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
01024               if (UCtx->isTransparentContext())
01025                 continue;
01026 
01027               UDirs.visit(UCtx, UCtx);
01028             }
01029 
01030             // Find the innermost file scope, so we can add using directives
01031             // from local scopes.
01032             Scope *InnermostFileScope = S;
01033             while (InnermostFileScope &&
01034                    !isNamespaceOrTranslationUnitScope(InnermostFileScope))
01035               InnermostFileScope = InnermostFileScope->getParent();
01036             UDirs.visitScopeChain(Initial, InnermostFileScope);
01037 
01038             UDirs.done();
01039 
01040             VisitedUsingDirectives = true;
01041           }
01042 
01043           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
01044             R.resolveKind();
01045             return true;
01046           }
01047 
01048           continue;
01049         }
01050 
01051         // Perform qualified name lookup into this context.
01052         // FIXME: In some cases, we know that every name that could be found by
01053         // this qualified name lookup will also be on the identifier chain. For
01054         // example, inside a class without any base classes, we never need to
01055         // perform qualified lookup because all of the members are on top of the
01056         // identifier chain.
01057         if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
01058           return true;
01059       }
01060     }
01061   }
01062 
01063   // Stop if we ran out of scopes.
01064   // FIXME:  This really, really shouldn't be happening.
01065   if (!S) return false;
01066 
01067   // If we are looking for members, no need to look into global/namespace scope.
01068   if (NameKind == LookupMemberName)
01069     return false;
01070 
01071   // Collect UsingDirectiveDecls in all scopes, and recursively all
01072   // nominated namespaces by those using-directives.
01073   //
01074   // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
01075   // don't build it for each lookup!
01076   if (!VisitedUsingDirectives) {
01077     UDirs.visitScopeChain(Initial, S);
01078     UDirs.done();
01079   }
01080 
01081   // If we're not performing redeclaration lookup, do not look for local
01082   // extern declarations outside of a function scope.
01083   if (!R.isForRedeclaration())
01084     FindLocals.restore();
01085 
01086   // Lookup namespace scope, and global scope.
01087   // Unqualified name lookup in C++ requires looking into scopes
01088   // that aren't strictly lexical, and therefore we walk through the
01089   // context as well as walking through the scopes.
01090   for (; S; S = S->getParent()) {
01091     // Check whether the IdResolver has anything in this scope.
01092     bool Found = false;
01093     for (; I != IEnd && S->isDeclScope(*I); ++I) {
01094       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
01095         // We found something.  Look for anything else in our scope
01096         // with this same name and in an acceptable identifier
01097         // namespace, so that we can construct an overload set if we
01098         // need to.
01099         Found = true;
01100         R.addDecl(ND);
01101       }
01102     }
01103 
01104     if (Found && S->isTemplateParamScope()) {
01105       R.resolveKind();
01106       return true;
01107     }
01108 
01109     DeclContext *Ctx = S->getEntity();
01110     if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
01111         S->getParent() && !S->getParent()->isTemplateParamScope()) {
01112       // We've just searched the last template parameter scope and
01113       // found nothing, so look into the contexts between the
01114       // lexical and semantic declaration contexts returned by
01115       // findOuterContext(). This implements the name lookup behavior
01116       // of C++ [temp.local]p8.
01117       Ctx = OutsideOfTemplateParamDC;
01118       OutsideOfTemplateParamDC = nullptr;
01119     }
01120 
01121     if (Ctx) {
01122       DeclContext *OuterCtx;
01123       bool SearchAfterTemplateScope;
01124       std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
01125       if (SearchAfterTemplateScope)
01126         OutsideOfTemplateParamDC = OuterCtx;
01127 
01128       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
01129         // We do not directly look into transparent contexts, since
01130         // those entities will be found in the nearest enclosing
01131         // non-transparent context.
01132         if (Ctx->isTransparentContext())
01133           continue;
01134 
01135         // If we have a context, and it's not a context stashed in the
01136         // template parameter scope for an out-of-line definition, also
01137         // look into that context.
01138         if (!(Found && S && S->isTemplateParamScope())) {
01139           assert(Ctx->isFileContext() &&
01140               "We should have been looking only at file context here already.");
01141 
01142           // Look into context considering using-directives.
01143           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
01144             Found = true;
01145         }
01146 
01147         if (Found) {
01148           R.resolveKind();
01149           return true;
01150         }
01151 
01152         if (R.isForRedeclaration() && !Ctx->isTransparentContext())
01153           return false;
01154       }
01155     }
01156 
01157     if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
01158       return false;
01159   }
01160 
01161   return !R.empty();
01162 }
01163 
01164 /// \brief Find the declaration that a class temploid member specialization was
01165 /// instantiated from, or the member itself if it is an explicit specialization.
01166 static Decl *getInstantiatedFrom(Decl *D, MemberSpecializationInfo *MSInfo) {
01167   return MSInfo->isExplicitSpecialization() ? D : MSInfo->getInstantiatedFrom();
01168 }
01169 
01170 /// \brief Find the module in which the given declaration was defined.
01171 static Module *getDefiningModule(Decl *Entity) {
01172   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
01173     // If this function was instantiated from a template, the defining module is
01174     // the module containing the pattern.
01175     if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
01176       Entity = Pattern;
01177   } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
01178     if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
01179       Entity = Pattern;
01180   } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
01181     if (MemberSpecializationInfo *MSInfo = ED->getMemberSpecializationInfo())
01182       Entity = getInstantiatedFrom(ED, MSInfo);
01183   } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
01184     // FIXME: Map from variable template specializations back to the template.
01185     if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo())
01186       Entity = getInstantiatedFrom(VD, MSInfo);
01187   }
01188 
01189   // Walk up to the containing context. That might also have been instantiated
01190   // from a template.
01191   DeclContext *Context = Entity->getDeclContext();
01192   if (Context->isFileContext())
01193     return Entity->getOwningModule();
01194   return getDefiningModule(cast<Decl>(Context));
01195 }
01196 
01197 llvm::DenseSet<Module*> &Sema::getLookupModules() {
01198   unsigned N = ActiveTemplateInstantiations.size();
01199   for (unsigned I = ActiveTemplateInstantiationLookupModules.size();
01200        I != N; ++I) {
01201     Module *M = getDefiningModule(ActiveTemplateInstantiations[I].Entity);
01202     if (M && !LookupModulesCache.insert(M).second)
01203       M = nullptr;
01204     ActiveTemplateInstantiationLookupModules.push_back(M);
01205   }
01206   return LookupModulesCache;
01207 }
01208 
01209 /// \brief Determine whether a declaration is visible to name lookup.
01210 ///
01211 /// This routine determines whether the declaration D is visible in the current
01212 /// lookup context, taking into account the current template instantiation
01213 /// stack. During template instantiation, a declaration is visible if it is
01214 /// visible from a module containing any entity on the template instantiation
01215 /// path (by instantiating a template, you allow it to see the declarations that
01216 /// your module can see, including those later on in your module).
01217 bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
01218   assert(D->isHidden() && !SemaRef.ActiveTemplateInstantiations.empty() &&
01219          "should not call this: not in slow case");
01220   Module *DeclModule = D->getOwningModule();
01221   assert(DeclModule && "hidden decl not from a module");
01222 
01223   // Find the extra places where we need to look.
01224   llvm::DenseSet<Module*> &LookupModules = SemaRef.getLookupModules();
01225   if (LookupModules.empty())
01226     return false;
01227 
01228   // If our lookup set contains the decl's module, it's visible.
01229   if (LookupModules.count(DeclModule))
01230     return true;
01231 
01232   // If the declaration isn't exported, it's not visible in any other module.
01233   if (D->isModulePrivate())
01234     return false;
01235 
01236   // Check whether DeclModule is transitively exported to an import of
01237   // the lookup set.
01238   for (llvm::DenseSet<Module *>::iterator I = LookupModules.begin(),
01239                                           E = LookupModules.end();
01240        I != E; ++I)
01241     if ((*I)->isModuleVisible(DeclModule))
01242       return true;
01243   return false;
01244 }
01245 
01246 /// \brief Retrieve the visible declaration corresponding to D, if any.
01247 ///
01248 /// This routine determines whether the declaration D is visible in the current
01249 /// module, with the current imports. If not, it checks whether any
01250 /// redeclaration of D is visible, and if so, returns that declaration.
01251 ///
01252 /// \returns D, or a visible previous declaration of D, whichever is more recent
01253 /// and visible. If no declaration of D is visible, returns null.
01254 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D) {
01255   assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
01256 
01257   for (auto RD : D->redecls()) {
01258     if (auto ND = dyn_cast<NamedDecl>(RD)) {
01259       if (LookupResult::isVisible(SemaRef, ND))
01260         return ND;
01261     }
01262   }
01263 
01264   return nullptr;
01265 }
01266 
01267 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
01268   return findAcceptableDecl(getSema(), D);
01269 }
01270 
01271 /// @brief Perform unqualified name lookup starting from a given
01272 /// scope.
01273 ///
01274 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
01275 /// used to find names within the current scope. For example, 'x' in
01276 /// @code
01277 /// int x;
01278 /// int f() {
01279 ///   return x; // unqualified name look finds 'x' in the global scope
01280 /// }
01281 /// @endcode
01282 ///
01283 /// Different lookup criteria can find different names. For example, a
01284 /// particular scope can have both a struct and a function of the same
01285 /// name, and each can be found by certain lookup criteria. For more
01286 /// information about lookup criteria, see the documentation for the
01287 /// class LookupCriteria.
01288 ///
01289 /// @param S        The scope from which unqualified name lookup will
01290 /// begin. If the lookup criteria permits, name lookup may also search
01291 /// in the parent scopes.
01292 ///
01293 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
01294 /// look up and the lookup kind), and is updated with the results of lookup
01295 /// including zero or more declarations and possibly additional information
01296 /// used to diagnose ambiguities.
01297 ///
01298 /// @returns \c true if lookup succeeded and false otherwise.
01299 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
01300   DeclarationName Name = R.getLookupName();
01301   if (!Name) return false;
01302 
01303   LookupNameKind NameKind = R.getLookupKind();
01304 
01305   if (!getLangOpts().CPlusPlus) {
01306     // Unqualified name lookup in C/Objective-C is purely lexical, so
01307     // search in the declarations attached to the name.
01308     if (NameKind == Sema::LookupRedeclarationWithLinkage) {
01309       // Find the nearest non-transparent declaration scope.
01310       while (!(S->getFlags() & Scope::DeclScope) ||
01311              (S->getEntity() && S->getEntity()->isTransparentContext()))
01312         S = S->getParent();
01313     }
01314 
01315     // When performing a scope lookup, we want to find local extern decls.
01316     FindLocalExternScope FindLocals(R);
01317 
01318     // Scan up the scope chain looking for a decl that matches this
01319     // identifier that is in the appropriate namespace.  This search
01320     // should not take long, as shadowing of names is uncommon, and
01321     // deep shadowing is extremely uncommon.
01322     bool LeftStartingScope = false;
01323 
01324     for (IdentifierResolver::iterator I = IdResolver.begin(Name),
01325                                    IEnd = IdResolver.end();
01326          I != IEnd; ++I)
01327       if (NamedDecl *D = R.getAcceptableDecl(*I)) {
01328         if (NameKind == LookupRedeclarationWithLinkage) {
01329           // Determine whether this (or a previous) declaration is
01330           // out-of-scope.
01331           if (!LeftStartingScope && !S->isDeclScope(*I))
01332             LeftStartingScope = true;
01333 
01334           // If we found something outside of our starting scope that
01335           // does not have linkage, skip it.
01336           if (LeftStartingScope && !((*I)->hasLinkage())) {
01337             R.setShadowed();
01338             continue;
01339           }
01340         }
01341         else if (NameKind == LookupObjCImplicitSelfParam &&
01342                  !isa<ImplicitParamDecl>(*I))
01343           continue;
01344 
01345         R.addDecl(D);
01346 
01347         // Check whether there are any other declarations with the same name
01348         // and in the same scope.
01349         if (I != IEnd) {
01350           // Find the scope in which this declaration was declared (if it
01351           // actually exists in a Scope).
01352           while (S && !S->isDeclScope(D))
01353             S = S->getParent();
01354           
01355           // If the scope containing the declaration is the translation unit,
01356           // then we'll need to perform our checks based on the matching
01357           // DeclContexts rather than matching scopes.
01358           if (S && isNamespaceOrTranslationUnitScope(S))
01359             S = nullptr;
01360 
01361           // Compute the DeclContext, if we need it.
01362           DeclContext *DC = nullptr;
01363           if (!S)
01364             DC = (*I)->getDeclContext()->getRedeclContext();
01365             
01366           IdentifierResolver::iterator LastI = I;
01367           for (++LastI; LastI != IEnd; ++LastI) {
01368             if (S) {
01369               // Match based on scope.
01370               if (!S->isDeclScope(*LastI))
01371                 break;
01372             } else {
01373               // Match based on DeclContext.
01374               DeclContext *LastDC 
01375                 = (*LastI)->getDeclContext()->getRedeclContext();
01376               if (!LastDC->Equals(DC))
01377                 break;
01378             }
01379 
01380             // If the declaration is in the right namespace and visible, add it.
01381             if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
01382               R.addDecl(LastD);
01383           }
01384 
01385           R.resolveKind();
01386         }
01387 
01388         return true;
01389       }
01390   } else {
01391     // Perform C++ unqualified name lookup.
01392     if (CppLookupName(R, S))
01393       return true;
01394   }
01395 
01396   // If we didn't find a use of this identifier, and if the identifier
01397   // corresponds to a compiler builtin, create the decl object for the builtin
01398   // now, injecting it into translation unit scope, and return it.
01399   if (AllowBuiltinCreation && LookupBuiltin(*this, R))
01400     return true;
01401 
01402   // If we didn't find a use of this identifier, the ExternalSource 
01403   // may be able to handle the situation. 
01404   // Note: some lookup failures are expected!
01405   // See e.g. R.isForRedeclaration().
01406   return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
01407 }
01408 
01409 /// @brief Perform qualified name lookup in the namespaces nominated by
01410 /// using directives by the given context.
01411 ///
01412 /// C++98 [namespace.qual]p2:
01413 ///   Given X::m (where X is a user-declared namespace), or given \::m
01414 ///   (where X is the global namespace), let S be the set of all
01415 ///   declarations of m in X and in the transitive closure of all
01416 ///   namespaces nominated by using-directives in X and its used
01417 ///   namespaces, except that using-directives are ignored in any
01418 ///   namespace, including X, directly containing one or more
01419 ///   declarations of m. No namespace is searched more than once in
01420 ///   the lookup of a name. If S is the empty set, the program is
01421 ///   ill-formed. Otherwise, if S has exactly one member, or if the
01422 ///   context of the reference is a using-declaration
01423 ///   (namespace.udecl), S is the required set of declarations of
01424 ///   m. Otherwise if the use of m is not one that allows a unique
01425 ///   declaration to be chosen from S, the program is ill-formed.
01426 ///
01427 /// C++98 [namespace.qual]p5:
01428 ///   During the lookup of a qualified namespace member name, if the
01429 ///   lookup finds more than one declaration of the member, and if one
01430 ///   declaration introduces a class name or enumeration name and the
01431 ///   other declarations either introduce the same object, the same
01432 ///   enumerator or a set of functions, the non-type name hides the
01433 ///   class or enumeration name if and only if the declarations are
01434 ///   from the same namespace; otherwise (the declarations are from
01435 ///   different namespaces), the program is ill-formed.
01436 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
01437                                                  DeclContext *StartDC) {
01438   assert(StartDC->isFileContext() && "start context is not a file context");
01439 
01440   DeclContext::udir_range UsingDirectives = StartDC->using_directives();
01441   if (UsingDirectives.begin() == UsingDirectives.end()) return false;
01442 
01443   // We have at least added all these contexts to the queue.
01444   llvm::SmallPtrSet<DeclContext*, 8> Visited;
01445   Visited.insert(StartDC);
01446 
01447   // We have not yet looked into these namespaces, much less added
01448   // their "using-children" to the queue.
01449   SmallVector<NamespaceDecl*, 8> Queue;
01450 
01451   // We have already looked into the initial namespace; seed the queue
01452   // with its using-children.
01453   for (auto *I : UsingDirectives) {
01454     NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
01455     if (Visited.insert(ND))
01456       Queue.push_back(ND);
01457   }
01458 
01459   // The easiest way to implement the restriction in [namespace.qual]p5
01460   // is to check whether any of the individual results found a tag
01461   // and, if so, to declare an ambiguity if the final result is not
01462   // a tag.
01463   bool FoundTag = false;
01464   bool FoundNonTag = false;
01465 
01466   LookupResult LocalR(LookupResult::Temporary, R);
01467 
01468   bool Found = false;
01469   while (!Queue.empty()) {
01470     NamespaceDecl *ND = Queue.pop_back_val();
01471 
01472     // We go through some convolutions here to avoid copying results
01473     // between LookupResults.
01474     bool UseLocal = !R.empty();
01475     LookupResult &DirectR = UseLocal ? LocalR : R;
01476     bool FoundDirect = LookupDirect(S, DirectR, ND);
01477 
01478     if (FoundDirect) {
01479       // First do any local hiding.
01480       DirectR.resolveKind();
01481 
01482       // If the local result is a tag, remember that.
01483       if (DirectR.isSingleTagDecl())
01484         FoundTag = true;
01485       else
01486         FoundNonTag = true;
01487 
01488       // Append the local results to the total results if necessary.
01489       if (UseLocal) {
01490         R.addAllDecls(LocalR);
01491         LocalR.clear();
01492       }
01493     }
01494 
01495     // If we find names in this namespace, ignore its using directives.
01496     if (FoundDirect) {
01497       Found = true;
01498       continue;
01499     }
01500 
01501     for (auto I : ND->using_directives()) {
01502       NamespaceDecl *Nom = I->getNominatedNamespace();
01503       if (Visited.insert(Nom))
01504         Queue.push_back(Nom);
01505     }
01506   }
01507 
01508   if (Found) {
01509     if (FoundTag && FoundNonTag)
01510       R.setAmbiguousQualifiedTagHiding();
01511     else
01512       R.resolveKind();
01513   }
01514 
01515   return Found;
01516 }
01517 
01518 /// \brief Callback that looks for any member of a class with the given name.
01519 static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
01520                             CXXBasePath &Path,
01521                             void *Name) {
01522   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
01523 
01524   DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
01525   Path.Decls = BaseRecord->lookup(N);
01526   return !Path.Decls.empty();
01527 }
01528 
01529 /// \brief Determine whether the given set of member declarations contains only
01530 /// static members, nested types, and enumerators.
01531 template<typename InputIterator>
01532 static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
01533   Decl *D = (*First)->getUnderlyingDecl();
01534   if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
01535     return true;
01536 
01537   if (isa<CXXMethodDecl>(D)) {
01538     // Determine whether all of the methods are static.
01539     bool AllMethodsAreStatic = true;
01540     for(; First != Last; ++First) {
01541       D = (*First)->getUnderlyingDecl();
01542 
01543       if (!isa<CXXMethodDecl>(D)) {
01544         assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
01545         break;
01546       }
01547 
01548       if (!cast<CXXMethodDecl>(D)->isStatic()) {
01549         AllMethodsAreStatic = false;
01550         break;
01551       }
01552     }
01553 
01554     if (AllMethodsAreStatic)
01555       return true;
01556   }
01557 
01558   return false;
01559 }
01560 
01561 /// \brief Perform qualified name lookup into a given context.
01562 ///
01563 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
01564 /// names when the context of those names is explicit specified, e.g.,
01565 /// "std::vector" or "x->member", or as part of unqualified name lookup.
01566 ///
01567 /// Different lookup criteria can find different names. For example, a
01568 /// particular scope can have both a struct and a function of the same
01569 /// name, and each can be found by certain lookup criteria. For more
01570 /// information about lookup criteria, see the documentation for the
01571 /// class LookupCriteria.
01572 ///
01573 /// \param R captures both the lookup criteria and any lookup results found.
01574 ///
01575 /// \param LookupCtx The context in which qualified name lookup will
01576 /// search. If the lookup criteria permits, name lookup may also search
01577 /// in the parent contexts or (for C++ classes) base classes.
01578 ///
01579 /// \param InUnqualifiedLookup true if this is qualified name lookup that
01580 /// occurs as part of unqualified name lookup.
01581 ///
01582 /// \returns true if lookup succeeded, false if it failed.
01583 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
01584                                bool InUnqualifiedLookup) {
01585   assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
01586 
01587   if (!R.getLookupName())
01588     return false;
01589 
01590   // Make sure that the declaration context is complete.
01591   assert((!isa<TagDecl>(LookupCtx) ||
01592           LookupCtx->isDependentContext() ||
01593           cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
01594           cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
01595          "Declaration context must already be complete!");
01596 
01597   // Perform qualified name lookup into the LookupCtx.
01598   if (LookupDirect(*this, R, LookupCtx)) {
01599     R.resolveKind();
01600     if (isa<CXXRecordDecl>(LookupCtx))
01601       R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
01602     return true;
01603   }
01604 
01605   // Don't descend into implied contexts for redeclarations.
01606   // C++98 [namespace.qual]p6:
01607   //   In a declaration for a namespace member in which the
01608   //   declarator-id is a qualified-id, given that the qualified-id
01609   //   for the namespace member has the form
01610   //     nested-name-specifier unqualified-id
01611   //   the unqualified-id shall name a member of the namespace
01612   //   designated by the nested-name-specifier.
01613   // See also [class.mfct]p5 and [class.static.data]p2.
01614   if (R.isForRedeclaration())
01615     return false;
01616 
01617   // If this is a namespace, look it up in the implied namespaces.
01618   if (LookupCtx->isFileContext())
01619     return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
01620 
01621   // If this isn't a C++ class, we aren't allowed to look into base
01622   // classes, we're done.
01623   CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
01624   if (!LookupRec || !LookupRec->getDefinition())
01625     return false;
01626 
01627   // If we're performing qualified name lookup into a dependent class,
01628   // then we are actually looking into a current instantiation. If we have any
01629   // dependent base classes, then we either have to delay lookup until
01630   // template instantiation time (at which point all bases will be available)
01631   // or we have to fail.
01632   if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
01633       LookupRec->hasAnyDependentBases()) {
01634     R.setNotFoundInCurrentInstantiation();
01635     return false;
01636   }
01637 
01638   // Perform lookup into our base classes.
01639   CXXBasePaths Paths;
01640   Paths.setOrigin(LookupRec);
01641 
01642   // Look for this member in our base classes
01643   CXXRecordDecl::BaseMatchesCallback *BaseCallback = nullptr;
01644   switch (R.getLookupKind()) {
01645     case LookupObjCImplicitSelfParam:
01646     case LookupOrdinaryName:
01647     case LookupMemberName:
01648     case LookupRedeclarationWithLinkage:
01649     case LookupLocalFriendName:
01650       BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
01651       break;
01652 
01653     case LookupTagName:
01654       BaseCallback = &CXXRecordDecl::FindTagMember;
01655       break;
01656 
01657     case LookupAnyName:
01658       BaseCallback = &LookupAnyMember;
01659       break;
01660 
01661     case LookupUsingDeclName:
01662       // This lookup is for redeclarations only.
01663 
01664     case LookupOperatorName:
01665     case LookupNamespaceName:
01666     case LookupObjCProtocolName:
01667     case LookupLabel:
01668       // These lookups will never find a member in a C++ class (or base class).
01669       return false;
01670 
01671     case LookupNestedNameSpecifierName:
01672       BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
01673       break;
01674   }
01675 
01676   if (!LookupRec->lookupInBases(BaseCallback,
01677                                 R.getLookupName().getAsOpaquePtr(), Paths))
01678     return false;
01679 
01680   R.setNamingClass(LookupRec);
01681 
01682   // C++ [class.member.lookup]p2:
01683   //   [...] If the resulting set of declarations are not all from
01684   //   sub-objects of the same type, or the set has a nonstatic member
01685   //   and includes members from distinct sub-objects, there is an
01686   //   ambiguity and the program is ill-formed. Otherwise that set is
01687   //   the result of the lookup.
01688   QualType SubobjectType;
01689   int SubobjectNumber = 0;
01690   AccessSpecifier SubobjectAccess = AS_none;
01691 
01692   for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
01693        Path != PathEnd; ++Path) {
01694     const CXXBasePathElement &PathElement = Path->back();
01695 
01696     // Pick the best (i.e. most permissive i.e. numerically lowest) access
01697     // across all paths.
01698     SubobjectAccess = std::min(SubobjectAccess, Path->Access);
01699 
01700     // Determine whether we're looking at a distinct sub-object or not.
01701     if (SubobjectType.isNull()) {
01702       // This is the first subobject we've looked at. Record its type.
01703       SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
01704       SubobjectNumber = PathElement.SubobjectNumber;
01705       continue;
01706     }
01707 
01708     if (SubobjectType
01709                  != Context.getCanonicalType(PathElement.Base->getType())) {
01710       // We found members of the given name in two subobjects of
01711       // different types. If the declaration sets aren't the same, this
01712       // lookup is ambiguous.
01713       if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
01714         CXXBasePaths::paths_iterator FirstPath = Paths.begin();
01715         DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
01716         DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
01717 
01718         while (FirstD != FirstPath->Decls.end() &&
01719                CurrentD != Path->Decls.end()) {
01720          if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
01721              (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
01722            break;
01723 
01724           ++FirstD;
01725           ++CurrentD;
01726         }
01727 
01728         if (FirstD == FirstPath->Decls.end() &&
01729             CurrentD == Path->Decls.end())
01730           continue;
01731       }
01732 
01733       R.setAmbiguousBaseSubobjectTypes(Paths);
01734       return true;
01735     }
01736 
01737     if (SubobjectNumber != PathElement.SubobjectNumber) {
01738       // We have a different subobject of the same type.
01739 
01740       // C++ [class.member.lookup]p5:
01741       //   A static member, a nested type or an enumerator defined in
01742       //   a base class T can unambiguously be found even if an object
01743       //   has more than one base class subobject of type T.
01744       if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
01745         continue;
01746 
01747       // We have found a nonstatic member name in multiple, distinct
01748       // subobjects. Name lookup is ambiguous.
01749       R.setAmbiguousBaseSubobjects(Paths);
01750       return true;
01751     }
01752   }
01753 
01754   // Lookup in a base class succeeded; return these results.
01755 
01756   for (auto *D : Paths.front().Decls) {
01757     AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
01758                                                     D->getAccess());
01759     R.addDecl(D, AS);
01760   }
01761   R.resolveKind();
01762   return true;
01763 }
01764 
01765 /// @brief Performs name lookup for a name that was parsed in the
01766 /// source code, and may contain a C++ scope specifier.
01767 ///
01768 /// This routine is a convenience routine meant to be called from
01769 /// contexts that receive a name and an optional C++ scope specifier
01770 /// (e.g., "N::M::x"). It will then perform either qualified or
01771 /// unqualified name lookup (with LookupQualifiedName or LookupName,
01772 /// respectively) on the given name and return those results. It will
01773 /// perform a special type of lookup for "__super::" scope specifier.
01774 ///
01775 /// @param S        The scope from which unqualified name lookup will
01776 /// begin.
01777 ///
01778 /// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
01779 ///
01780 /// @param EnteringContext Indicates whether we are going to enter the
01781 /// context of the scope-specifier SS (if present).
01782 ///
01783 /// @returns True if any decls were found (but possibly ambiguous)
01784 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
01785                             bool AllowBuiltinCreation, bool EnteringContext) {
01786   if (SS && SS->isInvalid()) {
01787     // When the scope specifier is invalid, don't even look for
01788     // anything.
01789     return false;
01790   }
01791 
01792   if (SS && SS->isSet()) {
01793     NestedNameSpecifier *NNS = SS->getScopeRep();
01794     if (NNS->getKind() == NestedNameSpecifier::Super)
01795       return LookupInSuper(R, NNS->getAsRecordDecl());
01796 
01797     if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
01798       // We have resolved the scope specifier to a particular declaration
01799       // contex, and will perform name lookup in that context.
01800       if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
01801         return false;
01802 
01803       R.setContextRange(SS->getRange());
01804       return LookupQualifiedName(R, DC);
01805     }
01806 
01807     // We could not resolve the scope specified to a specific declaration
01808     // context, which means that SS refers to an unknown specialization.
01809     // Name lookup can't find anything in this case.
01810     R.setNotFoundInCurrentInstantiation();
01811     R.setContextRange(SS->getRange());
01812     return false;
01813   }
01814 
01815   // Perform unqualified name lookup starting in the given scope.
01816   return LookupName(R, S, AllowBuiltinCreation);
01817 }
01818 
01819 /// \brief Perform qualified name lookup into all base classes of the given
01820 /// class.
01821 ///
01822 /// \param R captures both the lookup criteria and any lookup results found.
01823 ///
01824 /// \param Class The context in which qualified name lookup will
01825 /// search. Name lookup will search in all base classes merging the results.
01826 ///
01827 /// @returns True if any decls were found (but possibly ambiguous)
01828 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
01829   for (const auto &BaseSpec : Class->bases()) {
01830     CXXRecordDecl *RD = cast<CXXRecordDecl>(
01831         BaseSpec.getType()->castAs<RecordType>()->getDecl());
01832     LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
01833   Result.setBaseObjectType(Context.getRecordType(Class));
01834     LookupQualifiedName(Result, RD);
01835     for (auto *Decl : Result)
01836       R.addDecl(Decl);
01837   }
01838 
01839   R.resolveKind();
01840 
01841   return !R.empty();
01842 }
01843 
01844 /// \brief Produce a diagnostic describing the ambiguity that resulted
01845 /// from name lookup.
01846 ///
01847 /// \param Result The result of the ambiguous lookup to be diagnosed.
01848 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
01849   assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
01850 
01851   DeclarationName Name = Result.getLookupName();
01852   SourceLocation NameLoc = Result.getNameLoc();
01853   SourceRange LookupRange = Result.getContextRange();
01854 
01855   switch (Result.getAmbiguityKind()) {
01856   case LookupResult::AmbiguousBaseSubobjects: {
01857     CXXBasePaths *Paths = Result.getBasePaths();
01858     QualType SubobjectType = Paths->front().back().Base->getType();
01859     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
01860       << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
01861       << LookupRange;
01862 
01863     DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
01864     while (isa<CXXMethodDecl>(*Found) &&
01865            cast<CXXMethodDecl>(*Found)->isStatic())
01866       ++Found;
01867 
01868     Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
01869     break;
01870   }
01871 
01872   case LookupResult::AmbiguousBaseSubobjectTypes: {
01873     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
01874       << Name << LookupRange;
01875 
01876     CXXBasePaths *Paths = Result.getBasePaths();
01877     std::set<Decl *> DeclsPrinted;
01878     for (CXXBasePaths::paths_iterator Path = Paths->begin(),
01879                                       PathEnd = Paths->end();
01880          Path != PathEnd; ++Path) {
01881       Decl *D = Path->Decls.front();
01882       if (DeclsPrinted.insert(D).second)
01883         Diag(D->getLocation(), diag::note_ambiguous_member_found);
01884     }
01885     break;
01886   }
01887 
01888   case LookupResult::AmbiguousTagHiding: {
01889     Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
01890 
01891     llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
01892 
01893     for (auto *D : Result)
01894       if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
01895         TagDecls.insert(TD);
01896         Diag(TD->getLocation(), diag::note_hidden_tag);
01897       }
01898 
01899     for (auto *D : Result)
01900       if (!isa<TagDecl>(D))
01901         Diag(D->getLocation(), diag::note_hiding_object);
01902 
01903     // For recovery purposes, go ahead and implement the hiding.
01904     LookupResult::Filter F = Result.makeFilter();
01905     while (F.hasNext()) {
01906       if (TagDecls.count(F.next()))
01907         F.erase();
01908     }
01909     F.done();
01910     break;
01911   }
01912 
01913   case LookupResult::AmbiguousReference: {
01914     Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
01915 
01916     for (auto *D : Result)
01917       Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
01918     break;
01919   }
01920   }
01921 }
01922 
01923 namespace {
01924   struct AssociatedLookup {
01925     AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
01926                      Sema::AssociatedNamespaceSet &Namespaces,
01927                      Sema::AssociatedClassSet &Classes)
01928       : S(S), Namespaces(Namespaces), Classes(Classes),
01929         InstantiationLoc(InstantiationLoc) {
01930     }
01931 
01932     Sema &S;
01933     Sema::AssociatedNamespaceSet &Namespaces;
01934     Sema::AssociatedClassSet &Classes;
01935     SourceLocation InstantiationLoc;
01936   };
01937 }
01938 
01939 static void
01940 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
01941 
01942 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
01943                                       DeclContext *Ctx) {
01944   // Add the associated namespace for this class.
01945 
01946   // We don't use DeclContext::getEnclosingNamespaceContext() as this may
01947   // be a locally scoped record.
01948 
01949   // We skip out of inline namespaces. The innermost non-inline namespace
01950   // contains all names of all its nested inline namespaces anyway, so we can
01951   // replace the entire inline namespace tree with its root.
01952   while (Ctx->isRecord() || Ctx->isTransparentContext() ||
01953          Ctx->isInlineNamespace())
01954     Ctx = Ctx->getParent();
01955 
01956   if (Ctx->isFileContext())
01957     Namespaces.insert(Ctx->getPrimaryContext());
01958 }
01959 
01960 // \brief Add the associated classes and namespaces for argument-dependent
01961 // lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
01962 static void
01963 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
01964                                   const TemplateArgument &Arg) {
01965   // C++ [basic.lookup.koenig]p2, last bullet:
01966   //   -- [...] ;
01967   switch (Arg.getKind()) {
01968     case TemplateArgument::Null:
01969       break;
01970 
01971     case TemplateArgument::Type:
01972       // [...] the namespaces and classes associated with the types of the
01973       // template arguments provided for template type parameters (excluding
01974       // template template parameters)
01975       addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
01976       break;
01977 
01978     case TemplateArgument::Template:
01979     case TemplateArgument::TemplateExpansion: {
01980       // [...] the namespaces in which any template template arguments are
01981       // defined; and the classes in which any member templates used as
01982       // template template arguments are defined.
01983       TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
01984       if (ClassTemplateDecl *ClassTemplate
01985                  = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
01986         DeclContext *Ctx = ClassTemplate->getDeclContext();
01987         if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
01988           Result.Classes.insert(EnclosingClass);
01989         // Add the associated namespace for this class.
01990         CollectEnclosingNamespace(Result.Namespaces, Ctx);
01991       }
01992       break;
01993     }
01994 
01995     case TemplateArgument::Declaration:
01996     case TemplateArgument::Integral:
01997     case TemplateArgument::Expression:
01998     case TemplateArgument::NullPtr:
01999       // [Note: non-type template arguments do not contribute to the set of
02000       //  associated namespaces. ]
02001       break;
02002 
02003     case TemplateArgument::Pack:
02004       for (const auto &P : Arg.pack_elements())
02005         addAssociatedClassesAndNamespaces(Result, P);
02006       break;
02007   }
02008 }
02009 
02010 // \brief Add the associated classes and namespaces for
02011 // argument-dependent lookup with an argument of class type
02012 // (C++ [basic.lookup.koenig]p2).
02013 static void
02014 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
02015                                   CXXRecordDecl *Class) {
02016 
02017   // Just silently ignore anything whose name is __va_list_tag.
02018   if (Class->getDeclName() == Result.S.VAListTagName)
02019     return;
02020 
02021   // C++ [basic.lookup.koenig]p2:
02022   //   [...]
02023   //     -- If T is a class type (including unions), its associated
02024   //        classes are: the class itself; the class of which it is a
02025   //        member, if any; and its direct and indirect base
02026   //        classes. Its associated namespaces are the namespaces in
02027   //        which its associated classes are defined.
02028 
02029   // Add the class of which it is a member, if any.
02030   DeclContext *Ctx = Class->getDeclContext();
02031   if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
02032     Result.Classes.insert(EnclosingClass);
02033   // Add the associated namespace for this class.
02034   CollectEnclosingNamespace(Result.Namespaces, Ctx);
02035 
02036   // Add the class itself. If we've already seen this class, we don't
02037   // need to visit base classes.
02038   //
02039   // FIXME: That's not correct, we may have added this class only because it
02040   // was the enclosing class of another class, and in that case we won't have
02041   // added its base classes yet.
02042   if (!Result.Classes.insert(Class))
02043     return;
02044 
02045   // -- If T is a template-id, its associated namespaces and classes are
02046   //    the namespace in which the template is defined; for member
02047   //    templates, the member template's class; the namespaces and classes
02048   //    associated with the types of the template arguments provided for
02049   //    template type parameters (excluding template template parameters); the
02050   //    namespaces in which any template template arguments are defined; and
02051   //    the classes in which any member templates used as template template
02052   //    arguments are defined. [Note: non-type template arguments do not
02053   //    contribute to the set of associated namespaces. ]
02054   if (ClassTemplateSpecializationDecl *Spec
02055         = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
02056     DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
02057     if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
02058       Result.Classes.insert(EnclosingClass);
02059     // Add the associated namespace for this class.
02060     CollectEnclosingNamespace(Result.Namespaces, Ctx);
02061 
02062     const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
02063     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
02064       addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
02065   }
02066 
02067   // Only recurse into base classes for complete types.
02068   if (!Class->hasDefinition())
02069     return;
02070 
02071   // Add direct and indirect base classes along with their associated
02072   // namespaces.
02073   SmallVector<CXXRecordDecl *, 32> Bases;
02074   Bases.push_back(Class);
02075   while (!Bases.empty()) {
02076     // Pop this class off the stack.
02077     Class = Bases.pop_back_val();
02078 
02079     // Visit the base classes.
02080     for (const auto &Base : Class->bases()) {
02081       const RecordType *BaseType = Base.getType()->getAs<RecordType>();
02082       // In dependent contexts, we do ADL twice, and the first time around,
02083       // the base type might be a dependent TemplateSpecializationType, or a
02084       // TemplateTypeParmType. If that happens, simply ignore it.
02085       // FIXME: If we want to support export, we probably need to add the
02086       // namespace of the template in a TemplateSpecializationType, or even
02087       // the classes and namespaces of known non-dependent arguments.
02088       if (!BaseType)
02089         continue;
02090       CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
02091       if (Result.Classes.insert(BaseDecl)) {
02092         // Find the associated namespace for this base class.
02093         DeclContext *BaseCtx = BaseDecl->getDeclContext();
02094         CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
02095 
02096         // Make sure we visit the bases of this base class.
02097         if (BaseDecl->bases_begin() != BaseDecl->bases_end())
02098           Bases.push_back(BaseDecl);
02099       }
02100     }
02101   }
02102 }
02103 
02104 // \brief Add the associated classes and namespaces for
02105 // argument-dependent lookup with an argument of type T
02106 // (C++ [basic.lookup.koenig]p2).
02107 static void
02108 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
02109   // C++ [basic.lookup.koenig]p2:
02110   //
02111   //   For each argument type T in the function call, there is a set
02112   //   of zero or more associated namespaces and a set of zero or more
02113   //   associated classes to be considered. The sets of namespaces and
02114   //   classes is determined entirely by the types of the function
02115   //   arguments (and the namespace of any template template
02116   //   argument). Typedef names and using-declarations used to specify
02117   //   the types do not contribute to this set. The sets of namespaces
02118   //   and classes are determined in the following way:
02119 
02120   SmallVector<const Type *, 16> Queue;
02121   const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
02122 
02123   while (true) {
02124     switch (T->getTypeClass()) {
02125 
02126 #define TYPE(Class, Base)
02127 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
02128 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
02129 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
02130 #define ABSTRACT_TYPE(Class, Base)
02131 #include "clang/AST/TypeNodes.def"
02132       // T is canonical.  We can also ignore dependent types because
02133       // we don't need to do ADL at the definition point, but if we
02134       // wanted to implement template export (or if we find some other
02135       // use for associated classes and namespaces...) this would be
02136       // wrong.
02137       break;
02138 
02139     //    -- If T is a pointer to U or an array of U, its associated
02140     //       namespaces and classes are those associated with U.
02141     case Type::Pointer:
02142       T = cast<PointerType>(T)->getPointeeType().getTypePtr();
02143       continue;
02144     case Type::ConstantArray:
02145     case Type::IncompleteArray:
02146     case Type::VariableArray:
02147       T = cast<ArrayType>(T)->getElementType().getTypePtr();
02148       continue;
02149 
02150     //     -- If T is a fundamental type, its associated sets of
02151     //        namespaces and classes are both empty.
02152     case Type::Builtin:
02153       break;
02154 
02155     //     -- If T is a class type (including unions), its associated
02156     //        classes are: the class itself; the class of which it is a
02157     //        member, if any; and its direct and indirect base
02158     //        classes. Its associated namespaces are the namespaces in
02159     //        which its associated classes are defined.
02160     case Type::Record: {
02161       Result.S.RequireCompleteType(Result.InstantiationLoc, QualType(T, 0),
02162                                    /*no diagnostic*/ 0);
02163       CXXRecordDecl *Class
02164         = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
02165       addAssociatedClassesAndNamespaces(Result, Class);
02166       break;
02167     }
02168 
02169     //     -- If T is an enumeration type, its associated namespace is
02170     //        the namespace in which it is defined. If it is class
02171     //        member, its associated class is the member's class; else
02172     //        it has no associated class.
02173     case Type::Enum: {
02174       EnumDecl *Enum = cast<EnumType>(T)->getDecl();
02175 
02176       DeclContext *Ctx = Enum->getDeclContext();
02177       if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
02178         Result.Classes.insert(EnclosingClass);
02179 
02180       // Add the associated namespace for this class.
02181       CollectEnclosingNamespace(Result.Namespaces, Ctx);
02182 
02183       break;
02184     }
02185 
02186     //     -- If T is a function type, its associated namespaces and
02187     //        classes are those associated with the function parameter
02188     //        types and those associated with the return type.
02189     case Type::FunctionProto: {
02190       const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
02191       for (const auto &Arg : Proto->param_types())
02192         Queue.push_back(Arg.getTypePtr());
02193       // fallthrough
02194     }
02195     case Type::FunctionNoProto: {
02196       const FunctionType *FnType = cast<FunctionType>(T);
02197       T = FnType->getReturnType().getTypePtr();
02198       continue;
02199     }
02200 
02201     //     -- If T is a pointer to a member function of a class X, its
02202     //        associated namespaces and classes are those associated
02203     //        with the function parameter types and return type,
02204     //        together with those associated with X.
02205     //
02206     //     -- If T is a pointer to a data member of class X, its
02207     //        associated namespaces and classes are those associated
02208     //        with the member type together with those associated with
02209     //        X.
02210     case Type::MemberPointer: {
02211       const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
02212 
02213       // Queue up the class type into which this points.
02214       Queue.push_back(MemberPtr->getClass());
02215 
02216       // And directly continue with the pointee type.
02217       T = MemberPtr->getPointeeType().getTypePtr();
02218       continue;
02219     }
02220 
02221     // As an extension, treat this like a normal pointer.
02222     case Type::BlockPointer:
02223       T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
02224       continue;
02225 
02226     // References aren't covered by the standard, but that's such an
02227     // obvious defect that we cover them anyway.
02228     case Type::LValueReference:
02229     case Type::RValueReference:
02230       T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
02231       continue;
02232 
02233     // These are fundamental types.
02234     case Type::Vector:
02235     case Type::ExtVector:
02236     case Type::Complex:
02237       break;
02238 
02239     // Non-deduced auto types only get here for error cases.
02240     case Type::Auto:
02241       break;
02242 
02243     // If T is an Objective-C object or interface type, or a pointer to an 
02244     // object or interface type, the associated namespace is the global
02245     // namespace.
02246     case Type::ObjCObject:
02247     case Type::ObjCInterface:
02248     case Type::ObjCObjectPointer:
02249       Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
02250       break;
02251 
02252     // Atomic types are just wrappers; use the associations of the
02253     // contained type.
02254     case Type::Atomic:
02255       T = cast<AtomicType>(T)->getValueType().getTypePtr();
02256       continue;
02257     }
02258 
02259     if (Queue.empty())
02260       break;
02261     T = Queue.pop_back_val();
02262   }
02263 }
02264 
02265 /// \brief Find the associated classes and namespaces for
02266 /// argument-dependent lookup for a call with the given set of
02267 /// arguments.
02268 ///
02269 /// This routine computes the sets of associated classes and associated
02270 /// namespaces searched by argument-dependent lookup
02271 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
02272 void Sema::FindAssociatedClassesAndNamespaces(
02273     SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
02274     AssociatedNamespaceSet &AssociatedNamespaces,
02275     AssociatedClassSet &AssociatedClasses) {
02276   AssociatedNamespaces.clear();
02277   AssociatedClasses.clear();
02278 
02279   AssociatedLookup Result(*this, InstantiationLoc,
02280                           AssociatedNamespaces, AssociatedClasses);
02281 
02282   // C++ [basic.lookup.koenig]p2:
02283   //   For each argument type T in the function call, there is a set
02284   //   of zero or more associated namespaces and a set of zero or more
02285   //   associated classes to be considered. The sets of namespaces and
02286   //   classes is determined entirely by the types of the function
02287   //   arguments (and the namespace of any template template
02288   //   argument).
02289   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
02290     Expr *Arg = Args[ArgIdx];
02291 
02292     if (Arg->getType() != Context.OverloadTy) {
02293       addAssociatedClassesAndNamespaces(Result, Arg->getType());
02294       continue;
02295     }
02296 
02297     // [...] In addition, if the argument is the name or address of a
02298     // set of overloaded functions and/or function templates, its
02299     // associated classes and namespaces are the union of those
02300     // associated with each of the members of the set: the namespace
02301     // in which the function or function template is defined and the
02302     // classes and namespaces associated with its (non-dependent)
02303     // parameter types and return type.
02304     Arg = Arg->IgnoreParens();
02305     if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
02306       if (unaryOp->getOpcode() == UO_AddrOf)
02307         Arg = unaryOp->getSubExpr();
02308 
02309     UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
02310     if (!ULE) continue;
02311 
02312     for (const auto *D : ULE->decls()) {
02313       // Look through any using declarations to find the underlying function.
02314       const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
02315 
02316       // Add the classes and namespaces associated with the parameter
02317       // types and return type of this function.
02318       addAssociatedClassesAndNamespaces(Result, FDecl->getType());
02319     }
02320   }
02321 }
02322 
02323 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
02324                                   SourceLocation Loc,
02325                                   LookupNameKind NameKind,
02326                                   RedeclarationKind Redecl) {
02327   LookupResult R(*this, Name, Loc, NameKind, Redecl);
02328   LookupName(R, S);
02329   return R.getAsSingle<NamedDecl>();
02330 }
02331 
02332 /// \brief Find the protocol with the given name, if any.
02333 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
02334                                        SourceLocation IdLoc,
02335                                        RedeclarationKind Redecl) {
02336   Decl *D = LookupSingleName(TUScope, II, IdLoc,
02337                              LookupObjCProtocolName, Redecl);
02338   return cast_or_null<ObjCProtocolDecl>(D);
02339 }
02340 
02341 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
02342                                         QualType T1, QualType T2,
02343                                         UnresolvedSetImpl &Functions) {
02344   // C++ [over.match.oper]p3:
02345   //     -- The set of non-member candidates is the result of the
02346   //        unqualified lookup of operator@ in the context of the
02347   //        expression according to the usual rules for name lookup in
02348   //        unqualified function calls (3.4.2) except that all member
02349   //        functions are ignored.
02350   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
02351   LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
02352   LookupName(Operators, S);
02353 
02354   assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
02355   Functions.append(Operators.begin(), Operators.end());
02356 }
02357 
02358 Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
02359                                                             CXXSpecialMember SM,
02360                                                             bool ConstArg,
02361                                                             bool VolatileArg,
02362                                                             bool RValueThis,
02363                                                             bool ConstThis,
02364                                                             bool VolatileThis) {
02365   assert(CanDeclareSpecialMemberFunction(RD) &&
02366          "doing special member lookup into record that isn't fully complete");
02367   RD = RD->getDefinition();
02368   if (RValueThis || ConstThis || VolatileThis)
02369     assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
02370            "constructors and destructors always have unqualified lvalue this");
02371   if (ConstArg || VolatileArg)
02372     assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
02373            "parameter-less special members can't have qualified arguments");
02374 
02375   llvm::FoldingSetNodeID ID;
02376   ID.AddPointer(RD);
02377   ID.AddInteger(SM);
02378   ID.AddInteger(ConstArg);
02379   ID.AddInteger(VolatileArg);
02380   ID.AddInteger(RValueThis);
02381   ID.AddInteger(ConstThis);
02382   ID.AddInteger(VolatileThis);
02383 
02384   void *InsertPoint;
02385   SpecialMemberOverloadResult *Result =
02386     SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
02387 
02388   // This was already cached
02389   if (Result)
02390     return Result;
02391 
02392   Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>();
02393   Result = new (Result) SpecialMemberOverloadResult(ID);
02394   SpecialMemberCache.InsertNode(Result, InsertPoint);
02395 
02396   if (SM == CXXDestructor) {
02397     if (RD->needsImplicitDestructor())
02398       DeclareImplicitDestructor(RD);
02399     CXXDestructorDecl *DD = RD->getDestructor();
02400     assert(DD && "record without a destructor");
02401     Result->setMethod(DD);
02402     Result->setKind(DD->isDeleted() ?
02403                     SpecialMemberOverloadResult::NoMemberOrDeleted :
02404                     SpecialMemberOverloadResult::Success);
02405     return Result;
02406   }
02407 
02408   // Prepare for overload resolution. Here we construct a synthetic argument
02409   // if necessary and make sure that implicit functions are declared.
02410   CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
02411   DeclarationName Name;
02412   Expr *Arg = nullptr;
02413   unsigned NumArgs;
02414 
02415   QualType ArgType = CanTy;
02416   ExprValueKind VK = VK_LValue;
02417 
02418   if (SM == CXXDefaultConstructor) {
02419     Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
02420     NumArgs = 0;
02421     if (RD->needsImplicitDefaultConstructor())
02422       DeclareImplicitDefaultConstructor(RD);
02423   } else {
02424     if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
02425       Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
02426       if (RD->needsImplicitCopyConstructor())
02427         DeclareImplicitCopyConstructor(RD);
02428       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
02429         DeclareImplicitMoveConstructor(RD);
02430     } else {
02431       Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
02432       if (RD->needsImplicitCopyAssignment())
02433         DeclareImplicitCopyAssignment(RD);
02434       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
02435         DeclareImplicitMoveAssignment(RD);
02436     }
02437 
02438     if (ConstArg)
02439       ArgType.addConst();
02440     if (VolatileArg)
02441       ArgType.addVolatile();
02442 
02443     // This isn't /really/ specified by the standard, but it's implied
02444     // we should be working from an RValue in the case of move to ensure
02445     // that we prefer to bind to rvalue references, and an LValue in the
02446     // case of copy to ensure we don't bind to rvalue references.
02447     // Possibly an XValue is actually correct in the case of move, but
02448     // there is no semantic difference for class types in this restricted
02449     // case.
02450     if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
02451       VK = VK_LValue;
02452     else
02453       VK = VK_RValue;
02454   }
02455 
02456   OpaqueValueExpr FakeArg(SourceLocation(), ArgType, VK);
02457 
02458   if (SM != CXXDefaultConstructor) {
02459     NumArgs = 1;
02460     Arg = &FakeArg;
02461   }
02462 
02463   // Create the object argument
02464   QualType ThisTy = CanTy;
02465   if (ConstThis)
02466     ThisTy.addConst();
02467   if (VolatileThis)
02468     ThisTy.addVolatile();
02469   Expr::Classification Classification =
02470     OpaqueValueExpr(SourceLocation(), ThisTy,
02471                     RValueThis ? VK_RValue : VK_LValue).Classify(Context);
02472 
02473   // Now we perform lookup on the name we computed earlier and do overload
02474   // resolution. Lookup is only performed directly into the class since there
02475   // will always be a (possibly implicit) declaration to shadow any others.
02476   OverloadCandidateSet OCS(RD->getLocation(), OverloadCandidateSet::CSK_Normal);
02477   DeclContext::lookup_result R = RD->lookup(Name);
02478   assert(!R.empty() &&
02479          "lookup for a constructor or assignment operator was empty");
02480 
02481   // Copy the candidates as our processing of them may load new declarations
02482   // from an external source and invalidate lookup_result.
02483   SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
02484 
02485   for (auto *Cand : Candidates) {
02486     if (Cand->isInvalidDecl())
02487       continue;
02488 
02489     if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) {
02490       // FIXME: [namespace.udecl]p15 says that we should only consider a
02491       // using declaration here if it does not match a declaration in the
02492       // derived class. We do not implement this correctly in other cases
02493       // either.
02494       Cand = U->getTargetDecl();
02495 
02496       if (Cand->isInvalidDecl())
02497         continue;
02498     }
02499 
02500     if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) {
02501       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
02502         AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy,
02503                            Classification, llvm::makeArrayRef(&Arg, NumArgs),
02504                            OCS, true);
02505       else
02506         AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public),
02507                              llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
02508     } else if (FunctionTemplateDecl *Tmpl =
02509                  dyn_cast<FunctionTemplateDecl>(Cand)) {
02510       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
02511         AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
02512                                    RD, nullptr, ThisTy, Classification,
02513                                    llvm::makeArrayRef(&Arg, NumArgs),
02514                                    OCS, true);
02515       else
02516         AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
02517                                      nullptr, llvm::makeArrayRef(&Arg, NumArgs),
02518                                      OCS, true);
02519     } else {
02520       assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl");
02521     }
02522   }
02523 
02524   OverloadCandidateSet::iterator Best;
02525   switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) {
02526     case OR_Success:
02527       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
02528       Result->setKind(SpecialMemberOverloadResult::Success);
02529       break;
02530 
02531     case OR_Deleted:
02532       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
02533       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
02534       break;
02535 
02536     case OR_Ambiguous:
02537       Result->setMethod(nullptr);
02538       Result->setKind(SpecialMemberOverloadResult::Ambiguous);
02539       break;
02540 
02541     case OR_No_Viable_Function:
02542       Result->setMethod(nullptr);
02543       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
02544       break;
02545   }
02546 
02547   return Result;
02548 }
02549 
02550 /// \brief Look up the default constructor for the given class.
02551 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
02552   SpecialMemberOverloadResult *Result =
02553     LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
02554                         false, false);
02555 
02556   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
02557 }
02558 
02559 /// \brief Look up the copying constructor for the given class.
02560 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
02561                                                    unsigned Quals) {
02562   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
02563          "non-const, non-volatile qualifiers for copy ctor arg");
02564   SpecialMemberOverloadResult *Result =
02565     LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
02566                         Quals & Qualifiers::Volatile, false, false, false);
02567 
02568   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
02569 }
02570 
02571 /// \brief Look up the moving constructor for the given class.
02572 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
02573                                                   unsigned Quals) {
02574   SpecialMemberOverloadResult *Result =
02575     LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
02576                         Quals & Qualifiers::Volatile, false, false, false);
02577 
02578   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
02579 }
02580 
02581 /// \brief Look up the constructors for the given class.
02582 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
02583   // If the implicit constructors have not yet been declared, do so now.
02584   if (CanDeclareSpecialMemberFunction(Class)) {
02585     if (Class->needsImplicitDefaultConstructor())
02586       DeclareImplicitDefaultConstructor(Class);
02587     if (Class->needsImplicitCopyConstructor())
02588       DeclareImplicitCopyConstructor(Class);
02589     if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
02590       DeclareImplicitMoveConstructor(Class);
02591   }
02592 
02593   CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
02594   DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
02595   return Class->lookup(Name);
02596 }
02597 
02598 /// \brief Look up the copying assignment operator for the given class.
02599 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
02600                                              unsigned Quals, bool RValueThis,
02601                                              unsigned ThisQuals) {
02602   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
02603          "non-const, non-volatile qualifiers for copy assignment arg");
02604   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
02605          "non-const, non-volatile qualifiers for copy assignment this");
02606   SpecialMemberOverloadResult *Result =
02607     LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
02608                         Quals & Qualifiers::Volatile, RValueThis,
02609                         ThisQuals & Qualifiers::Const,
02610                         ThisQuals & Qualifiers::Volatile);
02611 
02612   return Result->getMethod();
02613 }
02614 
02615 /// \brief Look up the moving assignment operator for the given class.
02616 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
02617                                             unsigned Quals,
02618                                             bool RValueThis,
02619                                             unsigned ThisQuals) {
02620   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
02621          "non-const, non-volatile qualifiers for copy assignment this");
02622   SpecialMemberOverloadResult *Result =
02623     LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
02624                         Quals & Qualifiers::Volatile, RValueThis,
02625                         ThisQuals & Qualifiers::Const,
02626                         ThisQuals & Qualifiers::Volatile);
02627 
02628   return Result->getMethod();
02629 }
02630 
02631 /// \brief Look for the destructor of the given class.
02632 ///
02633 /// During semantic analysis, this routine should be used in lieu of
02634 /// CXXRecordDecl::getDestructor().
02635 ///
02636 /// \returns The destructor for this class.
02637 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
02638   return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
02639                                                      false, false, false,
02640                                                      false, false)->getMethod());
02641 }
02642 
02643 /// LookupLiteralOperator - Determine which literal operator should be used for
02644 /// a user-defined literal, per C++11 [lex.ext].
02645 ///
02646 /// Normal overload resolution is not used to select which literal operator to
02647 /// call for a user-defined literal. Look up the provided literal operator name,
02648 /// and filter the results to the appropriate set for the given argument types.
02649 Sema::LiteralOperatorLookupResult
02650 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
02651                             ArrayRef<QualType> ArgTys,
02652                             bool AllowRaw, bool AllowTemplate,
02653                             bool AllowStringTemplate) {
02654   LookupName(R, S);
02655   assert(R.getResultKind() != LookupResult::Ambiguous &&
02656          "literal operator lookup can't be ambiguous");
02657 
02658   // Filter the lookup results appropriately.
02659   LookupResult::Filter F = R.makeFilter();
02660 
02661   bool FoundRaw = false;
02662   bool FoundTemplate = false;
02663   bool FoundStringTemplate = false;
02664   bool FoundExactMatch = false;
02665 
02666   while (F.hasNext()) {
02667     Decl *D = F.next();
02668     if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
02669       D = USD->getTargetDecl();
02670 
02671     // If the declaration we found is invalid, skip it.
02672     if (D->isInvalidDecl()) {
02673       F.erase();
02674       continue;
02675     }
02676 
02677     bool IsRaw = false;
02678     bool IsTemplate = false;
02679     bool IsStringTemplate = false;
02680     bool IsExactMatch = false;
02681 
02682     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
02683       if (FD->getNumParams() == 1 &&
02684           FD->getParamDecl(0)->getType()->getAs<PointerType>())
02685         IsRaw = true;
02686       else if (FD->getNumParams() == ArgTys.size()) {
02687         IsExactMatch = true;
02688         for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
02689           QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
02690           if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
02691             IsExactMatch = false;
02692             break;
02693           }
02694         }
02695       }
02696     }
02697     if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
02698       TemplateParameterList *Params = FD->getTemplateParameters();
02699       if (Params->size() == 1)
02700         IsTemplate = true;
02701       else
02702         IsStringTemplate = true;
02703     }
02704 
02705     if (IsExactMatch) {
02706       FoundExactMatch = true;
02707       AllowRaw = false;
02708       AllowTemplate = false;
02709       AllowStringTemplate = false;
02710       if (FoundRaw || FoundTemplate || FoundStringTemplate) {
02711         // Go through again and remove the raw and template decls we've
02712         // already found.
02713         F.restart();
02714         FoundRaw = FoundTemplate = FoundStringTemplate = false;
02715       }
02716     } else if (AllowRaw && IsRaw) {
02717       FoundRaw = true;
02718     } else if (AllowTemplate && IsTemplate) {
02719       FoundTemplate = true;
02720     } else if (AllowStringTemplate && IsStringTemplate) {
02721       FoundStringTemplate = true;
02722     } else {
02723       F.erase();
02724     }
02725   }
02726 
02727   F.done();
02728 
02729   // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
02730   // parameter type, that is used in preference to a raw literal operator
02731   // or literal operator template.
02732   if (FoundExactMatch)
02733     return LOLR_Cooked;
02734 
02735   // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
02736   // operator template, but not both.
02737   if (FoundRaw && FoundTemplate) {
02738     Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
02739     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
02740       NoteOverloadCandidate((*I)->getUnderlyingDecl()->getAsFunction());
02741     return LOLR_Error;
02742   }
02743 
02744   if (FoundRaw)
02745     return LOLR_Raw;
02746 
02747   if (FoundTemplate)
02748     return LOLR_Template;
02749 
02750   if (FoundStringTemplate)
02751     return LOLR_StringTemplate;
02752 
02753   // Didn't find anything we could use.
02754   Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
02755     << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
02756     << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
02757     << (AllowTemplate || AllowStringTemplate);
02758   return LOLR_Error;
02759 }
02760 
02761 void ADLResult::insert(NamedDecl *New) {
02762   NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
02763 
02764   // If we haven't yet seen a decl for this key, or the last decl
02765   // was exactly this one, we're done.
02766   if (Old == nullptr || Old == New) {
02767     Old = New;
02768     return;
02769   }
02770 
02771   // Otherwise, decide which is a more recent redeclaration.
02772   FunctionDecl *OldFD = Old->getAsFunction();
02773   FunctionDecl *NewFD = New->getAsFunction();
02774 
02775   FunctionDecl *Cursor = NewFD;
02776   while (true) {
02777     Cursor = Cursor->getPreviousDecl();
02778 
02779     // If we got to the end without finding OldFD, OldFD is the newer
02780     // declaration;  leave things as they are.
02781     if (!Cursor) return;
02782 
02783     // If we do find OldFD, then NewFD is newer.
02784     if (Cursor == OldFD) break;
02785 
02786     // Otherwise, keep looking.
02787   }
02788 
02789   Old = New;
02790 }
02791 
02792 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
02793                                    ArrayRef<Expr *> Args, ADLResult &Result) {
02794   // Find all of the associated namespaces and classes based on the
02795   // arguments we have.
02796   AssociatedNamespaceSet AssociatedNamespaces;
02797   AssociatedClassSet AssociatedClasses;
02798   FindAssociatedClassesAndNamespaces(Loc, Args,
02799                                      AssociatedNamespaces,
02800                                      AssociatedClasses);
02801 
02802   // C++ [basic.lookup.argdep]p3:
02803   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
02804   //   and let Y be the lookup set produced by argument dependent
02805   //   lookup (defined as follows). If X contains [...] then Y is
02806   //   empty. Otherwise Y is the set of declarations found in the
02807   //   namespaces associated with the argument types as described
02808   //   below. The set of declarations found by the lookup of the name
02809   //   is the union of X and Y.
02810   //
02811   // Here, we compute Y and add its members to the overloaded
02812   // candidate set.
02813   for (auto *NS : AssociatedNamespaces) {
02814     //   When considering an associated namespace, the lookup is the
02815     //   same as the lookup performed when the associated namespace is
02816     //   used as a qualifier (3.4.3.2) except that:
02817     //
02818     //     -- Any using-directives in the associated namespace are
02819     //        ignored.
02820     //
02821     //     -- Any namespace-scope friend functions declared in
02822     //        associated classes are visible within their respective
02823     //        namespaces even if they are not visible during an ordinary
02824     //        lookup (11.4).
02825     DeclContext::lookup_result R = NS->lookup(Name);
02826     for (auto *D : R) {
02827       // If the only declaration here is an ordinary friend, consider
02828       // it only if it was declared in an associated classes.
02829       if ((D->getIdentifierNamespace() & Decl::IDNS_Ordinary) == 0) {
02830         // If it's neither ordinarily visible nor a friend, we can't find it.
02831         if ((D->getIdentifierNamespace() & Decl::IDNS_OrdinaryFriend) == 0)
02832           continue;
02833 
02834         bool DeclaredInAssociatedClass = false;
02835         for (Decl *DI = D; DI; DI = DI->getPreviousDecl()) {
02836           DeclContext *LexDC = DI->getLexicalDeclContext();
02837           if (isa<CXXRecordDecl>(LexDC) &&
02838               AssociatedClasses.count(cast<CXXRecordDecl>(LexDC))) {
02839             DeclaredInAssociatedClass = true;
02840             break;
02841           }
02842         }
02843         if (!DeclaredInAssociatedClass)
02844           continue;
02845       }
02846 
02847       if (isa<UsingShadowDecl>(D))
02848         D = cast<UsingShadowDecl>(D)->getTargetDecl();
02849 
02850       if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D))
02851         continue;
02852 
02853       Result.insert(D);
02854     }
02855   }
02856 }
02857 
02858 //----------------------------------------------------------------------------
02859 // Search for all visible declarations.
02860 //----------------------------------------------------------------------------
02861 VisibleDeclConsumer::~VisibleDeclConsumer() { }
02862 
02863 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
02864 
02865 namespace {
02866 
02867 class ShadowContextRAII;
02868 
02869 class VisibleDeclsRecord {
02870 public:
02871   /// \brief An entry in the shadow map, which is optimized to store a
02872   /// single declaration (the common case) but can also store a list
02873   /// of declarations.
02874   typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
02875 
02876 private:
02877   /// \brief A mapping from declaration names to the declarations that have
02878   /// this name within a particular scope.
02879   typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
02880 
02881   /// \brief A list of shadow maps, which is used to model name hiding.
02882   std::list<ShadowMap> ShadowMaps;
02883 
02884   /// \brief The declaration contexts we have already visited.
02885   llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
02886 
02887   friend class ShadowContextRAII;
02888 
02889 public:
02890   /// \brief Determine whether we have already visited this context
02891   /// (and, if not, note that we are going to visit that context now).
02892   bool visitedContext(DeclContext *Ctx) {
02893     return !VisitedContexts.insert(Ctx);
02894   }
02895 
02896   bool alreadyVisitedContext(DeclContext *Ctx) {
02897     return VisitedContexts.count(Ctx);
02898   }
02899 
02900   /// \brief Determine whether the given declaration is hidden in the
02901   /// current scope.
02902   ///
02903   /// \returns the declaration that hides the given declaration, or
02904   /// NULL if no such declaration exists.
02905   NamedDecl *checkHidden(NamedDecl *ND);
02906 
02907   /// \brief Add a declaration to the current shadow map.
02908   void add(NamedDecl *ND) {
02909     ShadowMaps.back()[ND->getDeclName()].push_back(ND);
02910   }
02911 };
02912 
02913 /// \brief RAII object that records when we've entered a shadow context.
02914 class ShadowContextRAII {
02915   VisibleDeclsRecord &Visible;
02916 
02917   typedef VisibleDeclsRecord::ShadowMap ShadowMap;
02918 
02919 public:
02920   ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
02921     Visible.ShadowMaps.push_back(ShadowMap());
02922   }
02923 
02924   ~ShadowContextRAII() {
02925     Visible.ShadowMaps.pop_back();
02926   }
02927 };
02928 
02929 } // end anonymous namespace
02930 
02931 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
02932   // Look through using declarations.
02933   ND = ND->getUnderlyingDecl();
02934 
02935   unsigned IDNS = ND->getIdentifierNamespace();
02936   std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
02937   for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
02938        SM != SMEnd; ++SM) {
02939     ShadowMap::iterator Pos = SM->find(ND->getDeclName());
02940     if (Pos == SM->end())
02941       continue;
02942 
02943     for (auto *D : Pos->second) {
02944       // A tag declaration does not hide a non-tag declaration.
02945       if (D->hasTagIdentifierNamespace() &&
02946           (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
02947                    Decl::IDNS_ObjCProtocol)))
02948         continue;
02949 
02950       // Protocols are in distinct namespaces from everything else.
02951       if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
02952            || (IDNS & Decl::IDNS_ObjCProtocol)) &&
02953           D->getIdentifierNamespace() != IDNS)
02954         continue;
02955 
02956       // Functions and function templates in the same scope overload
02957       // rather than hide.  FIXME: Look for hiding based on function
02958       // signatures!
02959       if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
02960           ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
02961           SM == ShadowMaps.rbegin())
02962         continue;
02963 
02964       // We've found a declaration that hides this one.
02965       return D;
02966     }
02967   }
02968 
02969   return nullptr;
02970 }
02971 
02972 static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
02973                                bool QualifiedNameLookup,
02974                                bool InBaseClass,
02975                                VisibleDeclConsumer &Consumer,
02976                                VisibleDeclsRecord &Visited) {
02977   if (!Ctx)
02978     return;
02979 
02980   // Make sure we don't visit the same context twice.
02981   if (Visited.visitedContext(Ctx->getPrimaryContext()))
02982     return;
02983 
02984   if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
02985     Result.getSema().ForceDeclarationOfImplicitMembers(Class);
02986 
02987   // Enumerate all of the results in this context.
02988   for (const auto &R : Ctx->lookups()) {
02989     for (auto *I : R) {
02990       if (NamedDecl *ND = dyn_cast<NamedDecl>(I)) {
02991         if ((ND = Result.getAcceptableDecl(ND))) {
02992           Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
02993           Visited.add(ND);
02994         }
02995       }
02996     }
02997   }
02998 
02999   // Traverse using directives for qualified name lookup.
03000   if (QualifiedNameLookup) {
03001     ShadowContextRAII Shadow(Visited);
03002     for (auto I : Ctx->using_directives()) {
03003       LookupVisibleDecls(I->getNominatedNamespace(), Result,
03004                          QualifiedNameLookup, InBaseClass, Consumer, Visited);
03005     }
03006   }
03007 
03008   // Traverse the contexts of inherited C++ classes.
03009   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
03010     if (!Record->hasDefinition())
03011       return;
03012 
03013     for (const auto &B : Record->bases()) {
03014       QualType BaseType = B.getType();
03015 
03016       // Don't look into dependent bases, because name lookup can't look
03017       // there anyway.
03018       if (BaseType->isDependentType())
03019         continue;
03020 
03021       const RecordType *Record = BaseType->getAs<RecordType>();
03022       if (!Record)
03023         continue;
03024 
03025       // FIXME: It would be nice to be able to determine whether referencing
03026       // a particular member would be ambiguous. For example, given
03027       //
03028       //   struct A { int member; };
03029       //   struct B { int member; };
03030       //   struct C : A, B { };
03031       //
03032       //   void f(C *c) { c->### }
03033       //
03034       // accessing 'member' would result in an ambiguity. However, we
03035       // could be smart enough to qualify the member with the base
03036       // class, e.g.,
03037       //
03038       //   c->B::member
03039       //
03040       // or
03041       //
03042       //   c->A::member
03043 
03044       // Find results in this base class (and its bases).
03045       ShadowContextRAII Shadow(Visited);
03046       LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
03047                          true, Consumer, Visited);
03048     }
03049   }
03050 
03051   // Traverse the contexts of Objective-C classes.
03052   if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
03053     // Traverse categories.
03054     for (auto *Cat : IFace->visible_categories()) {
03055       ShadowContextRAII Shadow(Visited);
03056       LookupVisibleDecls(Cat, Result, QualifiedNameLookup, false,
03057                          Consumer, Visited);
03058     }
03059 
03060     // Traverse protocols.
03061     for (auto *I : IFace->all_referenced_protocols()) {
03062       ShadowContextRAII Shadow(Visited);
03063       LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
03064                          Visited);
03065     }
03066 
03067     // Traverse the superclass.
03068     if (IFace->getSuperClass()) {
03069       ShadowContextRAII Shadow(Visited);
03070       LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
03071                          true, Consumer, Visited);
03072     }
03073 
03074     // If there is an implementation, traverse it. We do this to find
03075     // synthesized ivars.
03076     if (IFace->getImplementation()) {
03077       ShadowContextRAII Shadow(Visited);
03078       LookupVisibleDecls(IFace->getImplementation(), Result,
03079                          QualifiedNameLookup, InBaseClass, Consumer, Visited);
03080     }
03081   } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
03082     for (auto *I : Protocol->protocols()) {
03083       ShadowContextRAII Shadow(Visited);
03084       LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
03085                          Visited);
03086     }
03087   } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
03088     for (auto *I : Category->protocols()) {
03089       ShadowContextRAII Shadow(Visited);
03090       LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
03091                          Visited);
03092     }
03093 
03094     // If there is an implementation, traverse it.
03095     if (Category->getImplementation()) {
03096       ShadowContextRAII Shadow(Visited);
03097       LookupVisibleDecls(Category->getImplementation(), Result,
03098                          QualifiedNameLookup, true, Consumer, Visited);
03099     }
03100   }
03101 }
03102 
03103 static void LookupVisibleDecls(Scope *S, LookupResult &Result,
03104                                UnqualUsingDirectiveSet &UDirs,
03105                                VisibleDeclConsumer &Consumer,
03106                                VisibleDeclsRecord &Visited) {
03107   if (!S)
03108     return;
03109 
03110   if (!S->getEntity() ||
03111       (!S->getParent() &&
03112        !Visited.alreadyVisitedContext(S->getEntity())) ||
03113       (S->getEntity())->isFunctionOrMethod()) {
03114     FindLocalExternScope FindLocals(Result);
03115     // Walk through the declarations in this Scope.
03116     for (auto *D : S->decls()) {
03117       if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
03118         if ((ND = Result.getAcceptableDecl(ND))) {
03119           Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
03120           Visited.add(ND);
03121         }
03122     }
03123   }
03124 
03125   // FIXME: C++ [temp.local]p8
03126   DeclContext *Entity = nullptr;
03127   if (S->getEntity()) {
03128     // Look into this scope's declaration context, along with any of its
03129     // parent lookup contexts (e.g., enclosing classes), up to the point
03130     // where we hit the context stored in the next outer scope.
03131     Entity = S->getEntity();
03132     DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
03133 
03134     for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
03135          Ctx = Ctx->getLookupParent()) {
03136       if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
03137         if (Method->isInstanceMethod()) {
03138           // For instance methods, look for ivars in the method's interface.
03139           LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
03140                                   Result.getNameLoc(), Sema::LookupMemberName);
03141           if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
03142             LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
03143                                /*InBaseClass=*/false, Consumer, Visited);
03144           }
03145         }
03146 
03147         // We've already performed all of the name lookup that we need
03148         // to for Objective-C methods; the next context will be the
03149         // outer scope.
03150         break;
03151       }
03152 
03153       if (Ctx->isFunctionOrMethod())
03154         continue;
03155 
03156       LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
03157                          /*InBaseClass=*/false, Consumer, Visited);
03158     }
03159   } else if (!S->getParent()) {
03160     // Look into the translation unit scope. We walk through the translation
03161     // unit's declaration context, because the Scope itself won't have all of
03162     // the declarations if we loaded a precompiled header.
03163     // FIXME: We would like the translation unit's Scope object to point to the
03164     // translation unit, so we don't need this special "if" branch. However,
03165     // doing so would force the normal C++ name-lookup code to look into the
03166     // translation unit decl when the IdentifierInfo chains would suffice.
03167     // Once we fix that problem (which is part of a more general "don't look
03168     // in DeclContexts unless we have to" optimization), we can eliminate this.
03169     Entity = Result.getSema().Context.getTranslationUnitDecl();
03170     LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
03171                        /*InBaseClass=*/false, Consumer, Visited);
03172   }
03173 
03174   if (Entity) {
03175     // Lookup visible declarations in any namespaces found by using
03176     // directives.
03177     UnqualUsingDirectiveSet::const_iterator UI, UEnd;
03178     std::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
03179     for (; UI != UEnd; ++UI)
03180       LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
03181                          Result, /*QualifiedNameLookup=*/false,
03182                          /*InBaseClass=*/false, Consumer, Visited);
03183   }
03184 
03185   // Lookup names in the parent scope.
03186   ShadowContextRAII Shadow(Visited);
03187   LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
03188 }
03189 
03190 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
03191                               VisibleDeclConsumer &Consumer,
03192                               bool IncludeGlobalScope) {
03193   // Determine the set of using directives available during
03194   // unqualified name lookup.
03195   Scope *Initial = S;
03196   UnqualUsingDirectiveSet UDirs;
03197   if (getLangOpts().CPlusPlus) {
03198     // Find the first namespace or translation-unit scope.
03199     while (S && !isNamespaceOrTranslationUnitScope(S))
03200       S = S->getParent();
03201 
03202     UDirs.visitScopeChain(Initial, S);
03203   }
03204   UDirs.done();
03205 
03206   // Look for visible declarations.
03207   LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
03208   Result.setAllowHidden(Consumer.includeHiddenDecls());
03209   VisibleDeclsRecord Visited;
03210   if (!IncludeGlobalScope)
03211     Visited.visitedContext(Context.getTranslationUnitDecl());
03212   ShadowContextRAII Shadow(Visited);
03213   ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
03214 }
03215 
03216 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
03217                               VisibleDeclConsumer &Consumer,
03218                               bool IncludeGlobalScope) {
03219   LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
03220   Result.setAllowHidden(Consumer.includeHiddenDecls());
03221   VisibleDeclsRecord Visited;
03222   if (!IncludeGlobalScope)
03223     Visited.visitedContext(Context.getTranslationUnitDecl());
03224   ShadowContextRAII Shadow(Visited);
03225   ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
03226                        /*InBaseClass=*/false, Consumer, Visited);
03227 }
03228 
03229 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
03230 /// If GnuLabelLoc is a valid source location, then this is a definition
03231 /// of an __label__ label name, otherwise it is a normal label definition
03232 /// or use.
03233 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
03234                                      SourceLocation GnuLabelLoc) {
03235   // Do a lookup to see if we have a label with this name already.
03236   NamedDecl *Res = nullptr;
03237 
03238   if (GnuLabelLoc.isValid()) {
03239     // Local label definitions always shadow existing labels.
03240     Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
03241     Scope *S = CurScope;
03242     PushOnScopeChains(Res, S, true);
03243     return cast<LabelDecl>(Res);
03244   }
03245 
03246   // Not a GNU local label.
03247   Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
03248   // If we found a label, check to see if it is in the same context as us.
03249   // When in a Block, we don't want to reuse a label in an enclosing function.
03250   if (Res && Res->getDeclContext() != CurContext)
03251     Res = nullptr;
03252   if (!Res) {
03253     // If not forward referenced or defined already, create the backing decl.
03254     Res = LabelDecl::Create(Context, CurContext, Loc, II);
03255     Scope *S = CurScope->getFnParent();
03256     assert(S && "Not in a function?");
03257     PushOnScopeChains(Res, S, true);
03258   }
03259   return cast<LabelDecl>(Res);
03260 }
03261 
03262 //===----------------------------------------------------------------------===//
03263 // Typo correction
03264 //===----------------------------------------------------------------------===//
03265 
03266 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
03267                               TypoCorrection &Candidate) {
03268   Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
03269   return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
03270 }
03271 
03272 static void LookupPotentialTypoResult(Sema &SemaRef,
03273                                       LookupResult &Res,
03274                                       IdentifierInfo *Name,
03275                                       Scope *S, CXXScopeSpec *SS,
03276                                       DeclContext *MemberContext,
03277                                       bool EnteringContext,
03278                                       bool isObjCIvarLookup,
03279                                       bool FindHidden);
03280 
03281 /// \brief Check whether the declarations found for a typo correction are
03282 /// visible, and if none of them are, convert the correction to an 'import
03283 /// a module' correction.
03284 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
03285   if (TC.begin() == TC.end())
03286     return;
03287 
03288   TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
03289 
03290   for (/**/; DI != DE; ++DI)
03291     if (!LookupResult::isVisible(SemaRef, *DI))
03292       break;
03293   // Nothing to do if all decls are visible.
03294   if (DI == DE)
03295     return;
03296 
03297   llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
03298   bool AnyVisibleDecls = !NewDecls.empty();
03299 
03300   for (/**/; DI != DE; ++DI) {
03301     NamedDecl *VisibleDecl = *DI;
03302     if (!LookupResult::isVisible(SemaRef, *DI))
03303       VisibleDecl = findAcceptableDecl(SemaRef, *DI);
03304 
03305     if (VisibleDecl) {
03306       if (!AnyVisibleDecls) {
03307         // Found a visible decl, discard all hidden ones.
03308         AnyVisibleDecls = true;
03309         NewDecls.clear();
03310       }
03311       NewDecls.push_back(VisibleDecl);
03312     } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
03313       NewDecls.push_back(*DI);
03314   }
03315 
03316   if (NewDecls.empty())
03317     TC = TypoCorrection();
03318   else {
03319     TC.setCorrectionDecls(NewDecls);
03320     TC.setRequiresImport(!AnyVisibleDecls);
03321   }
03322 }
03323 
03324 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
03325 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
03326 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
03327 static void getNestedNameSpecifierIdentifiers(
03328     NestedNameSpecifier *NNS,
03329     SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
03330   if (NestedNameSpecifier *Prefix = NNS->getPrefix())
03331     getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
03332   else
03333     Identifiers.clear();
03334 
03335   const IdentifierInfo *II = nullptr;
03336 
03337   switch (NNS->getKind()) {
03338   case NestedNameSpecifier::Identifier:
03339     II = NNS->getAsIdentifier();
03340     break;
03341 
03342   case NestedNameSpecifier::Namespace:
03343     if (NNS->getAsNamespace()->isAnonymousNamespace())
03344       return;
03345     II = NNS->getAsNamespace()->getIdentifier();
03346     break;
03347 
03348   case NestedNameSpecifier::NamespaceAlias:
03349     II = NNS->getAsNamespaceAlias()->getIdentifier();
03350     break;
03351 
03352   case NestedNameSpecifier::TypeSpecWithTemplate:
03353   case NestedNameSpecifier::TypeSpec:
03354     II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
03355     break;
03356 
03357   case NestedNameSpecifier::Global:
03358   case NestedNameSpecifier::Super:
03359     return;
03360   }
03361 
03362   if (II)
03363     Identifiers.push_back(II);
03364 }
03365 
03366 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
03367                                        DeclContext *Ctx, bool InBaseClass) {
03368   // Don't consider hidden names for typo correction.
03369   if (Hiding)
03370     return;
03371 
03372   // Only consider entities with identifiers for names, ignoring
03373   // special names (constructors, overloaded operators, selectors,
03374   // etc.).
03375   IdentifierInfo *Name = ND->getIdentifier();
03376   if (!Name)
03377     return;
03378 
03379   // Only consider visible declarations and declarations from modules with
03380   // names that exactly match.
03381   if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo &&
03382       !findAcceptableDecl(SemaRef, ND))
03383     return;
03384 
03385   FoundName(Name->getName());
03386 }
03387 
03388 void TypoCorrectionConsumer::FoundName(StringRef Name) {
03389   // Compute the edit distance between the typo and the name of this
03390   // entity, and add the identifier to the list of results.
03391   addName(Name, nullptr);
03392 }
03393 
03394 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
03395   // Compute the edit distance between the typo and this keyword,
03396   // and add the keyword to the list of results.
03397   addName(Keyword, nullptr, nullptr, true);
03398 }
03399 
03400 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
03401                                      NestedNameSpecifier *NNS, bool isKeyword) {
03402   // Use a simple length-based heuristic to determine the minimum possible
03403   // edit distance. If the minimum isn't good enough, bail out early.
03404   StringRef TypoStr = Typo->getName();
03405   unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
03406   if (MinED && TypoStr.size() / MinED < 3)
03407     return;
03408 
03409   // Compute an upper bound on the allowable edit distance, so that the
03410   // edit-distance algorithm can short-circuit.
03411   unsigned UpperBound = (TypoStr.size() + 2) / 3 + 1;
03412   unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
03413   if (ED >= UpperBound) return;
03414 
03415   TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
03416   if (isKeyword) TC.makeKeyword();
03417   addCorrection(TC);
03418 }
03419 
03420 static const unsigned MaxTypoDistanceResultSets = 5;
03421 
03422 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
03423   StringRef TypoStr = Typo->getName();
03424   StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
03425 
03426   // For very short typos, ignore potential corrections that have a different
03427   // base identifier from the typo or which have a normalized edit distance
03428   // longer than the typo itself.
03429   if (TypoStr.size() < 3 &&
03430       (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
03431     return;
03432 
03433   // If the correction is resolved but is not viable, ignore it.
03434   if (Correction.isResolved()) {
03435     checkCorrectionVisibility(SemaRef, Correction);
03436     if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
03437       return;
03438   }
03439 
03440   TypoResultList &CList =
03441       CorrectionResults[Correction.getEditDistance(false)][Name];
03442 
03443   if (!CList.empty() && !CList.back().isResolved())
03444     CList.pop_back();
03445   if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
03446     std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
03447     for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
03448          RI != RIEnd; ++RI) {
03449       // If the Correction refers to a decl already in the result list,
03450       // replace the existing result if the string representation of Correction
03451       // comes before the current result alphabetically, then stop as there is
03452       // nothing more to be done to add Correction to the candidate set.
03453       if (RI->getCorrectionDecl() == NewND) {
03454         if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
03455           *RI = Correction;
03456         return;
03457       }
03458     }
03459   }
03460   if (CList.empty() || Correction.isResolved())
03461     CList.push_back(Correction);
03462 
03463   while (CorrectionResults.size() > MaxTypoDistanceResultSets)
03464     CorrectionResults.erase(std::prev(CorrectionResults.end()));
03465 }
03466 
03467 void TypoCorrectionConsumer::addNamespaces(
03468     const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
03469   SearchNamespaces = true;
03470 
03471   for (auto KNPair : KnownNamespaces)
03472     Namespaces.addNameSpecifier(KNPair.first);
03473 
03474   bool SSIsTemplate = false;
03475   if (NestedNameSpecifier *NNS =
03476           (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
03477     if (const Type *T = NNS->getAsType())
03478       SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
03479   }
03480   for (const auto *TI : SemaRef.getASTContext().types()) {
03481     if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
03482       CD = CD->getCanonicalDecl();
03483       if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
03484           !CD->isUnion() && CD->getIdentifier() &&
03485           (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
03486           (CD->isBeingDefined() || CD->isCompleteDefinition()))
03487         Namespaces.addNameSpecifier(CD);
03488     }
03489   }
03490 }
03491 
03492 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
03493   if (++CurrentTCIndex < ValidatedCorrections.size())
03494     return ValidatedCorrections[CurrentTCIndex];
03495 
03496   CurrentTCIndex = ValidatedCorrections.size();
03497   while (!CorrectionResults.empty()) {
03498     auto DI = CorrectionResults.begin();
03499     if (DI->second.empty()) {
03500       CorrectionResults.erase(DI);
03501       continue;
03502     }
03503 
03504     auto RI = DI->second.begin();
03505     if (RI->second.empty()) {
03506       DI->second.erase(RI);
03507       performQualifiedLookups();
03508       continue;
03509     }
03510 
03511     TypoCorrection TC = RI->second.pop_back_val();
03512     if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
03513       ValidatedCorrections.push_back(TC);
03514       return ValidatedCorrections[CurrentTCIndex];
03515     }
03516   }
03517   return ValidatedCorrections[0];  // The empty correction.
03518 }
03519 
03520 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
03521   IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
03522   DeclContext *TempMemberContext = MemberContext;
03523   CXXScopeSpec *TempSS = SS.get();
03524   if (Candidate.getCorrectionRange().isInvalid())
03525     Candidate.setCorrectionRange(TempSS, Result.getLookupNameInfo());
03526 retry_lookup:
03527   LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
03528                             EnteringContext,
03529                             CorrectionValidator->IsObjCIvarLookup,
03530                             Name == Typo && !Candidate.WillReplaceSpecifier());
03531   switch (Result.getResultKind()) {
03532   case LookupResult::NotFound:
03533   case LookupResult::NotFoundInCurrentInstantiation:
03534   case LookupResult::FoundUnresolvedValue:
03535     if (TempSS) {
03536       // Immediately retry the lookup without the given CXXScopeSpec
03537       TempSS = nullptr;
03538       Candidate.WillReplaceSpecifier(true);
03539       goto retry_lookup;
03540     }
03541     if (TempMemberContext) {
03542       if (SS && !TempSS)
03543         TempSS = SS.get();
03544       TempMemberContext = nullptr;
03545       goto retry_lookup;
03546     }
03547     if (SearchNamespaces)
03548       QualifiedResults.push_back(Candidate);
03549     break;
03550 
03551   case LookupResult::Ambiguous:
03552     // We don't deal with ambiguities.
03553     break;
03554 
03555   case LookupResult::Found:
03556   case LookupResult::FoundOverloaded:
03557     // Store all of the Decls for overloaded symbols
03558     for (auto *TRD : Result)
03559       Candidate.addCorrectionDecl(TRD);
03560     checkCorrectionVisibility(SemaRef, Candidate);
03561     if (!isCandidateViable(*CorrectionValidator, Candidate)) {
03562       if (SearchNamespaces)
03563         QualifiedResults.push_back(Candidate);
03564       break;
03565     }
03566     return true;
03567   }
03568   return false;
03569 }
03570 
03571 void TypoCorrectionConsumer::performQualifiedLookups() {
03572   unsigned TypoLen = Typo->getName().size();
03573   for (auto QR : QualifiedResults) {
03574     for (auto NSI : Namespaces) {
03575       DeclContext *Ctx = NSI.DeclCtx;
03576       const Type *NSType = NSI.NameSpecifier->getAsType();
03577 
03578       // If the current NestedNameSpecifier refers to a class and the
03579       // current correction candidate is the name of that class, then skip
03580       // it as it is unlikely a qualified version of the class' constructor
03581       // is an appropriate correction.
03582       if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() : 0) {
03583         if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
03584           continue;
03585       }
03586 
03587       TypoCorrection TC(QR);
03588       TC.ClearCorrectionDecls();
03589       TC.setCorrectionSpecifier(NSI.NameSpecifier);
03590       TC.setQualifierDistance(NSI.EditDistance);
03591       TC.setCallbackDistance(0); // Reset the callback distance
03592 
03593       // If the current correction candidate and namespace combination are
03594       // too far away from the original typo based on the normalized edit
03595       // distance, then skip performing a qualified name lookup.
03596       unsigned TmpED = TC.getEditDistance(true);
03597       if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
03598           TypoLen / TmpED < 3)
03599         continue;
03600 
03601       Result.clear();
03602       Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
03603       if (!SemaRef.LookupQualifiedName(Result, Ctx))
03604         continue;
03605 
03606       // Any corrections added below will be validated in subsequent
03607       // iterations of the main while() loop over the Consumer's contents.
03608       switch (Result.getResultKind()) {
03609       case LookupResult::Found:
03610       case LookupResult::FoundOverloaded: {
03611         if (SS && SS->isValid()) {
03612           std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
03613           std::string OldQualified;
03614           llvm::raw_string_ostream OldOStream(OldQualified);
03615           SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
03616           OldOStream << Typo->getName();
03617           // If correction candidate would be an identical written qualified
03618           // identifer, then the existing CXXScopeSpec probably included a
03619           // typedef that didn't get accounted for properly.
03620           if (OldOStream.str() == NewQualified)
03621             break;
03622         }
03623         for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
03624              TRD != TRDEnd; ++TRD) {
03625           if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
03626                                         NSType ? NSType->getAsCXXRecordDecl()
03627                                                : nullptr,
03628                                         TRD.getPair()) == Sema::AR_accessible)
03629             TC.addCorrectionDecl(*TRD);
03630         }
03631         if (TC.isResolved())
03632           addCorrection(TC);
03633         break;
03634       }
03635       case LookupResult::NotFound:
03636       case LookupResult::NotFoundInCurrentInstantiation:
03637       case LookupResult::Ambiguous:
03638       case LookupResult::FoundUnresolvedValue:
03639         break;
03640       }
03641     }
03642   }
03643   QualifiedResults.clear();
03644 }
03645 
03646 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
03647     ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
03648     : Context(Context), CurContextChain(buildContextChain(CurContext)),
03649       isSorted(false) {
03650   if (NestedNameSpecifier *NNS =
03651           CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
03652     llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
03653     NNS->print(SpecifierOStream, Context.getPrintingPolicy());
03654 
03655     getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
03656   }
03657   // Build the list of identifiers that would be used for an absolute
03658   // (from the global context) NestedNameSpecifier referring to the current
03659   // context.
03660   for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
03661                                          CEnd = CurContextChain.rend();
03662        C != CEnd; ++C) {
03663     if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C))
03664       CurContextIdentifiers.push_back(ND->getIdentifier());
03665   }
03666 
03667   // Add the global context as a NestedNameSpecifier
03668   Distances.insert(1);
03669   SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
03670                       NestedNameSpecifier::GlobalSpecifier(Context), 1};
03671   DistanceMap[1].push_back(SI);
03672 }
03673 
03674 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
03675     DeclContext *Start) -> DeclContextList {
03676   assert(Start && "Building a context chain from a null context");
03677   DeclContextList Chain;
03678   for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
03679        DC = DC->getLookupParent()) {
03680     NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
03681     if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
03682         !(ND && ND->isAnonymousNamespace()))
03683       Chain.push_back(DC->getPrimaryContext());
03684   }
03685   return Chain;
03686 }
03687 
03688 void TypoCorrectionConsumer::NamespaceSpecifierSet::sortNamespaces() {
03689   SmallVector<unsigned, 4> sortedDistances;
03690   sortedDistances.append(Distances.begin(), Distances.end());
03691 
03692   if (sortedDistances.size() > 1)
03693     std::sort(sortedDistances.begin(), sortedDistances.end());
03694 
03695   Specifiers.clear();
03696   for (auto D : sortedDistances) {
03697     SpecifierInfoList &SpecList = DistanceMap[D];
03698     Specifiers.append(SpecList.begin(), SpecList.end());
03699   }
03700 
03701   isSorted = true;
03702 }
03703 
03704 unsigned
03705 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
03706     DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
03707   unsigned NumSpecifiers = 0;
03708   for (DeclContextList::reverse_iterator C = DeclChain.rbegin(),
03709                                       CEnd = DeclChain.rend();
03710        C != CEnd; ++C) {
03711     if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C)) {
03712       NNS = NestedNameSpecifier::Create(Context, NNS, ND);
03713       ++NumSpecifiers;
03714     } else if (RecordDecl *RD = dyn_cast_or_null<RecordDecl>(*C)) {
03715       NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
03716                                         RD->getTypeForDecl());
03717       ++NumSpecifiers;
03718     }
03719   }
03720   return NumSpecifiers;
03721 }
03722 
03723 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
03724     DeclContext *Ctx) {
03725   NestedNameSpecifier *NNS = nullptr;
03726   unsigned NumSpecifiers = 0;
03727   DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
03728   DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
03729 
03730   // Eliminate common elements from the two DeclContext chains.
03731   for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
03732                                       CEnd = CurContextChain.rend();
03733        C != CEnd && !NamespaceDeclChain.empty() &&
03734        NamespaceDeclChain.back() == *C; ++C) {
03735     NamespaceDeclChain.pop_back();
03736   }
03737 
03738   // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
03739   NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
03740 
03741   // Add an explicit leading '::' specifier if needed.
03742   if (NamespaceDeclChain.empty()) {
03743     // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
03744     NNS = NestedNameSpecifier::GlobalSpecifier(Context);
03745     NumSpecifiers =
03746         buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
03747   } else if (NamedDecl *ND =
03748                  dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
03749     IdentifierInfo *Name = ND->getIdentifier();
03750     bool SameNameSpecifier = false;
03751     if (std::find(CurNameSpecifierIdentifiers.begin(),
03752                   CurNameSpecifierIdentifiers.end(),
03753                   Name) != CurNameSpecifierIdentifiers.end()) {
03754       std::string NewNameSpecifier;
03755       llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
03756       SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
03757       getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
03758       NNS->print(SpecifierOStream, Context.getPrintingPolicy());
03759       SpecifierOStream.flush();
03760       SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
03761     }
03762     if (SameNameSpecifier ||
03763         std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
03764                   Name) != CurContextIdentifiers.end()) {
03765       // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
03766       NNS = NestedNameSpecifier::GlobalSpecifier(Context);
03767       NumSpecifiers =
03768           buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
03769     }
03770   }
03771 
03772   // If the built NestedNameSpecifier would be replacing an existing
03773   // NestedNameSpecifier, use the number of component identifiers that
03774   // would need to be changed as the edit distance instead of the number
03775   // of components in the built NestedNameSpecifier.
03776   if (NNS && !CurNameSpecifierIdentifiers.empty()) {
03777     SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
03778     getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
03779     NumSpecifiers = llvm::ComputeEditDistance(
03780         llvm::makeArrayRef(CurNameSpecifierIdentifiers),
03781         llvm::makeArrayRef(NewNameSpecifierIdentifiers));
03782   }
03783 
03784   isSorted = false;
03785   Distances.insert(NumSpecifiers);
03786   SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
03787   DistanceMap[NumSpecifiers].push_back(SI);
03788 }
03789 
03790 /// \brief Perform name lookup for a possible result for typo correction.
03791 static void LookupPotentialTypoResult(Sema &SemaRef,
03792                                       LookupResult &Res,
03793                                       IdentifierInfo *Name,
03794                                       Scope *S, CXXScopeSpec *SS,
03795                                       DeclContext *MemberContext,
03796                                       bool EnteringContext,
03797                                       bool isObjCIvarLookup,
03798                                       bool FindHidden) {
03799   Res.suppressDiagnostics();
03800   Res.clear();
03801   Res.setLookupName(Name);
03802   Res.setAllowHidden(FindHidden);
03803   if (MemberContext) {
03804     if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
03805       if (isObjCIvarLookup) {
03806         if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
03807           Res.addDecl(Ivar);
03808           Res.resolveKind();
03809           return;
03810         }
03811       }
03812 
03813       if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
03814         Res.addDecl(Prop);
03815         Res.resolveKind();
03816         return;
03817       }
03818     }
03819 
03820     SemaRef.LookupQualifiedName(Res, MemberContext);
03821     return;
03822   }
03823 
03824   SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
03825                            EnteringContext);
03826 
03827   // Fake ivar lookup; this should really be part of
03828   // LookupParsedName.
03829   if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
03830     if (Method->isInstanceMethod() && Method->getClassInterface() &&
03831         (Res.empty() ||
03832          (Res.isSingleResult() &&
03833           Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
03834        if (ObjCIvarDecl *IV
03835              = Method->getClassInterface()->lookupInstanceVariable(Name)) {
03836          Res.addDecl(IV);
03837          Res.resolveKind();
03838        }
03839      }
03840   }
03841 }
03842 
03843 /// \brief Add keywords to the consumer as possible typo corrections.
03844 static void AddKeywordsToConsumer(Sema &SemaRef,
03845                                   TypoCorrectionConsumer &Consumer,
03846                                   Scope *S, CorrectionCandidateCallback &CCC,
03847                                   bool AfterNestedNameSpecifier) {
03848   if (AfterNestedNameSpecifier) {
03849     // For 'X::', we know exactly which keywords can appear next.
03850     Consumer.addKeywordResult("template");
03851     if (CCC.WantExpressionKeywords)
03852       Consumer.addKeywordResult("operator");
03853     return;
03854   }
03855 
03856   if (CCC.WantObjCSuper)
03857     Consumer.addKeywordResult("super");
03858 
03859   if (CCC.WantTypeSpecifiers) {
03860     // Add type-specifier keywords to the set of results.
03861     static const char *const CTypeSpecs[] = {
03862       "char", "const", "double", "enum", "float", "int", "long", "short",
03863       "signed", "struct", "union", "unsigned", "void", "volatile", 
03864       "_Complex", "_Imaginary",
03865       // storage-specifiers as well
03866       "extern", "inline", "static", "typedef"
03867     };
03868 
03869     const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
03870     for (unsigned I = 0; I != NumCTypeSpecs; ++I)
03871       Consumer.addKeywordResult(CTypeSpecs[I]);
03872 
03873     if (SemaRef.getLangOpts().C99)
03874       Consumer.addKeywordResult("restrict");
03875     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
03876       Consumer.addKeywordResult("bool");
03877     else if (SemaRef.getLangOpts().C99)
03878       Consumer.addKeywordResult("_Bool");
03879     
03880     if (SemaRef.getLangOpts().CPlusPlus) {
03881       Consumer.addKeywordResult("class");
03882       Consumer.addKeywordResult("typename");
03883       Consumer.addKeywordResult("wchar_t");
03884 
03885       if (SemaRef.getLangOpts().CPlusPlus11) {
03886         Consumer.addKeywordResult("char16_t");
03887         Consumer.addKeywordResult("char32_t");
03888         Consumer.addKeywordResult("constexpr");
03889         Consumer.addKeywordResult("decltype");
03890         Consumer.addKeywordResult("thread_local");
03891       }
03892     }
03893 
03894     if (SemaRef.getLangOpts().GNUMode)
03895       Consumer.addKeywordResult("typeof");
03896   } else if (CCC.WantFunctionLikeCasts) {
03897     static const char *const CastableTypeSpecs[] = {
03898       "char", "double", "float", "int", "long", "short",
03899       "signed", "unsigned", "void"
03900     };
03901     for (auto *kw : CastableTypeSpecs)
03902       Consumer.addKeywordResult(kw);
03903   }
03904 
03905   if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
03906     Consumer.addKeywordResult("const_cast");
03907     Consumer.addKeywordResult("dynamic_cast");
03908     Consumer.addKeywordResult("reinterpret_cast");
03909     Consumer.addKeywordResult("static_cast");
03910   }
03911 
03912   if (CCC.WantExpressionKeywords) {
03913     Consumer.addKeywordResult("sizeof");
03914     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
03915       Consumer.addKeywordResult("false");
03916       Consumer.addKeywordResult("true");
03917     }
03918 
03919     if (SemaRef.getLangOpts().CPlusPlus) {
03920       static const char *const CXXExprs[] = {
03921         "delete", "new", "operator", "throw", "typeid"
03922       };
03923       const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
03924       for (unsigned I = 0; I != NumCXXExprs; ++I)
03925         Consumer.addKeywordResult(CXXExprs[I]);
03926 
03927       if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
03928           cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
03929         Consumer.addKeywordResult("this");
03930 
03931       if (SemaRef.getLangOpts().CPlusPlus11) {
03932         Consumer.addKeywordResult("alignof");
03933         Consumer.addKeywordResult("nullptr");
03934       }
03935     }
03936 
03937     if (SemaRef.getLangOpts().C11) {
03938       // FIXME: We should not suggest _Alignof if the alignof macro
03939       // is present.
03940       Consumer.addKeywordResult("_Alignof");
03941     }
03942   }
03943 
03944   if (CCC.WantRemainingKeywords) {
03945     if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
03946       // Statements.
03947       static const char *const CStmts[] = {
03948         "do", "else", "for", "goto", "if", "return", "switch", "while" };
03949       const unsigned NumCStmts = llvm::array_lengthof(CStmts);
03950       for (unsigned I = 0; I != NumCStmts; ++I)
03951         Consumer.addKeywordResult(CStmts[I]);
03952 
03953       if (SemaRef.getLangOpts().CPlusPlus) {
03954         Consumer.addKeywordResult("catch");
03955         Consumer.addKeywordResult("try");
03956       }
03957 
03958       if (S && S->getBreakParent())
03959         Consumer.addKeywordResult("break");
03960 
03961       if (S && S->getContinueParent())
03962         Consumer.addKeywordResult("continue");
03963 
03964       if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
03965         Consumer.addKeywordResult("case");
03966         Consumer.addKeywordResult("default");
03967       }
03968     } else {
03969       if (SemaRef.getLangOpts().CPlusPlus) {
03970         Consumer.addKeywordResult("namespace");
03971         Consumer.addKeywordResult("template");
03972       }
03973 
03974       if (S && S->isClassScope()) {
03975         Consumer.addKeywordResult("explicit");
03976         Consumer.addKeywordResult("friend");
03977         Consumer.addKeywordResult("mutable");
03978         Consumer.addKeywordResult("private");
03979         Consumer.addKeywordResult("protected");
03980         Consumer.addKeywordResult("public");
03981         Consumer.addKeywordResult("virtual");
03982       }
03983     }
03984 
03985     if (SemaRef.getLangOpts().CPlusPlus) {
03986       Consumer.addKeywordResult("using");
03987 
03988       if (SemaRef.getLangOpts().CPlusPlus11)
03989         Consumer.addKeywordResult("static_assert");
03990     }
03991   }
03992 }
03993 
03994 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
03995     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
03996     Scope *S, CXXScopeSpec *SS,
03997     std::unique_ptr<CorrectionCandidateCallback> CCC,
03998     DeclContext *MemberContext, bool EnteringContext,
03999     const ObjCObjectPointerType *OPT, bool ErrorRecovery,
04000     bool &IsUnqualifiedLookup) {
04001 
04002   if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
04003       DisableTypoCorrection)
04004     return nullptr;
04005 
04006   // In Microsoft mode, don't perform typo correction in a template member
04007   // function dependent context because it interferes with the "lookup into
04008   // dependent bases of class templates" feature.
04009   if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
04010       isa<CXXMethodDecl>(CurContext))
04011     return nullptr;
04012 
04013   // We only attempt to correct typos for identifiers.
04014   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
04015   if (!Typo)
04016     return nullptr;
04017 
04018   // If the scope specifier itself was invalid, don't try to correct
04019   // typos.
04020   if (SS && SS->isInvalid())
04021     return nullptr;
04022 
04023   // Never try to correct typos during template deduction or
04024   // instantiation.
04025   if (!ActiveTemplateInstantiations.empty())
04026     return nullptr;
04027 
04028   // Don't try to correct 'super'.
04029   if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
04030     return nullptr;
04031 
04032   // Abort if typo correction already failed for this specific typo.
04033   IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
04034   if (locs != TypoCorrectionFailures.end() &&
04035       locs->second.count(TypoName.getLoc()))
04036     return nullptr;
04037 
04038   // Don't try to correct the identifier "vector" when in AltiVec mode.
04039   // TODO: Figure out why typo correction misbehaves in this case, fix it, and
04040   // remove this workaround.
04041   if (getLangOpts().AltiVec && Typo->isStr("vector"))
04042     return nullptr;
04043 
04044   // If we're handling a missing symbol error, using modules, and the
04045   // special search all modules option is used, look for a missing import.
04046   if (ErrorRecovery && getLangOpts().Modules &&
04047       getLangOpts().ModulesSearchAll) {
04048     // The following has the side effect of loading the missing module.
04049     getModuleLoader().lookupMissingImports(Typo->getName(),
04050                                            TypoName.getLocStart());
04051   }
04052 
04053   CorrectionCandidateCallback &CCCRef = *CCC;
04054   auto Consumer = llvm::make_unique<TypoCorrectionConsumer>(
04055       *this, TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
04056       EnteringContext);
04057 
04058   // If a callback object considers an empty typo correction candidate to be
04059   // viable, assume it does not do any actual validation of the candidates.
04060   TypoCorrection EmptyCorrection;
04061   bool ValidatingCallback = !isCandidateViable(CCCRef, EmptyCorrection);
04062 
04063   // Perform name lookup to find visible, similarly-named entities.
04064   IsUnqualifiedLookup = false;
04065   DeclContext *QualifiedDC = MemberContext;
04066   if (MemberContext) {
04067     LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
04068 
04069     // Look in qualified interfaces.
04070     if (OPT) {
04071       for (auto *I : OPT->quals())
04072         LookupVisibleDecls(I, LookupKind, *Consumer);
04073     }
04074   } else if (SS && SS->isSet()) {
04075     QualifiedDC = computeDeclContext(*SS, EnteringContext);
04076     if (!QualifiedDC)
04077       return nullptr;
04078 
04079     // Provide a stop gap for files that are just seriously broken.  Trying
04080     // to correct all typos can turn into a HUGE performance penalty, causing
04081     // some files to take minutes to get rejected by the parser.
04082     if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
04083       return nullptr;
04084     ++TyposCorrected;
04085 
04086     LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
04087   } else {
04088     IsUnqualifiedLookup = true;
04089     UnqualifiedTyposCorrectedMap::iterator Cached
04090       = UnqualifiedTyposCorrected.find(Typo);
04091     if (Cached != UnqualifiedTyposCorrected.end()) {
04092       // Add the cached value, unless it's a keyword or fails validation. In the
04093       // keyword case, we'll end up adding the keyword below.
04094       if (Cached->second) {
04095         if (!Cached->second.isKeyword() &&
04096             isCandidateViable(CCCRef, Cached->second)) {
04097           // Do not use correction that is unaccessible in the given scope.
04098           NamedDecl *CorrectionDecl = Cached->second.getCorrectionDecl();
04099           DeclarationNameInfo NameInfo(CorrectionDecl->getDeclName(),
04100                                        CorrectionDecl->getLocation());
04101           LookupResult R(*this, NameInfo, LookupOrdinaryName);
04102           if (LookupName(R, S))
04103             Consumer->addCorrection(Cached->second);
04104         }
04105       } else {
04106         // Only honor no-correction cache hits when a callback that will validate
04107         // correction candidates is not being used.
04108         if (!ValidatingCallback)
04109           return nullptr;
04110       }
04111     }
04112     if (Cached == UnqualifiedTyposCorrected.end()) {
04113       // Provide a stop gap for files that are just seriously broken.  Trying
04114       // to correct all typos can turn into a HUGE performance penalty, causing
04115       // some files to take minutes to get rejected by the parser.
04116       if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
04117         return nullptr;
04118     }
04119   }
04120 
04121   // Determine whether we are going to search in the various namespaces for
04122   // corrections.
04123   bool SearchNamespaces
04124     = getLangOpts().CPlusPlus &&
04125       (IsUnqualifiedLookup || (SS && SS->isSet()));
04126 
04127   if (IsUnqualifiedLookup || SearchNamespaces) {
04128     // For unqualified lookup, look through all of the names that we have
04129     // seen in this translation unit.
04130     // FIXME: Re-add the ability to skip very unlikely potential corrections.
04131     for (const auto &I : Context.Idents)
04132       Consumer->FoundName(I.getKey());
04133 
04134     // Walk through identifiers in external identifier sources.
04135     // FIXME: Re-add the ability to skip very unlikely potential corrections.
04136     if (IdentifierInfoLookup *External
04137                             = Context.Idents.getExternalIdentifierLookup()) {
04138       std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
04139       do {
04140         StringRef Name = Iter->Next();
04141         if (Name.empty())
04142           break;
04143 
04144         Consumer->FoundName(Name);
04145       } while (true);
04146     }
04147   }
04148 
04149   AddKeywordsToConsumer(*this, *Consumer, S, CCCRef, SS && SS->isNotEmpty());
04150 
04151   // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
04152   // to search those namespaces.
04153   if (SearchNamespaces) {
04154     // Load any externally-known namespaces.
04155     if (ExternalSource && !LoadedExternalKnownNamespaces) {
04156       SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
04157       LoadedExternalKnownNamespaces = true;
04158       ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
04159       for (auto *N : ExternalKnownNamespaces)
04160         KnownNamespaces[N] = true;
04161     }
04162 
04163     Consumer->addNamespaces(KnownNamespaces);
04164   }
04165 
04166   return Consumer;
04167 }
04168 
04169 /// \brief Try to "correct" a typo in the source code by finding
04170 /// visible declarations whose names are similar to the name that was
04171 /// present in the source code.
04172 ///
04173 /// \param TypoName the \c DeclarationNameInfo structure that contains
04174 /// the name that was present in the source code along with its location.
04175 ///
04176 /// \param LookupKind the name-lookup criteria used to search for the name.
04177 ///
04178 /// \param S the scope in which name lookup occurs.
04179 ///
04180 /// \param SS the nested-name-specifier that precedes the name we're
04181 /// looking for, if present.
04182 ///
04183 /// \param CCC A CorrectionCandidateCallback object that provides further
04184 /// validation of typo correction candidates. It also provides flags for
04185 /// determining the set of keywords permitted.
04186 ///
04187 /// \param MemberContext if non-NULL, the context in which to look for
04188 /// a member access expression.
04189 ///
04190 /// \param EnteringContext whether we're entering the context described by
04191 /// the nested-name-specifier SS.
04192 ///
04193 /// \param OPT when non-NULL, the search for visible declarations will
04194 /// also walk the protocols in the qualified interfaces of \p OPT.
04195 ///
04196 /// \returns a \c TypoCorrection containing the corrected name if the typo
04197 /// along with information such as the \c NamedDecl where the corrected name
04198 /// was declared, and any additional \c NestedNameSpecifier needed to access
04199 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
04200 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
04201                                  Sema::LookupNameKind LookupKind,
04202                                  Scope *S, CXXScopeSpec *SS,
04203                                  std::unique_ptr<CorrectionCandidateCallback> CCC,
04204                                  CorrectTypoKind Mode,
04205                                  DeclContext *MemberContext,
04206                                  bool EnteringContext,
04207                                  const ObjCObjectPointerType *OPT,
04208                                  bool RecordFailure) {
04209   assert(CCC && "CorrectTypo requires a CorrectionCandidateCallback");
04210 
04211   // Always let the ExternalSource have the first chance at correction, even
04212   // if we would otherwise have given up.
04213   if (ExternalSource) {
04214     if (TypoCorrection Correction = ExternalSource->CorrectTypo(
04215         TypoName, LookupKind, S, SS, *CCC, MemberContext, EnteringContext, OPT))
04216       return Correction;
04217   }
04218 
04219   // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
04220   // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
04221   // some instances of CTC_Unknown, while WantRemainingKeywords is true
04222   // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
04223   bool ObjCMessageReceiver = CCC->WantObjCSuper && !CCC->WantRemainingKeywords;
04224 
04225   TypoCorrection EmptyCorrection;
04226   bool ValidatingCallback = !isCandidateViable(*CCC, EmptyCorrection);
04227 
04228   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
04229   bool IsUnqualifiedLookup = false;
04230   auto Consumer = makeTypoCorrectionConsumer(
04231       TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
04232       EnteringContext, OPT, Mode == CTK_ErrorRecovery, IsUnqualifiedLookup);
04233 
04234   if (!Consumer)
04235     return TypoCorrection();
04236 
04237   // If we haven't found anything, we're done.
04238   if (Consumer->empty())
04239     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure,
04240                             IsUnqualifiedLookup);
04241 
04242   // Make sure the best edit distance (prior to adding any namespace qualifiers)
04243   // is not more that about a third of the length of the typo's identifier.
04244   unsigned ED = Consumer->getBestEditDistance(true);
04245   unsigned TypoLen = Typo->getName().size();
04246   if (ED > 0 && TypoLen / ED < 3)
04247     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure,
04248                             IsUnqualifiedLookup);
04249 
04250   TypoCorrection BestTC = Consumer->getNextCorrection();
04251   TypoCorrection SecondBestTC = Consumer->getNextCorrection();
04252   if (!BestTC)
04253     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
04254 
04255   ED = BestTC.getEditDistance();
04256 
04257   if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
04258     // If this was an unqualified lookup and we believe the callback
04259     // object wouldn't have filtered out possible corrections, note
04260     // that no correction was found.
04261     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure,
04262                             IsUnqualifiedLookup && !ValidatingCallback);
04263   }
04264 
04265   // If only a single name remains, return that result.
04266   if (!SecondBestTC ||
04267       SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
04268     const TypoCorrection &Result = BestTC;
04269 
04270     // Don't correct to a keyword that's the same as the typo; the keyword
04271     // wasn't actually in scope.
04272     if (ED == 0 && Result.isKeyword())
04273       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
04274 
04275     // Record the correction for unqualified lookup.
04276     if (IsUnqualifiedLookup)
04277       UnqualifiedTyposCorrected[Typo] = Result;
04278 
04279     TypoCorrection TC = Result;
04280     TC.setCorrectionRange(SS, TypoName);
04281     checkCorrectionVisibility(*this, TC);
04282     return TC;
04283   } else if (SecondBestTC && ObjCMessageReceiver) {
04284     // Prefer 'super' when we're completing in a message-receiver
04285     // context.
04286 
04287     if (BestTC.getCorrection().getAsString() != "super") {
04288       if (SecondBestTC.getCorrection().getAsString() == "super")
04289         BestTC = SecondBestTC;
04290       else if ((*Consumer)["super"].front().isKeyword())
04291         BestTC = (*Consumer)["super"].front();
04292     }
04293     // Don't correct to a keyword that's the same as the typo; the keyword
04294     // wasn't actually in scope.
04295     if (BestTC.getEditDistance() == 0 ||
04296         BestTC.getCorrection().getAsString() != "super")
04297       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
04298 
04299     // Record the correction for unqualified lookup.
04300     if (IsUnqualifiedLookup)
04301       UnqualifiedTyposCorrected[Typo] = BestTC;
04302 
04303     BestTC.setCorrectionRange(SS, TypoName);
04304     return BestTC;
04305   }
04306 
04307   // Record the failure's location if needed and return an empty correction. If
04308   // this was an unqualified lookup and we believe the callback object did not
04309   // filter out possible corrections, also cache the failure for the typo.
04310   return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure,
04311                           IsUnqualifiedLookup && !ValidatingCallback);
04312 }
04313 
04314 /// \brief Try to "correct" a typo in the source code by finding
04315 /// visible declarations whose names are similar to the name that was
04316 /// present in the source code.
04317 ///
04318 /// \param TypoName the \c DeclarationNameInfo structure that contains
04319 /// the name that was present in the source code along with its location.
04320 ///
04321 /// \param LookupKind the name-lookup criteria used to search for the name.
04322 ///
04323 /// \param S the scope in which name lookup occurs.
04324 ///
04325 /// \param SS the nested-name-specifier that precedes the name we're
04326 /// looking for, if present.
04327 ///
04328 /// \param CCC A CorrectionCandidateCallback object that provides further
04329 /// validation of typo correction candidates. It also provides flags for
04330 /// determining the set of keywords permitted.
04331 ///
04332 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print
04333 /// diagnostics when the actual typo correction is attempted.
04334 ///
04335 /// \param TRC A TypoRecoveryCallback functor that will be used to build an
04336 /// Expr from a typo correction candidate.
04337 ///
04338 /// \param MemberContext if non-NULL, the context in which to look for
04339 /// a member access expression.
04340 ///
04341 /// \param EnteringContext whether we're entering the context described by
04342 /// the nested-name-specifier SS.
04343 ///
04344 /// \param OPT when non-NULL, the search for visible declarations will
04345 /// also walk the protocols in the qualified interfaces of \p OPT.
04346 ///
04347 /// \returns a new \c TypoExpr that will later be replaced in the AST with an
04348 /// Expr representing the result of performing typo correction, or nullptr if
04349 /// typo correction is not possible. If nullptr is returned, no diagnostics will
04350 /// be emitted and it is the responsibility of the caller to emit any that are
04351 /// needed.
04352 TypoExpr *Sema::CorrectTypoDelayed(
04353     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
04354     Scope *S, CXXScopeSpec *SS,
04355     std::unique_ptr<CorrectionCandidateCallback> CCC,
04356     TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
04357     DeclContext *MemberContext, bool EnteringContext,
04358     const ObjCObjectPointerType *OPT) {
04359   assert(CCC && "CorrectTypoDelayed requires a CorrectionCandidateCallback");
04360 
04361   TypoCorrection Empty;
04362   bool IsUnqualifiedLookup = false;
04363   auto Consumer = makeTypoCorrectionConsumer(
04364       TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
04365       EnteringContext, OPT,
04366       /*SearchModules=*/(Mode == CTK_ErrorRecovery) && getLangOpts().Modules &&
04367           getLangOpts().ModulesSearchAll,
04368       IsUnqualifiedLookup);
04369 
04370   if (!Consumer || Consumer->empty())
04371     return nullptr;
04372 
04373   // Make sure the best edit distance (prior to adding any namespace qualifiers)
04374   // is not more that about a third of the length of the typo's identifier.
04375   unsigned ED = Consumer->getBestEditDistance(true);
04376   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
04377   if (ED > 0 && Typo->getName().size() / ED < 3)
04378     return nullptr;
04379 
04380   ExprEvalContexts.back().NumTypos++;
04381   return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
04382 }
04383 
04384 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
04385   if (!CDecl) return;
04386 
04387   if (isKeyword())
04388     CorrectionDecls.clear();
04389 
04390   CorrectionDecls.push_back(CDecl->getUnderlyingDecl());
04391 
04392   if (!CorrectionName)
04393     CorrectionName = CDecl->getDeclName();
04394 }
04395 
04396 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
04397   if (CorrectionNameSpec) {
04398     std::string tmpBuffer;
04399     llvm::raw_string_ostream PrefixOStream(tmpBuffer);
04400     CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
04401     PrefixOStream << CorrectionName;
04402     return PrefixOStream.str();
04403   }
04404 
04405   return CorrectionName.getAsString();
04406 }
04407 
04408 bool CorrectionCandidateCallback::ValidateCandidate(const TypoCorrection &candidate) {
04409   if (!candidate.isResolved())
04410     return true;
04411 
04412   if (candidate.isKeyword())
04413     return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
04414            WantRemainingKeywords || WantObjCSuper;
04415 
04416   bool HasNonType = false;
04417   bool HasStaticMethod = false;
04418   bool HasNonStaticMethod = false;
04419   for (Decl *D : candidate) {
04420     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
04421       D = FTD->getTemplatedDecl();
04422     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
04423       if (Method->isStatic())
04424         HasStaticMethod = true;
04425       else
04426         HasNonStaticMethod = true;
04427     }
04428     if (!isa<TypeDecl>(D))
04429       HasNonType = true;
04430   }
04431 
04432   if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
04433       !candidate.getCorrectionSpecifier())
04434     return false;
04435 
04436   return WantTypeSpecifiers || HasNonType;
04437 }
04438 
04439 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
04440                                              bool HasExplicitTemplateArgs,
04441                                              MemberExpr *ME)
04442     : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
04443       CurContext(SemaRef.CurContext), MemberFn(ME) {
04444   WantTypeSpecifiers = false;
04445   WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && NumArgs == 1;
04446   WantRemainingKeywords = false;
04447 }
04448 
04449 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
04450   if (!candidate.getCorrectionDecl())
04451     return candidate.isKeyword();
04452 
04453   for (auto *C : candidate) {
04454     FunctionDecl *FD = nullptr;
04455     NamedDecl *ND = C->getUnderlyingDecl();
04456     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
04457       FD = FTD->getTemplatedDecl();
04458     if (!HasExplicitTemplateArgs && !FD) {
04459       if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
04460         // If the Decl is neither a function nor a template function,
04461         // determine if it is a pointer or reference to a function. If so,
04462         // check against the number of arguments expected for the pointee.
04463         QualType ValType = cast<ValueDecl>(ND)->getType();
04464         if (ValType->isAnyPointerType() || ValType->isReferenceType())
04465           ValType = ValType->getPointeeType();
04466         if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
04467           if (FPT->getNumParams() == NumArgs)
04468             return true;
04469       }
04470     }
04471 
04472     // Skip the current candidate if it is not a FunctionDecl or does not accept
04473     // the current number of arguments.
04474     if (!FD || !(FD->getNumParams() >= NumArgs &&
04475                  FD->getMinRequiredArguments() <= NumArgs))
04476       continue;
04477 
04478     // If the current candidate is a non-static C++ method, skip the candidate
04479     // unless the method being corrected--or the current DeclContext, if the
04480     // function being corrected is not a method--is a method in the same class
04481     // or a descendent class of the candidate's parent class.
04482     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
04483       if (MemberFn || !MD->isStatic()) {
04484         CXXMethodDecl *CurMD =
04485             MemberFn
04486                 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
04487                 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
04488         CXXRecordDecl *CurRD =
04489             CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
04490         CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
04491         if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
04492           continue;
04493       }
04494     }
04495     return true;
04496   }
04497   return false;
04498 }
04499 
04500 void Sema::diagnoseTypo(const TypoCorrection &Correction,
04501                         const PartialDiagnostic &TypoDiag,
04502                         bool ErrorRecovery) {
04503   diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
04504                ErrorRecovery);
04505 }
04506 
04507 /// Find which declaration we should import to provide the definition of
04508 /// the given declaration.
04509 static const NamedDecl *getDefinitionToImport(const NamedDecl *D) {
04510   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
04511     return VD->getDefinition();
04512   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
04513     return FD->isDefined(FD) ? FD : nullptr;
04514   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
04515     return TD->getDefinition();
04516   if (const ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
04517     return ID->getDefinition();
04518   if (const ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
04519     return PD->getDefinition();
04520   if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
04521     return getDefinitionToImport(TD->getTemplatedDecl());
04522   return nullptr;
04523 }
04524 
04525 /// \brief Diagnose a successfully-corrected typo. Separated from the correction
04526 /// itself to allow external validation of the result, etc.
04527 ///
04528 /// \param Correction The result of performing typo correction.
04529 /// \param TypoDiag The diagnostic to produce. This will have the corrected
04530 ///        string added to it (and usually also a fixit).
04531 /// \param PrevNote A note to use when indicating the location of the entity to
04532 ///        which we are correcting. Will have the correction string added to it.
04533 /// \param ErrorRecovery If \c true (the default), the caller is going to
04534 ///        recover from the typo as if the corrected string had been typed.
04535 ///        In this case, \c PDiag must be an error, and we will attach a fixit
04536 ///        to it.
04537 void Sema::diagnoseTypo(const TypoCorrection &Correction,
04538                         const PartialDiagnostic &TypoDiag,
04539                         const PartialDiagnostic &PrevNote,
04540                         bool ErrorRecovery) {
04541   std::string CorrectedStr = Correction.getAsString(getLangOpts());
04542   std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
04543   FixItHint FixTypo = FixItHint::CreateReplacement(
04544       Correction.getCorrectionRange(), CorrectedStr);
04545 
04546   // Maybe we're just missing a module import.
04547   if (Correction.requiresImport()) {
04548     NamedDecl *Decl = Correction.getCorrectionDecl();
04549     assert(Decl && "import required but no declaration to import");
04550 
04551     // Suggest importing a module providing the definition of this entity, if
04552     // possible.
04553     const NamedDecl *Def = getDefinitionToImport(Decl);
04554     if (!Def)
04555       Def = Decl;
04556     Module *Owner = Def->getOwningModule();
04557     assert(Owner && "definition of hidden declaration is not in a module");
04558 
04559     Diag(Correction.getCorrectionRange().getBegin(),
04560          diag::err_module_private_declaration)
04561       << Def << Owner->getFullModuleName();
04562     Diag(Def->getLocation(), diag::note_previous_declaration);
04563 
04564     // Recover by implicitly importing this module.
04565     if (ErrorRecovery)
04566       createImplicitModuleImportForErrorRecovery(
04567           Correction.getCorrectionRange().getBegin(), Owner);
04568     return;
04569   }
04570 
04571   Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
04572     << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
04573 
04574   NamedDecl *ChosenDecl =
04575       Correction.isKeyword() ? nullptr : Correction.getCorrectionDecl();
04576   if (PrevNote.getDiagID() && ChosenDecl)
04577     Diag(ChosenDecl->getLocation(), PrevNote)
04578       << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
04579 }
04580 
04581 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
04582                                   TypoDiagnosticGenerator TDG,
04583                                   TypoRecoveryCallback TRC) {
04584   assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
04585   auto TE = new (Context) TypoExpr(Context.DependentTy);
04586   auto &State = DelayedTypos[TE];
04587   State.Consumer = std::move(TCC);
04588   State.DiagHandler = std::move(TDG);
04589   State.RecoveryHandler = std::move(TRC);
04590   return TE;
04591 }
04592 
04593 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
04594   auto Entry = DelayedTypos.find(TE);
04595   assert(Entry != DelayedTypos.end() &&
04596          "Failed to get the state for a TypoExpr!");
04597   return Entry->second;
04598 }
04599 
04600 void Sema::clearDelayedTypo(TypoExpr *TE) {
04601   DelayedTypos.erase(TE);
04602 }