clang API Documentation
00001 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 //===----------------------------------------------------------------------===/ 00008 // 00009 // This file implements semantic analysis for C++ templates. 00010 //===----------------------------------------------------------------------===/ 00011 00012 #include "TreeTransform.h" 00013 #include "clang/AST/ASTConsumer.h" 00014 #include "clang/AST/ASTContext.h" 00015 #include "clang/AST/DeclFriend.h" 00016 #include "clang/AST/DeclTemplate.h" 00017 #include "clang/AST/Expr.h" 00018 #include "clang/AST/ExprCXX.h" 00019 #include "clang/AST/RecursiveASTVisitor.h" 00020 #include "clang/AST/TypeVisitor.h" 00021 #include "clang/Basic/LangOptions.h" 00022 #include "clang/Basic/PartialDiagnostic.h" 00023 #include "clang/Basic/TargetInfo.h" 00024 #include "clang/Sema/DeclSpec.h" 00025 #include "clang/Sema/Lookup.h" 00026 #include "clang/Sema/ParsedTemplate.h" 00027 #include "clang/Sema/Scope.h" 00028 #include "clang/Sema/SemaInternal.h" 00029 #include "clang/Sema/Template.h" 00030 #include "clang/Sema/TemplateDeduction.h" 00031 #include "llvm/ADT/SmallBitVector.h" 00032 #include "llvm/ADT/SmallString.h" 00033 #include "llvm/ADT/StringExtras.h" 00034 using namespace clang; 00035 using namespace sema; 00036 00037 // Exported for use by Parser. 00038 SourceRange 00039 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 00040 unsigned N) { 00041 if (!N) return SourceRange(); 00042 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 00043 } 00044 00045 /// \brief Determine whether the declaration found is acceptable as the name 00046 /// of a template and, if so, return that template declaration. Otherwise, 00047 /// returns NULL. 00048 static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 00049 NamedDecl *Orig, 00050 bool AllowFunctionTemplates) { 00051 NamedDecl *D = Orig->getUnderlyingDecl(); 00052 00053 if (isa<TemplateDecl>(D)) { 00054 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D)) 00055 return nullptr; 00056 00057 return Orig; 00058 } 00059 00060 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 00061 // C++ [temp.local]p1: 00062 // Like normal (non-template) classes, class templates have an 00063 // injected-class-name (Clause 9). The injected-class-name 00064 // can be used with or without a template-argument-list. When 00065 // it is used without a template-argument-list, it is 00066 // equivalent to the injected-class-name followed by the 00067 // template-parameters of the class template enclosed in 00068 // <>. When it is used with a template-argument-list, it 00069 // refers to the specified class template specialization, 00070 // which could be the current specialization or another 00071 // specialization. 00072 if (Record->isInjectedClassName()) { 00073 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 00074 if (Record->getDescribedClassTemplate()) 00075 return Record->getDescribedClassTemplate(); 00076 00077 if (ClassTemplateSpecializationDecl *Spec 00078 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 00079 return Spec->getSpecializedTemplate(); 00080 } 00081 00082 return nullptr; 00083 } 00084 00085 return nullptr; 00086 } 00087 00088 void Sema::FilterAcceptableTemplateNames(LookupResult &R, 00089 bool AllowFunctionTemplates) { 00090 // The set of class templates we've already seen. 00091 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 00092 LookupResult::Filter filter = R.makeFilter(); 00093 while (filter.hasNext()) { 00094 NamedDecl *Orig = filter.next(); 00095 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig, 00096 AllowFunctionTemplates); 00097 if (!Repl) 00098 filter.erase(); 00099 else if (Repl != Orig) { 00100 00101 // C++ [temp.local]p3: 00102 // A lookup that finds an injected-class-name (10.2) can result in an 00103 // ambiguity in certain cases (for example, if it is found in more than 00104 // one base class). If all of the injected-class-names that are found 00105 // refer to specializations of the same class template, and if the name 00106 // is used as a template-name, the reference refers to the class 00107 // template itself and not a specialization thereof, and is not 00108 // ambiguous. 00109 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 00110 if (!ClassTemplates.insert(ClassTmpl)) { 00111 filter.erase(); 00112 continue; 00113 } 00114 00115 // FIXME: we promote access to public here as a workaround to 00116 // the fact that LookupResult doesn't let us remember that we 00117 // found this template through a particular injected class name, 00118 // which means we end up doing nasty things to the invariants. 00119 // Pretending that access is public is *much* safer. 00120 filter.replace(Repl, AS_public); 00121 } 00122 } 00123 filter.done(); 00124 } 00125 00126 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, 00127 bool AllowFunctionTemplates) { 00128 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) 00129 if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates)) 00130 return true; 00131 00132 return false; 00133 } 00134 00135 TemplateNameKind Sema::isTemplateName(Scope *S, 00136 CXXScopeSpec &SS, 00137 bool hasTemplateKeyword, 00138 UnqualifiedId &Name, 00139 ParsedType ObjectTypePtr, 00140 bool EnteringContext, 00141 TemplateTy &TemplateResult, 00142 bool &MemberOfUnknownSpecialization) { 00143 assert(getLangOpts().CPlusPlus && "No template names in C!"); 00144 00145 DeclarationName TName; 00146 MemberOfUnknownSpecialization = false; 00147 00148 switch (Name.getKind()) { 00149 case UnqualifiedId::IK_Identifier: 00150 TName = DeclarationName(Name.Identifier); 00151 break; 00152 00153 case UnqualifiedId::IK_OperatorFunctionId: 00154 TName = Context.DeclarationNames.getCXXOperatorName( 00155 Name.OperatorFunctionId.Operator); 00156 break; 00157 00158 case UnqualifiedId::IK_LiteralOperatorId: 00159 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 00160 break; 00161 00162 default: 00163 return TNK_Non_template; 00164 } 00165 00166 QualType ObjectType = ObjectTypePtr.get(); 00167 00168 LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName); 00169 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 00170 MemberOfUnknownSpecialization); 00171 if (R.empty()) return TNK_Non_template; 00172 if (R.isAmbiguous()) { 00173 // Suppress diagnostics; we'll redo this lookup later. 00174 R.suppressDiagnostics(); 00175 00176 // FIXME: we might have ambiguous templates, in which case we 00177 // should at least parse them properly! 00178 return TNK_Non_template; 00179 } 00180 00181 TemplateName Template; 00182 TemplateNameKind TemplateKind; 00183 00184 unsigned ResultCount = R.end() - R.begin(); 00185 if (ResultCount > 1) { 00186 // We assume that we'll preserve the qualifier from a function 00187 // template name in other ways. 00188 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 00189 TemplateKind = TNK_Function_template; 00190 00191 // We'll do this lookup again later. 00192 R.suppressDiagnostics(); 00193 } else { 00194 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 00195 00196 if (SS.isSet() && !SS.isInvalid()) { 00197 NestedNameSpecifier *Qualifier = SS.getScopeRep(); 00198 Template = Context.getQualifiedTemplateName(Qualifier, 00199 hasTemplateKeyword, TD); 00200 } else { 00201 Template = TemplateName(TD); 00202 } 00203 00204 if (isa<FunctionTemplateDecl>(TD)) { 00205 TemplateKind = TNK_Function_template; 00206 00207 // We'll do this lookup again later. 00208 R.suppressDiagnostics(); 00209 } else { 00210 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 00211 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD)); 00212 TemplateKind = 00213 isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template; 00214 } 00215 } 00216 00217 TemplateResult = TemplateTy::make(Template); 00218 return TemplateKind; 00219 } 00220 00221 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 00222 SourceLocation IILoc, 00223 Scope *S, 00224 const CXXScopeSpec *SS, 00225 TemplateTy &SuggestedTemplate, 00226 TemplateNameKind &SuggestedKind) { 00227 // We can't recover unless there's a dependent scope specifier preceding the 00228 // template name. 00229 // FIXME: Typo correction? 00230 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 00231 computeDeclContext(*SS)) 00232 return false; 00233 00234 // The code is missing a 'template' keyword prior to the dependent template 00235 // name. 00236 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 00237 Diag(IILoc, diag::err_template_kw_missing) 00238 << Qualifier << II.getName() 00239 << FixItHint::CreateInsertion(IILoc, "template "); 00240 SuggestedTemplate 00241 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 00242 SuggestedKind = TNK_Dependent_template_name; 00243 return true; 00244 } 00245 00246 void Sema::LookupTemplateName(LookupResult &Found, 00247 Scope *S, CXXScopeSpec &SS, 00248 QualType ObjectType, 00249 bool EnteringContext, 00250 bool &MemberOfUnknownSpecialization) { 00251 // Determine where to perform name lookup 00252 MemberOfUnknownSpecialization = false; 00253 DeclContext *LookupCtx = nullptr; 00254 bool isDependent = false; 00255 if (!ObjectType.isNull()) { 00256 // This nested-name-specifier occurs in a member access expression, e.g., 00257 // x->B::f, and we are looking into the type of the object. 00258 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 00259 LookupCtx = computeDeclContext(ObjectType); 00260 isDependent = ObjectType->isDependentType(); 00261 assert((isDependent || !ObjectType->isIncompleteType() || 00262 ObjectType->castAs<TagType>()->isBeingDefined()) && 00263 "Caller should have completed object type"); 00264 00265 // Template names cannot appear inside an Objective-C class or object type. 00266 if (ObjectType->isObjCObjectOrInterfaceType()) { 00267 Found.clear(); 00268 return; 00269 } 00270 } else if (SS.isSet()) { 00271 // This nested-name-specifier occurs after another nested-name-specifier, 00272 // so long into the context associated with the prior nested-name-specifier. 00273 LookupCtx = computeDeclContext(SS, EnteringContext); 00274 isDependent = isDependentScopeSpecifier(SS); 00275 00276 // The declaration context must be complete. 00277 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 00278 return; 00279 } 00280 00281 bool ObjectTypeSearchedInScope = false; 00282 bool AllowFunctionTemplatesInLookup = true; 00283 if (LookupCtx) { 00284 // Perform "qualified" name lookup into the declaration context we 00285 // computed, which is either the type of the base of a member access 00286 // expression or the declaration context associated with a prior 00287 // nested-name-specifier. 00288 LookupQualifiedName(Found, LookupCtx); 00289 if (!ObjectType.isNull() && Found.empty()) { 00290 // C++ [basic.lookup.classref]p1: 00291 // In a class member access expression (5.2.5), if the . or -> token is 00292 // immediately followed by an identifier followed by a <, the 00293 // identifier must be looked up to determine whether the < is the 00294 // beginning of a template argument list (14.2) or a less-than operator. 00295 // The identifier is first looked up in the class of the object 00296 // expression. If the identifier is not found, it is then looked up in 00297 // the context of the entire postfix-expression and shall name a class 00298 // or function template. 00299 if (S) LookupName(Found, S); 00300 ObjectTypeSearchedInScope = true; 00301 AllowFunctionTemplatesInLookup = false; 00302 } 00303 } else if (isDependent && (!S || ObjectType.isNull())) { 00304 // We cannot look into a dependent object type or nested nme 00305 // specifier. 00306 MemberOfUnknownSpecialization = true; 00307 return; 00308 } else { 00309 // Perform unqualified name lookup in the current scope. 00310 LookupName(Found, S); 00311 00312 if (!ObjectType.isNull()) 00313 AllowFunctionTemplatesInLookup = false; 00314 } 00315 00316 if (Found.empty() && !isDependent) { 00317 // If we did not find any names, attempt to correct any typos. 00318 DeclarationName Name = Found.getLookupName(); 00319 Found.clear(); 00320 // Simple filter callback that, for keywords, only accepts the C++ *_cast 00321 auto FilterCCC = llvm::make_unique<CorrectionCandidateCallback>(); 00322 FilterCCC->WantTypeSpecifiers = false; 00323 FilterCCC->WantExpressionKeywords = false; 00324 FilterCCC->WantRemainingKeywords = false; 00325 FilterCCC->WantCXXNamedCasts = true; 00326 if (TypoCorrection Corrected = CorrectTypo( 00327 Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS, 00328 std::move(FilterCCC), CTK_ErrorRecovery, LookupCtx)) { 00329 Found.setLookupName(Corrected.getCorrection()); 00330 if (Corrected.getCorrectionDecl()) 00331 Found.addDecl(Corrected.getCorrectionDecl()); 00332 FilterAcceptableTemplateNames(Found); 00333 if (!Found.empty()) { 00334 if (LookupCtx) { 00335 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 00336 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 00337 Name.getAsString() == CorrectedStr; 00338 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest) 00339 << Name << LookupCtx << DroppedSpecifier 00340 << SS.getRange()); 00341 } else { 00342 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name); 00343 } 00344 } 00345 } else { 00346 Found.setLookupName(Name); 00347 } 00348 } 00349 00350 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup); 00351 if (Found.empty()) { 00352 if (isDependent) 00353 MemberOfUnknownSpecialization = true; 00354 return; 00355 } 00356 00357 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && 00358 !getLangOpts().CPlusPlus11) { 00359 // C++03 [basic.lookup.classref]p1: 00360 // [...] If the lookup in the class of the object expression finds a 00361 // template, the name is also looked up in the context of the entire 00362 // postfix-expression and [...] 00363 // 00364 // Note: C++11 does not perform this second lookup. 00365 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 00366 LookupOrdinaryName); 00367 LookupName(FoundOuter, S); 00368 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false); 00369 00370 if (FoundOuter.empty()) { 00371 // - if the name is not found, the name found in the class of the 00372 // object expression is used, otherwise 00373 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() || 00374 FoundOuter.isAmbiguous()) { 00375 // - if the name is found in the context of the entire 00376 // postfix-expression and does not name a class template, the name 00377 // found in the class of the object expression is used, otherwise 00378 FoundOuter.clear(); 00379 } else if (!Found.isSuppressingDiagnostics()) { 00380 // - if the name found is a class template, it must refer to the same 00381 // entity as the one found in the class of the object expression, 00382 // otherwise the program is ill-formed. 00383 if (!Found.isSingleResult() || 00384 Found.getFoundDecl()->getCanonicalDecl() 00385 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 00386 Diag(Found.getNameLoc(), 00387 diag::ext_nested_name_member_ref_lookup_ambiguous) 00388 << Found.getLookupName() 00389 << ObjectType; 00390 Diag(Found.getRepresentativeDecl()->getLocation(), 00391 diag::note_ambig_member_ref_object_type) 00392 << ObjectType; 00393 Diag(FoundOuter.getFoundDecl()->getLocation(), 00394 diag::note_ambig_member_ref_scope); 00395 00396 // Recover by taking the template that we found in the object 00397 // expression's type. 00398 } 00399 } 00400 } 00401 } 00402 00403 /// ActOnDependentIdExpression - Handle a dependent id-expression that 00404 /// was just parsed. This is only possible with an explicit scope 00405 /// specifier naming a dependent type. 00406 ExprResult 00407 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 00408 SourceLocation TemplateKWLoc, 00409 const DeclarationNameInfo &NameInfo, 00410 bool isAddressOfOperand, 00411 const TemplateArgumentListInfo *TemplateArgs) { 00412 DeclContext *DC = getFunctionLevelDeclContext(); 00413 00414 if (!isAddressOfOperand && 00415 isa<CXXMethodDecl>(DC) && 00416 cast<CXXMethodDecl>(DC)->isInstance()) { 00417 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 00418 00419 // Since the 'this' expression is synthesized, we don't need to 00420 // perform the double-lookup check. 00421 NamedDecl *FirstQualifierInScope = nullptr; 00422 00423 return CXXDependentScopeMemberExpr::Create( 00424 Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true, 00425 /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc, 00426 FirstQualifierInScope, NameInfo, TemplateArgs); 00427 } 00428 00429 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 00430 } 00431 00432 ExprResult 00433 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 00434 SourceLocation TemplateKWLoc, 00435 const DeclarationNameInfo &NameInfo, 00436 const TemplateArgumentListInfo *TemplateArgs) { 00437 return DependentScopeDeclRefExpr::Create( 00438 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, 00439 TemplateArgs); 00440 } 00441 00442 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 00443 /// that the template parameter 'PrevDecl' is being shadowed by a new 00444 /// declaration at location Loc. Returns true to indicate that this is 00445 /// an error, and false otherwise. 00446 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 00447 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 00448 00449 // Microsoft Visual C++ permits template parameters to be shadowed. 00450 if (getLangOpts().MicrosoftExt) 00451 return; 00452 00453 // C++ [temp.local]p4: 00454 // A template-parameter shall not be redeclared within its 00455 // scope (including nested scopes). 00456 Diag(Loc, diag::err_template_param_shadow) 00457 << cast<NamedDecl>(PrevDecl)->getDeclName(); 00458 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 00459 return; 00460 } 00461 00462 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 00463 /// the parameter D to reference the templated declaration and return a pointer 00464 /// to the template declaration. Otherwise, do nothing to D and return null. 00465 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 00466 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 00467 D = Temp->getTemplatedDecl(); 00468 return Temp; 00469 } 00470 return nullptr; 00471 } 00472 00473 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 00474 SourceLocation EllipsisLoc) const { 00475 assert(Kind == Template && 00476 "Only template template arguments can be pack expansions here"); 00477 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 00478 "Template template argument pack expansion without packs"); 00479 ParsedTemplateArgument Result(*this); 00480 Result.EllipsisLoc = EllipsisLoc; 00481 return Result; 00482 } 00483 00484 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 00485 const ParsedTemplateArgument &Arg) { 00486 00487 switch (Arg.getKind()) { 00488 case ParsedTemplateArgument::Type: { 00489 TypeSourceInfo *DI; 00490 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 00491 if (!DI) 00492 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 00493 return TemplateArgumentLoc(TemplateArgument(T), DI); 00494 } 00495 00496 case ParsedTemplateArgument::NonType: { 00497 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 00498 return TemplateArgumentLoc(TemplateArgument(E), E); 00499 } 00500 00501 case ParsedTemplateArgument::Template: { 00502 TemplateName Template = Arg.getAsTemplate().get(); 00503 TemplateArgument TArg; 00504 if (Arg.getEllipsisLoc().isValid()) 00505 TArg = TemplateArgument(Template, Optional<unsigned int>()); 00506 else 00507 TArg = Template; 00508 return TemplateArgumentLoc(TArg, 00509 Arg.getScopeSpec().getWithLocInContext( 00510 SemaRef.Context), 00511 Arg.getLocation(), 00512 Arg.getEllipsisLoc()); 00513 } 00514 } 00515 00516 llvm_unreachable("Unhandled parsed template argument"); 00517 } 00518 00519 /// \brief Translates template arguments as provided by the parser 00520 /// into template arguments used by semantic analysis. 00521 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 00522 TemplateArgumentListInfo &TemplateArgs) { 00523 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 00524 TemplateArgs.addArgument(translateTemplateArgument(*this, 00525 TemplateArgsIn[I])); 00526 } 00527 00528 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S, 00529 SourceLocation Loc, 00530 IdentifierInfo *Name) { 00531 NamedDecl *PrevDecl = SemaRef.LookupSingleName( 00532 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForRedeclaration); 00533 if (PrevDecl && PrevDecl->isTemplateParameter()) 00534 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl); 00535 } 00536 00537 /// ActOnTypeParameter - Called when a C++ template type parameter 00538 /// (e.g., "typename T") has been parsed. Typename specifies whether 00539 /// the keyword "typename" was used to declare the type parameter 00540 /// (otherwise, "class" was used), and KeyLoc is the location of the 00541 /// "class" or "typename" keyword. ParamName is the name of the 00542 /// parameter (NULL indicates an unnamed template parameter) and 00543 /// ParamNameLoc is the location of the parameter name (if any). 00544 /// If the type parameter has a default argument, it will be added 00545 /// later via ActOnTypeParameterDefault. 00546 Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, 00547 SourceLocation EllipsisLoc, 00548 SourceLocation KeyLoc, 00549 IdentifierInfo *ParamName, 00550 SourceLocation ParamNameLoc, 00551 unsigned Depth, unsigned Position, 00552 SourceLocation EqualLoc, 00553 ParsedType DefaultArg) { 00554 assert(S->isTemplateParamScope() && 00555 "Template type parameter not in template parameter scope!"); 00556 bool Invalid = false; 00557 00558 SourceLocation Loc = ParamNameLoc; 00559 if (!ParamName) 00560 Loc = KeyLoc; 00561 00562 bool IsParameterPack = EllipsisLoc.isValid(); 00563 TemplateTypeParmDecl *Param 00564 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 00565 KeyLoc, Loc, Depth, Position, ParamName, 00566 Typename, IsParameterPack); 00567 Param->setAccess(AS_public); 00568 if (Invalid) 00569 Param->setInvalidDecl(); 00570 00571 if (ParamName) { 00572 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName); 00573 00574 // Add the template parameter into the current scope. 00575 S->AddDecl(Param); 00576 IdResolver.AddDecl(Param); 00577 } 00578 00579 // C++0x [temp.param]p9: 00580 // A default template-argument may be specified for any kind of 00581 // template-parameter that is not a template parameter pack. 00582 if (DefaultArg && IsParameterPack) { 00583 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 00584 DefaultArg = ParsedType(); 00585 } 00586 00587 // Handle the default argument, if provided. 00588 if (DefaultArg) { 00589 TypeSourceInfo *DefaultTInfo; 00590 GetTypeFromParser(DefaultArg, &DefaultTInfo); 00591 00592 assert(DefaultTInfo && "expected source information for type"); 00593 00594 // Check for unexpanded parameter packs. 00595 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 00596 UPPC_DefaultArgument)) 00597 return Param; 00598 00599 // Check the template argument itself. 00600 if (CheckTemplateArgument(Param, DefaultTInfo)) { 00601 Param->setInvalidDecl(); 00602 return Param; 00603 } 00604 00605 Param->setDefaultArgument(DefaultTInfo, false); 00606 } 00607 00608 return Param; 00609 } 00610 00611 /// \brief Check that the type of a non-type template parameter is 00612 /// well-formed. 00613 /// 00614 /// \returns the (possibly-promoted) parameter type if valid; 00615 /// otherwise, produces a diagnostic and returns a NULL type. 00616 QualType 00617 Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 00618 // We don't allow variably-modified types as the type of non-type template 00619 // parameters. 00620 if (T->isVariablyModifiedType()) { 00621 Diag(Loc, diag::err_variably_modified_nontype_template_param) 00622 << T; 00623 return QualType(); 00624 } 00625 00626 // C++ [temp.param]p4: 00627 // 00628 // A non-type template-parameter shall have one of the following 00629 // (optionally cv-qualified) types: 00630 // 00631 // -- integral or enumeration type, 00632 if (T->isIntegralOrEnumerationType() || 00633 // -- pointer to object or pointer to function, 00634 T->isPointerType() || 00635 // -- reference to object or reference to function, 00636 T->isReferenceType() || 00637 // -- pointer to member, 00638 T->isMemberPointerType() || 00639 // -- std::nullptr_t. 00640 T->isNullPtrType() || 00641 // If T is a dependent type, we can't do the check now, so we 00642 // assume that it is well-formed. 00643 T->isDependentType()) { 00644 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter 00645 // are ignored when determining its type. 00646 return T.getUnqualifiedType(); 00647 } 00648 00649 // C++ [temp.param]p8: 00650 // 00651 // A non-type template-parameter of type "array of T" or 00652 // "function returning T" is adjusted to be of type "pointer to 00653 // T" or "pointer to function returning T", respectively. 00654 else if (T->isArrayType()) 00655 // FIXME: Keep the type prior to promotion? 00656 return Context.getArrayDecayedType(T); 00657 else if (T->isFunctionType()) 00658 // FIXME: Keep the type prior to promotion? 00659 return Context.getPointerType(T); 00660 00661 Diag(Loc, diag::err_template_nontype_parm_bad_type) 00662 << T; 00663 00664 return QualType(); 00665 } 00666 00667 Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 00668 unsigned Depth, 00669 unsigned Position, 00670 SourceLocation EqualLoc, 00671 Expr *Default) { 00672 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 00673 QualType T = TInfo->getType(); 00674 00675 assert(S->isTemplateParamScope() && 00676 "Non-type template parameter not in template parameter scope!"); 00677 bool Invalid = false; 00678 00679 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 00680 if (T.isNull()) { 00681 T = Context.IntTy; // Recover with an 'int' type. 00682 Invalid = true; 00683 } 00684 00685 IdentifierInfo *ParamName = D.getIdentifier(); 00686 bool IsParameterPack = D.hasEllipsis(); 00687 NonTypeTemplateParmDecl *Param 00688 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 00689 D.getLocStart(), 00690 D.getIdentifierLoc(), 00691 Depth, Position, ParamName, T, 00692 IsParameterPack, TInfo); 00693 Param->setAccess(AS_public); 00694 00695 if (Invalid) 00696 Param->setInvalidDecl(); 00697 00698 if (ParamName) { 00699 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(), 00700 ParamName); 00701 00702 // Add the template parameter into the current scope. 00703 S->AddDecl(Param); 00704 IdResolver.AddDecl(Param); 00705 } 00706 00707 // C++0x [temp.param]p9: 00708 // A default template-argument may be specified for any kind of 00709 // template-parameter that is not a template parameter pack. 00710 if (Default && IsParameterPack) { 00711 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 00712 Default = nullptr; 00713 } 00714 00715 // Check the well-formedness of the default template argument, if provided. 00716 if (Default) { 00717 // Check for unexpanded parameter packs. 00718 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 00719 return Param; 00720 00721 TemplateArgument Converted; 00722 ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted); 00723 if (DefaultRes.isInvalid()) { 00724 Param->setInvalidDecl(); 00725 return Param; 00726 } 00727 Default = DefaultRes.get(); 00728 00729 Param->setDefaultArgument(Default, false); 00730 } 00731 00732 return Param; 00733 } 00734 00735 /// ActOnTemplateTemplateParameter - Called when a C++ template template 00736 /// parameter (e.g. T in template <template <typename> class T> class array) 00737 /// has been parsed. S is the current scope. 00738 Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 00739 SourceLocation TmpLoc, 00740 TemplateParameterList *Params, 00741 SourceLocation EllipsisLoc, 00742 IdentifierInfo *Name, 00743 SourceLocation NameLoc, 00744 unsigned Depth, 00745 unsigned Position, 00746 SourceLocation EqualLoc, 00747 ParsedTemplateArgument Default) { 00748 assert(S->isTemplateParamScope() && 00749 "Template template parameter not in template parameter scope!"); 00750 00751 // Construct the parameter object. 00752 bool IsParameterPack = EllipsisLoc.isValid(); 00753 TemplateTemplateParmDecl *Param = 00754 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 00755 NameLoc.isInvalid()? TmpLoc : NameLoc, 00756 Depth, Position, IsParameterPack, 00757 Name, Params); 00758 Param->setAccess(AS_public); 00759 00760 // If the template template parameter has a name, then link the identifier 00761 // into the scope and lookup mechanisms. 00762 if (Name) { 00763 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name); 00764 00765 S->AddDecl(Param); 00766 IdResolver.AddDecl(Param); 00767 } 00768 00769 if (Params->size() == 0) { 00770 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 00771 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 00772 Param->setInvalidDecl(); 00773 } 00774 00775 // C++0x [temp.param]p9: 00776 // A default template-argument may be specified for any kind of 00777 // template-parameter that is not a template parameter pack. 00778 if (IsParameterPack && !Default.isInvalid()) { 00779 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 00780 Default = ParsedTemplateArgument(); 00781 } 00782 00783 if (!Default.isInvalid()) { 00784 // Check only that we have a template template argument. We don't want to 00785 // try to check well-formedness now, because our template template parameter 00786 // might have dependent types in its template parameters, which we wouldn't 00787 // be able to match now. 00788 // 00789 // If none of the template template parameter's template arguments mention 00790 // other template parameters, we could actually perform more checking here. 00791 // However, it isn't worth doing. 00792 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 00793 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 00794 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 00795 << DefaultArg.getSourceRange(); 00796 return Param; 00797 } 00798 00799 // Check for unexpanded parameter packs. 00800 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 00801 DefaultArg.getArgument().getAsTemplate(), 00802 UPPC_DefaultArgument)) 00803 return Param; 00804 00805 Param->setDefaultArgument(DefaultArg, false); 00806 } 00807 00808 return Param; 00809 } 00810 00811 /// ActOnTemplateParameterList - Builds a TemplateParameterList that 00812 /// contains the template parameters in Params/NumParams. 00813 TemplateParameterList * 00814 Sema::ActOnTemplateParameterList(unsigned Depth, 00815 SourceLocation ExportLoc, 00816 SourceLocation TemplateLoc, 00817 SourceLocation LAngleLoc, 00818 Decl **Params, unsigned NumParams, 00819 SourceLocation RAngleLoc) { 00820 if (ExportLoc.isValid()) 00821 Diag(ExportLoc, diag::warn_template_export_unsupported); 00822 00823 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 00824 (NamedDecl**)Params, NumParams, 00825 RAngleLoc); 00826 } 00827 00828 static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 00829 if (SS.isSet()) 00830 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext())); 00831 } 00832 00833 DeclResult 00834 Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 00835 SourceLocation KWLoc, CXXScopeSpec &SS, 00836 IdentifierInfo *Name, SourceLocation NameLoc, 00837 AttributeList *Attr, 00838 TemplateParameterList *TemplateParams, 00839 AccessSpecifier AS, SourceLocation ModulePrivateLoc, 00840 SourceLocation FriendLoc, 00841 unsigned NumOuterTemplateParamLists, 00842 TemplateParameterList** OuterTemplateParamLists) { 00843 assert(TemplateParams && TemplateParams->size() > 0 && 00844 "No template parameters"); 00845 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 00846 bool Invalid = false; 00847 00848 // Check that we can declare a template here. 00849 if (CheckTemplateDeclScope(S, TemplateParams)) 00850 return true; 00851 00852 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 00853 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 00854 00855 // There is no such thing as an unnamed class template. 00856 if (!Name) { 00857 Diag(KWLoc, diag::err_template_unnamed_class); 00858 return true; 00859 } 00860 00861 // Find any previous declaration with this name. For a friend with no 00862 // scope explicitly specified, we only look for tag declarations (per 00863 // C++11 [basic.lookup.elab]p2). 00864 DeclContext *SemanticContext; 00865 LookupResult Previous(*this, Name, NameLoc, 00866 (SS.isEmpty() && TUK == TUK_Friend) 00867 ? LookupTagName : LookupOrdinaryName, 00868 ForRedeclaration); 00869 if (SS.isNotEmpty() && !SS.isInvalid()) { 00870 SemanticContext = computeDeclContext(SS, true); 00871 if (!SemanticContext) { 00872 // FIXME: Horrible, horrible hack! We can't currently represent this 00873 // in the AST, and historically we have just ignored such friend 00874 // class templates, so don't complain here. 00875 Diag(NameLoc, TUK == TUK_Friend 00876 ? diag::warn_template_qualified_friend_ignored 00877 : diag::err_template_qualified_declarator_no_match) 00878 << SS.getScopeRep() << SS.getRange(); 00879 return TUK != TUK_Friend; 00880 } 00881 00882 if (RequireCompleteDeclContext(SS, SemanticContext)) 00883 return true; 00884 00885 // If we're adding a template to a dependent context, we may need to 00886 // rebuilding some of the types used within the template parameter list, 00887 // now that we know what the current instantiation is. 00888 if (SemanticContext->isDependentContext()) { 00889 ContextRAII SavedContext(*this, SemanticContext); 00890 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 00891 Invalid = true; 00892 } else if (TUK != TUK_Friend && TUK != TUK_Reference) 00893 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc); 00894 00895 LookupQualifiedName(Previous, SemanticContext); 00896 } else { 00897 SemanticContext = CurContext; 00898 LookupName(Previous, S); 00899 } 00900 00901 if (Previous.isAmbiguous()) 00902 return true; 00903 00904 NamedDecl *PrevDecl = nullptr; 00905 if (Previous.begin() != Previous.end()) 00906 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 00907 00908 // If there is a previous declaration with the same name, check 00909 // whether this is a valid redeclaration. 00910 ClassTemplateDecl *PrevClassTemplate 00911 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 00912 00913 // We may have found the injected-class-name of a class template, 00914 // class template partial specialization, or class template specialization. 00915 // In these cases, grab the template that is being defined or specialized. 00916 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 00917 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 00918 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 00919 PrevClassTemplate 00920 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 00921 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 00922 PrevClassTemplate 00923 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 00924 ->getSpecializedTemplate(); 00925 } 00926 } 00927 00928 if (TUK == TUK_Friend) { 00929 // C++ [namespace.memdef]p3: 00930 // [...] When looking for a prior declaration of a class or a function 00931 // declared as a friend, and when the name of the friend class or 00932 // function is neither a qualified name nor a template-id, scopes outside 00933 // the innermost enclosing namespace scope are not considered. 00934 if (!SS.isSet()) { 00935 DeclContext *OutermostContext = CurContext; 00936 while (!OutermostContext->isFileContext()) 00937 OutermostContext = OutermostContext->getLookupParent(); 00938 00939 if (PrevDecl && 00940 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 00941 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 00942 SemanticContext = PrevDecl->getDeclContext(); 00943 } else { 00944 // Declarations in outer scopes don't matter. However, the outermost 00945 // context we computed is the semantic context for our new 00946 // declaration. 00947 PrevDecl = PrevClassTemplate = nullptr; 00948 SemanticContext = OutermostContext; 00949 00950 // Check that the chosen semantic context doesn't already contain a 00951 // declaration of this name as a non-tag type. 00952 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 00953 ForRedeclaration); 00954 DeclContext *LookupContext = SemanticContext; 00955 while (LookupContext->isTransparentContext()) 00956 LookupContext = LookupContext->getLookupParent(); 00957 LookupQualifiedName(Previous, LookupContext); 00958 00959 if (Previous.isAmbiguous()) 00960 return true; 00961 00962 if (Previous.begin() != Previous.end()) 00963 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 00964 } 00965 } 00966 } else if (PrevDecl && 00967 !isDeclInScope(PrevDecl, SemanticContext, S, SS.isValid())) 00968 PrevDecl = PrevClassTemplate = nullptr; 00969 00970 if (PrevClassTemplate) { 00971 // Ensure that the template parameter lists are compatible. Skip this check 00972 // for a friend in a dependent context: the template parameter list itself 00973 // could be dependent. 00974 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 00975 !TemplateParameterListsAreEqual(TemplateParams, 00976 PrevClassTemplate->getTemplateParameters(), 00977 /*Complain=*/true, 00978 TPL_TemplateMatch)) 00979 return true; 00980 00981 // C++ [temp.class]p4: 00982 // In a redeclaration, partial specialization, explicit 00983 // specialization or explicit instantiation of a class template, 00984 // the class-key shall agree in kind with the original class 00985 // template declaration (7.1.5.3). 00986 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 00987 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, 00988 TUK == TUK_Definition, KWLoc, *Name)) { 00989 Diag(KWLoc, diag::err_use_with_wrong_tag) 00990 << Name 00991 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 00992 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 00993 Kind = PrevRecordDecl->getTagKind(); 00994 } 00995 00996 // Check for redefinition of this class template. 00997 if (TUK == TUK_Definition) { 00998 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 00999 Diag(NameLoc, diag::err_redefinition) << Name; 01000 Diag(Def->getLocation(), diag::note_previous_definition); 01001 // FIXME: Would it make sense to try to "forget" the previous 01002 // definition, as part of error recovery? 01003 return true; 01004 } 01005 } 01006 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 01007 // Maybe we will complain about the shadowed template parameter. 01008 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 01009 // Just pretend that we didn't see the previous declaration. 01010 PrevDecl = nullptr; 01011 } else if (PrevDecl) { 01012 // C++ [temp]p5: 01013 // A class template shall not have the same name as any other 01014 // template, class, function, object, enumeration, enumerator, 01015 // namespace, or type in the same scope (3.3), except as specified 01016 // in (14.5.4). 01017 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 01018 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 01019 return true; 01020 } 01021 01022 // Check the template parameter list of this declaration, possibly 01023 // merging in the template parameter list from the previous class 01024 // template declaration. Skip this check for a friend in a dependent 01025 // context, because the template parameter list might be dependent. 01026 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 01027 CheckTemplateParameterList( 01028 TemplateParams, 01029 PrevClassTemplate ? PrevClassTemplate->getTemplateParameters() 01030 : nullptr, 01031 (SS.isSet() && SemanticContext && SemanticContext->isRecord() && 01032 SemanticContext->isDependentContext()) 01033 ? TPC_ClassTemplateMember 01034 : TUK == TUK_Friend ? TPC_FriendClassTemplate 01035 : TPC_ClassTemplate)) 01036 Invalid = true; 01037 01038 if (SS.isSet()) { 01039 // If the name of the template was qualified, we must be defining the 01040 // template out-of-line. 01041 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) { 01042 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match 01043 : diag::err_member_decl_does_not_match) 01044 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange(); 01045 Invalid = true; 01046 } 01047 } 01048 01049 CXXRecordDecl *NewClass = 01050 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 01051 PrevClassTemplate? 01052 PrevClassTemplate->getTemplatedDecl() : nullptr, 01053 /*DelayTypeCreation=*/true); 01054 SetNestedNameSpecifier(NewClass, SS); 01055 if (NumOuterTemplateParamLists > 0) 01056 NewClass->setTemplateParameterListsInfo(Context, 01057 NumOuterTemplateParamLists, 01058 OuterTemplateParamLists); 01059 01060 // Add alignment attributes if necessary; these attributes are checked when 01061 // the ASTContext lays out the structure. 01062 if (TUK == TUK_Definition) { 01063 AddAlignmentAttributesForRecord(NewClass); 01064 AddMsStructLayoutForRecord(NewClass); 01065 } 01066 01067 ClassTemplateDecl *NewTemplate 01068 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 01069 DeclarationName(Name), TemplateParams, 01070 NewClass, PrevClassTemplate); 01071 NewClass->setDescribedClassTemplate(NewTemplate); 01072 01073 if (ModulePrivateLoc.isValid()) 01074 NewTemplate->setModulePrivate(); 01075 01076 // Build the type for the class template declaration now. 01077 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 01078 T = Context.getInjectedClassNameType(NewClass, T); 01079 assert(T->isDependentType() && "Class template type is not dependent?"); 01080 (void)T; 01081 01082 // If we are providing an explicit specialization of a member that is a 01083 // class template, make a note of that. 01084 if (PrevClassTemplate && 01085 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 01086 PrevClassTemplate->setMemberSpecialization(); 01087 01088 // Set the access specifier. 01089 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord()) 01090 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 01091 01092 // Set the lexical context of these templates 01093 NewClass->setLexicalDeclContext(CurContext); 01094 NewTemplate->setLexicalDeclContext(CurContext); 01095 01096 if (TUK == TUK_Definition) 01097 NewClass->startDefinition(); 01098 01099 if (Attr) 01100 ProcessDeclAttributeList(S, NewClass, Attr); 01101 01102 if (PrevClassTemplate) 01103 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl()); 01104 01105 AddPushedVisibilityAttribute(NewClass); 01106 01107 if (TUK != TUK_Friend) { 01108 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes. 01109 Scope *Outer = S; 01110 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0) 01111 Outer = Outer->getParent(); 01112 PushOnScopeChains(NewTemplate, Outer); 01113 } else { 01114 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 01115 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 01116 NewClass->setAccess(PrevClassTemplate->getAccess()); 01117 } 01118 01119 NewTemplate->setObjectOfFriendDecl(); 01120 01121 // Friend templates are visible in fairly strange ways. 01122 if (!CurContext->isDependentContext()) { 01123 DeclContext *DC = SemanticContext->getRedeclContext(); 01124 DC->makeDeclVisibleInContext(NewTemplate); 01125 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 01126 PushOnScopeChains(NewTemplate, EnclosingScope, 01127 /* AddToContext = */ false); 01128 } 01129 01130 FriendDecl *Friend = FriendDecl::Create( 01131 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc); 01132 Friend->setAccess(AS_public); 01133 CurContext->addDecl(Friend); 01134 } 01135 01136 if (Invalid) { 01137 NewTemplate->setInvalidDecl(); 01138 NewClass->setInvalidDecl(); 01139 } 01140 01141 ActOnDocumentableDecl(NewTemplate); 01142 01143 return NewTemplate; 01144 } 01145 01146 /// \brief Diagnose the presence of a default template argument on a 01147 /// template parameter, which is ill-formed in certain contexts. 01148 /// 01149 /// \returns true if the default template argument should be dropped. 01150 static bool DiagnoseDefaultTemplateArgument(Sema &S, 01151 Sema::TemplateParamListContext TPC, 01152 SourceLocation ParamLoc, 01153 SourceRange DefArgRange) { 01154 switch (TPC) { 01155 case Sema::TPC_ClassTemplate: 01156 case Sema::TPC_VarTemplate: 01157 case Sema::TPC_TypeAliasTemplate: 01158 return false; 01159 01160 case Sema::TPC_FunctionTemplate: 01161 case Sema::TPC_FriendFunctionTemplateDefinition: 01162 // C++ [temp.param]p9: 01163 // A default template-argument shall not be specified in a 01164 // function template declaration or a function template 01165 // definition [...] 01166 // If a friend function template declaration specifies a default 01167 // template-argument, that declaration shall be a definition and shall be 01168 // the only declaration of the function template in the translation unit. 01169 // (C++98/03 doesn't have this wording; see DR226). 01170 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ? 01171 diag::warn_cxx98_compat_template_parameter_default_in_function_template 01172 : diag::ext_template_parameter_default_in_function_template) 01173 << DefArgRange; 01174 return false; 01175 01176 case Sema::TPC_ClassTemplateMember: 01177 // C++0x [temp.param]p9: 01178 // A default template-argument shall not be specified in the 01179 // template-parameter-lists of the definition of a member of a 01180 // class template that appears outside of the member's class. 01181 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 01182 << DefArgRange; 01183 return true; 01184 01185 case Sema::TPC_FriendClassTemplate: 01186 case Sema::TPC_FriendFunctionTemplate: 01187 // C++ [temp.param]p9: 01188 // A default template-argument shall not be specified in a 01189 // friend template declaration. 01190 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 01191 << DefArgRange; 01192 return true; 01193 01194 // FIXME: C++0x [temp.param]p9 allows default template-arguments 01195 // for friend function templates if there is only a single 01196 // declaration (and it is a definition). Strange! 01197 } 01198 01199 llvm_unreachable("Invalid TemplateParamListContext!"); 01200 } 01201 01202 /// \brief Check for unexpanded parameter packs within the template parameters 01203 /// of a template template parameter, recursively. 01204 static bool DiagnoseUnexpandedParameterPacks(Sema &S, 01205 TemplateTemplateParmDecl *TTP) { 01206 // A template template parameter which is a parameter pack is also a pack 01207 // expansion. 01208 if (TTP->isParameterPack()) 01209 return false; 01210 01211 TemplateParameterList *Params = TTP->getTemplateParameters(); 01212 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 01213 NamedDecl *P = Params->getParam(I); 01214 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 01215 if (!NTTP->isParameterPack() && 01216 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 01217 NTTP->getTypeSourceInfo(), 01218 Sema::UPPC_NonTypeTemplateParameterType)) 01219 return true; 01220 01221 continue; 01222 } 01223 01224 if (TemplateTemplateParmDecl *InnerTTP 01225 = dyn_cast<TemplateTemplateParmDecl>(P)) 01226 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 01227 return true; 01228 } 01229 01230 return false; 01231 } 01232 01233 /// \brief Checks the validity of a template parameter list, possibly 01234 /// considering the template parameter list from a previous 01235 /// declaration. 01236 /// 01237 /// If an "old" template parameter list is provided, it must be 01238 /// equivalent (per TemplateParameterListsAreEqual) to the "new" 01239 /// template parameter list. 01240 /// 01241 /// \param NewParams Template parameter list for a new template 01242 /// declaration. This template parameter list will be updated with any 01243 /// default arguments that are carried through from the previous 01244 /// template parameter list. 01245 /// 01246 /// \param OldParams If provided, template parameter list from a 01247 /// previous declaration of the same template. Default template 01248 /// arguments will be merged from the old template parameter list to 01249 /// the new template parameter list. 01250 /// 01251 /// \param TPC Describes the context in which we are checking the given 01252 /// template parameter list. 01253 /// 01254 /// \returns true if an error occurred, false otherwise. 01255 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 01256 TemplateParameterList *OldParams, 01257 TemplateParamListContext TPC) { 01258 bool Invalid = false; 01259 01260 // C++ [temp.param]p10: 01261 // The set of default template-arguments available for use with a 01262 // template declaration or definition is obtained by merging the 01263 // default arguments from the definition (if in scope) and all 01264 // declarations in scope in the same way default function 01265 // arguments are (8.3.6). 01266 bool SawDefaultArgument = false; 01267 SourceLocation PreviousDefaultArgLoc; 01268 01269 // Dummy initialization to avoid warnings. 01270 TemplateParameterList::iterator OldParam = NewParams->end(); 01271 if (OldParams) 01272 OldParam = OldParams->begin(); 01273 01274 bool RemoveDefaultArguments = false; 01275 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 01276 NewParamEnd = NewParams->end(); 01277 NewParam != NewParamEnd; ++NewParam) { 01278 // Variables used to diagnose redundant default arguments 01279 bool RedundantDefaultArg = false; 01280 SourceLocation OldDefaultLoc; 01281 SourceLocation NewDefaultLoc; 01282 01283 // Variable used to diagnose missing default arguments 01284 bool MissingDefaultArg = false; 01285 01286 // Variable used to diagnose non-final parameter packs 01287 bool SawParameterPack = false; 01288 01289 if (TemplateTypeParmDecl *NewTypeParm 01290 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 01291 // Check the presence of a default argument here. 01292 if (NewTypeParm->hasDefaultArgument() && 01293 DiagnoseDefaultTemplateArgument(*this, TPC, 01294 NewTypeParm->getLocation(), 01295 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 01296 .getSourceRange())) 01297 NewTypeParm->removeDefaultArgument(); 01298 01299 // Merge default arguments for template type parameters. 01300 TemplateTypeParmDecl *OldTypeParm 01301 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr; 01302 01303 if (NewTypeParm->isParameterPack()) { 01304 assert(!NewTypeParm->hasDefaultArgument() && 01305 "Parameter packs can't have a default argument!"); 01306 SawParameterPack = true; 01307 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 01308 NewTypeParm->hasDefaultArgument()) { 01309 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 01310 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 01311 SawDefaultArgument = true; 01312 RedundantDefaultArg = true; 01313 PreviousDefaultArgLoc = NewDefaultLoc; 01314 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 01315 // Merge the default argument from the old declaration to the 01316 // new declaration. 01317 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 01318 true); 01319 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 01320 } else if (NewTypeParm->hasDefaultArgument()) { 01321 SawDefaultArgument = true; 01322 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 01323 } else if (SawDefaultArgument) 01324 MissingDefaultArg = true; 01325 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 01326 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 01327 // Check for unexpanded parameter packs. 01328 if (!NewNonTypeParm->isParameterPack() && 01329 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 01330 NewNonTypeParm->getTypeSourceInfo(), 01331 UPPC_NonTypeTemplateParameterType)) { 01332 Invalid = true; 01333 continue; 01334 } 01335 01336 // Check the presence of a default argument here. 01337 if (NewNonTypeParm->hasDefaultArgument() && 01338 DiagnoseDefaultTemplateArgument(*this, TPC, 01339 NewNonTypeParm->getLocation(), 01340 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 01341 NewNonTypeParm->removeDefaultArgument(); 01342 } 01343 01344 // Merge default arguments for non-type template parameters 01345 NonTypeTemplateParmDecl *OldNonTypeParm 01346 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr; 01347 if (NewNonTypeParm->isParameterPack()) { 01348 assert(!NewNonTypeParm->hasDefaultArgument() && 01349 "Parameter packs can't have a default argument!"); 01350 if (!NewNonTypeParm->isPackExpansion()) 01351 SawParameterPack = true; 01352 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 01353 NewNonTypeParm->hasDefaultArgument()) { 01354 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 01355 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 01356 SawDefaultArgument = true; 01357 RedundantDefaultArg = true; 01358 PreviousDefaultArgLoc = NewDefaultLoc; 01359 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 01360 // Merge the default argument from the old declaration to the 01361 // new declaration. 01362 // FIXME: We need to create a new kind of "default argument" 01363 // expression that points to a previous non-type template 01364 // parameter. 01365 NewNonTypeParm->setDefaultArgument( 01366 OldNonTypeParm->getDefaultArgument(), 01367 /*Inherited=*/ true); 01368 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 01369 } else if (NewNonTypeParm->hasDefaultArgument()) { 01370 SawDefaultArgument = true; 01371 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 01372 } else if (SawDefaultArgument) 01373 MissingDefaultArg = true; 01374 } else { 01375 TemplateTemplateParmDecl *NewTemplateParm 01376 = cast<TemplateTemplateParmDecl>(*NewParam); 01377 01378 // Check for unexpanded parameter packs, recursively. 01379 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 01380 Invalid = true; 01381 continue; 01382 } 01383 01384 // Check the presence of a default argument here. 01385 if (NewTemplateParm->hasDefaultArgument() && 01386 DiagnoseDefaultTemplateArgument(*this, TPC, 01387 NewTemplateParm->getLocation(), 01388 NewTemplateParm->getDefaultArgument().getSourceRange())) 01389 NewTemplateParm->removeDefaultArgument(); 01390 01391 // Merge default arguments for template template parameters 01392 TemplateTemplateParmDecl *OldTemplateParm 01393 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr; 01394 if (NewTemplateParm->isParameterPack()) { 01395 assert(!NewTemplateParm->hasDefaultArgument() && 01396 "Parameter packs can't have a default argument!"); 01397 if (!NewTemplateParm->isPackExpansion()) 01398 SawParameterPack = true; 01399 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 01400 NewTemplateParm->hasDefaultArgument()) { 01401 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 01402 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 01403 SawDefaultArgument = true; 01404 RedundantDefaultArg = true; 01405 PreviousDefaultArgLoc = NewDefaultLoc; 01406 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 01407 // Merge the default argument from the old declaration to the 01408 // new declaration. 01409 // FIXME: We need to create a new kind of "default argument" expression 01410 // that points to a previous template template parameter. 01411 NewTemplateParm->setDefaultArgument( 01412 OldTemplateParm->getDefaultArgument(), 01413 /*Inherited=*/ true); 01414 PreviousDefaultArgLoc 01415 = OldTemplateParm->getDefaultArgument().getLocation(); 01416 } else if (NewTemplateParm->hasDefaultArgument()) { 01417 SawDefaultArgument = true; 01418 PreviousDefaultArgLoc 01419 = NewTemplateParm->getDefaultArgument().getLocation(); 01420 } else if (SawDefaultArgument) 01421 MissingDefaultArg = true; 01422 } 01423 01424 // C++11 [temp.param]p11: 01425 // If a template parameter of a primary class template or alias template 01426 // is a template parameter pack, it shall be the last template parameter. 01427 if (SawParameterPack && (NewParam + 1) != NewParamEnd && 01428 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate || 01429 TPC == TPC_TypeAliasTemplate)) { 01430 Diag((*NewParam)->getLocation(), 01431 diag::err_template_param_pack_must_be_last_template_parameter); 01432 Invalid = true; 01433 } 01434 01435 if (RedundantDefaultArg) { 01436 // C++ [temp.param]p12: 01437 // A template-parameter shall not be given default arguments 01438 // by two different declarations in the same scope. 01439 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 01440 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 01441 Invalid = true; 01442 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 01443 // C++ [temp.param]p11: 01444 // If a template-parameter of a class template has a default 01445 // template-argument, each subsequent template-parameter shall either 01446 // have a default template-argument supplied or be a template parameter 01447 // pack. 01448 Diag((*NewParam)->getLocation(), 01449 diag::err_template_param_default_arg_missing); 01450 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 01451 Invalid = true; 01452 RemoveDefaultArguments = true; 01453 } 01454 01455 // If we have an old template parameter list that we're merging 01456 // in, move on to the next parameter. 01457 if (OldParams) 01458 ++OldParam; 01459 } 01460 01461 // We were missing some default arguments at the end of the list, so remove 01462 // all of the default arguments. 01463 if (RemoveDefaultArguments) { 01464 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 01465 NewParamEnd = NewParams->end(); 01466 NewParam != NewParamEnd; ++NewParam) { 01467 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 01468 TTP->removeDefaultArgument(); 01469 else if (NonTypeTemplateParmDecl *NTTP 01470 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 01471 NTTP->removeDefaultArgument(); 01472 else 01473 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 01474 } 01475 } 01476 01477 return Invalid; 01478 } 01479 01480 namespace { 01481 01482 /// A class which looks for a use of a certain level of template 01483 /// parameter. 01484 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 01485 typedef RecursiveASTVisitor<DependencyChecker> super; 01486 01487 unsigned Depth; 01488 bool Match; 01489 SourceLocation MatchLoc; 01490 01491 DependencyChecker(unsigned Depth) : Depth(Depth), Match(false) {} 01492 01493 DependencyChecker(TemplateParameterList *Params) : Match(false) { 01494 NamedDecl *ND = Params->getParam(0); 01495 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 01496 Depth = PD->getDepth(); 01497 } else if (NonTypeTemplateParmDecl *PD = 01498 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 01499 Depth = PD->getDepth(); 01500 } else { 01501 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 01502 } 01503 } 01504 01505 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) { 01506 if (ParmDepth >= Depth) { 01507 Match = true; 01508 MatchLoc = Loc; 01509 return true; 01510 } 01511 return false; 01512 } 01513 01514 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { 01515 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc()); 01516 } 01517 01518 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 01519 return !Matches(T->getDepth()); 01520 } 01521 01522 bool TraverseTemplateName(TemplateName N) { 01523 if (TemplateTemplateParmDecl *PD = 01524 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 01525 if (Matches(PD->getDepth())) 01526 return false; 01527 return super::TraverseTemplateName(N); 01528 } 01529 01530 bool VisitDeclRefExpr(DeclRefExpr *E) { 01531 if (NonTypeTemplateParmDecl *PD = 01532 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) 01533 if (Matches(PD->getDepth(), E->getExprLoc())) 01534 return false; 01535 return super::VisitDeclRefExpr(E); 01536 } 01537 01538 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) { 01539 return TraverseType(T->getReplacementType()); 01540 } 01541 01542 bool 01543 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) { 01544 return TraverseTemplateArgument(T->getArgumentPack()); 01545 } 01546 01547 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 01548 return TraverseType(T->getInjectedSpecializationType()); 01549 } 01550 }; 01551 } 01552 01553 /// Determines whether a given type depends on the given parameter 01554 /// list. 01555 static bool 01556 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 01557 DependencyChecker Checker(Params); 01558 Checker.TraverseType(T); 01559 return Checker.Match; 01560 } 01561 01562 // Find the source range corresponding to the named type in the given 01563 // nested-name-specifier, if any. 01564 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 01565 QualType T, 01566 const CXXScopeSpec &SS) { 01567 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 01568 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 01569 if (const Type *CurType = NNS->getAsType()) { 01570 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 01571 return NNSLoc.getTypeLoc().getSourceRange(); 01572 } else 01573 break; 01574 01575 NNSLoc = NNSLoc.getPrefix(); 01576 } 01577 01578 return SourceRange(); 01579 } 01580 01581 /// \brief Match the given template parameter lists to the given scope 01582 /// specifier, returning the template parameter list that applies to the 01583 /// name. 01584 /// 01585 /// \param DeclStartLoc the start of the declaration that has a scope 01586 /// specifier or a template parameter list. 01587 /// 01588 /// \param DeclLoc The location of the declaration itself. 01589 /// 01590 /// \param SS the scope specifier that will be matched to the given template 01591 /// parameter lists. This scope specifier precedes a qualified name that is 01592 /// being declared. 01593 /// 01594 /// \param TemplateId The template-id following the scope specifier, if there 01595 /// is one. Used to check for a missing 'template<>'. 01596 /// 01597 /// \param ParamLists the template parameter lists, from the outermost to the 01598 /// innermost template parameter lists. 01599 /// 01600 /// \param IsFriend Whether to apply the slightly different rules for 01601 /// matching template parameters to scope specifiers in friend 01602 /// declarations. 01603 /// 01604 /// \param IsExplicitSpecialization will be set true if the entity being 01605 /// declared is an explicit specialization, false otherwise. 01606 /// 01607 /// \returns the template parameter list, if any, that corresponds to the 01608 /// name that is preceded by the scope specifier @p SS. This template 01609 /// parameter list may have template parameters (if we're declaring a 01610 /// template) or may have no template parameters (if we're declaring a 01611 /// template specialization), or may be NULL (if what we're declaring isn't 01612 /// itself a template). 01613 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier( 01614 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS, 01615 TemplateIdAnnotation *TemplateId, 01616 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend, 01617 bool &IsExplicitSpecialization, bool &Invalid) { 01618 IsExplicitSpecialization = false; 01619 Invalid = false; 01620 01621 // The sequence of nested types to which we will match up the template 01622 // parameter lists. We first build this list by starting with the type named 01623 // by the nested-name-specifier and walking out until we run out of types. 01624 SmallVector<QualType, 4> NestedTypes; 01625 QualType T; 01626 if (SS.getScopeRep()) { 01627 if (CXXRecordDecl *Record 01628 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 01629 T = Context.getTypeDeclType(Record); 01630 else 01631 T = QualType(SS.getScopeRep()->getAsType(), 0); 01632 } 01633 01634 // If we found an explicit specialization that prevents us from needing 01635 // 'template<>' headers, this will be set to the location of that 01636 // explicit specialization. 01637 SourceLocation ExplicitSpecLoc; 01638 01639 while (!T.isNull()) { 01640 NestedTypes.push_back(T); 01641 01642 // Retrieve the parent of a record type. 01643 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 01644 // If this type is an explicit specialization, we're done. 01645 if (ClassTemplateSpecializationDecl *Spec 01646 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 01647 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 01648 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 01649 ExplicitSpecLoc = Spec->getLocation(); 01650 break; 01651 } 01652 } else if (Record->getTemplateSpecializationKind() 01653 == TSK_ExplicitSpecialization) { 01654 ExplicitSpecLoc = Record->getLocation(); 01655 break; 01656 } 01657 01658 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 01659 T = Context.getTypeDeclType(Parent); 01660 else 01661 T = QualType(); 01662 continue; 01663 } 01664 01665 if (const TemplateSpecializationType *TST 01666 = T->getAs<TemplateSpecializationType>()) { 01667 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 01668 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 01669 T = Context.getTypeDeclType(Parent); 01670 else 01671 T = QualType(); 01672 continue; 01673 } 01674 } 01675 01676 // Look one step prior in a dependent template specialization type. 01677 if (const DependentTemplateSpecializationType *DependentTST 01678 = T->getAs<DependentTemplateSpecializationType>()) { 01679 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 01680 T = QualType(NNS->getAsType(), 0); 01681 else 01682 T = QualType(); 01683 continue; 01684 } 01685 01686 // Look one step prior in a dependent name type. 01687 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 01688 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 01689 T = QualType(NNS->getAsType(), 0); 01690 else 01691 T = QualType(); 01692 continue; 01693 } 01694 01695 // Retrieve the parent of an enumeration type. 01696 if (const EnumType *EnumT = T->getAs<EnumType>()) { 01697 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 01698 // check here. 01699 EnumDecl *Enum = EnumT->getDecl(); 01700 01701 // Get to the parent type. 01702 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 01703 T = Context.getTypeDeclType(Parent); 01704 else 01705 T = QualType(); 01706 continue; 01707 } 01708 01709 T = QualType(); 01710 } 01711 // Reverse the nested types list, since we want to traverse from the outermost 01712 // to the innermost while checking template-parameter-lists. 01713 std::reverse(NestedTypes.begin(), NestedTypes.end()); 01714 01715 // C++0x [temp.expl.spec]p17: 01716 // A member or a member template may be nested within many 01717 // enclosing class templates. In an explicit specialization for 01718 // such a member, the member declaration shall be preceded by a 01719 // template<> for each enclosing class template that is 01720 // explicitly specialized. 01721 bool SawNonEmptyTemplateParameterList = false; 01722 01723 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) { 01724 if (SawNonEmptyTemplateParameterList) { 01725 Diag(DeclLoc, diag::err_specialize_member_of_template) 01726 << !Recovery << Range; 01727 Invalid = true; 01728 IsExplicitSpecialization = false; 01729 return true; 01730 } 01731 01732 return false; 01733 }; 01734 01735 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) { 01736 // Check that we can have an explicit specialization here. 01737 if (CheckExplicitSpecialization(Range, true)) 01738 return true; 01739 01740 // We don't have a template header, but we should. 01741 SourceLocation ExpectedTemplateLoc; 01742 if (!ParamLists.empty()) 01743 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 01744 else 01745 ExpectedTemplateLoc = DeclStartLoc; 01746 01747 Diag(DeclLoc, diag::err_template_spec_needs_header) 01748 << Range 01749 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 01750 return false; 01751 }; 01752 01753 unsigned ParamIdx = 0; 01754 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 01755 ++TypeIdx) { 01756 T = NestedTypes[TypeIdx]; 01757 01758 // Whether we expect a 'template<>' header. 01759 bool NeedEmptyTemplateHeader = false; 01760 01761 // Whether we expect a template header with parameters. 01762 bool NeedNonemptyTemplateHeader = false; 01763 01764 // For a dependent type, the set of template parameters that we 01765 // expect to see. 01766 TemplateParameterList *ExpectedTemplateParams = nullptr; 01767 01768 // C++0x [temp.expl.spec]p15: 01769 // A member or a member template may be nested within many enclosing 01770 // class templates. In an explicit specialization for such a member, the 01771 // member declaration shall be preceded by a template<> for each 01772 // enclosing class template that is explicitly specialized. 01773 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 01774 if (ClassTemplatePartialSpecializationDecl *Partial 01775 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 01776 ExpectedTemplateParams = Partial->getTemplateParameters(); 01777 NeedNonemptyTemplateHeader = true; 01778 } else if (Record->isDependentType()) { 01779 if (Record->getDescribedClassTemplate()) { 01780 ExpectedTemplateParams = Record->getDescribedClassTemplate() 01781 ->getTemplateParameters(); 01782 NeedNonemptyTemplateHeader = true; 01783 } 01784 } else if (ClassTemplateSpecializationDecl *Spec 01785 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 01786 // C++0x [temp.expl.spec]p4: 01787 // Members of an explicitly specialized class template are defined 01788 // in the same manner as members of normal classes, and not using 01789 // the template<> syntax. 01790 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 01791 NeedEmptyTemplateHeader = true; 01792 else 01793 continue; 01794 } else if (Record->getTemplateSpecializationKind()) { 01795 if (Record->getTemplateSpecializationKind() 01796 != TSK_ExplicitSpecialization && 01797 TypeIdx == NumTypes - 1) 01798 IsExplicitSpecialization = true; 01799 01800 continue; 01801 } 01802 } else if (const TemplateSpecializationType *TST 01803 = T->getAs<TemplateSpecializationType>()) { 01804 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 01805 ExpectedTemplateParams = Template->getTemplateParameters(); 01806 NeedNonemptyTemplateHeader = true; 01807 } 01808 } else if (T->getAs<DependentTemplateSpecializationType>()) { 01809 // FIXME: We actually could/should check the template arguments here 01810 // against the corresponding template parameter list. 01811 NeedNonemptyTemplateHeader = false; 01812 } 01813 01814 // C++ [temp.expl.spec]p16: 01815 // In an explicit specialization declaration for a member of a class 01816 // template or a member template that ap- pears in namespace scope, the 01817 // member template and some of its enclosing class templates may remain 01818 // unspecialized, except that the declaration shall not explicitly 01819 // specialize a class member template if its en- closing class templates 01820 // are not explicitly specialized as well. 01821 if (ParamIdx < ParamLists.size()) { 01822 if (ParamLists[ParamIdx]->size() == 0) { 01823 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), 01824 false)) 01825 return nullptr; 01826 } else 01827 SawNonEmptyTemplateParameterList = true; 01828 } 01829 01830 if (NeedEmptyTemplateHeader) { 01831 // If we're on the last of the types, and we need a 'template<>' header 01832 // here, then it's an explicit specialization. 01833 if (TypeIdx == NumTypes - 1) 01834 IsExplicitSpecialization = true; 01835 01836 if (ParamIdx < ParamLists.size()) { 01837 if (ParamLists[ParamIdx]->size() > 0) { 01838 // The header has template parameters when it shouldn't. Complain. 01839 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 01840 diag::err_template_param_list_matches_nontemplate) 01841 << T 01842 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 01843 ParamLists[ParamIdx]->getRAngleLoc()) 01844 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 01845 Invalid = true; 01846 return nullptr; 01847 } 01848 01849 // Consume this template header. 01850 ++ParamIdx; 01851 continue; 01852 } 01853 01854 if (!IsFriend) 01855 if (DiagnoseMissingExplicitSpecialization( 01856 getRangeOfTypeInNestedNameSpecifier(Context, T, SS))) 01857 return nullptr; 01858 01859 continue; 01860 } 01861 01862 if (NeedNonemptyTemplateHeader) { 01863 // In friend declarations we can have template-ids which don't 01864 // depend on the corresponding template parameter lists. But 01865 // assume that empty parameter lists are supposed to match this 01866 // template-id. 01867 if (IsFriend && T->isDependentType()) { 01868 if (ParamIdx < ParamLists.size() && 01869 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 01870 ExpectedTemplateParams = nullptr; 01871 else 01872 continue; 01873 } 01874 01875 if (ParamIdx < ParamLists.size()) { 01876 // Check the template parameter list, if we can. 01877 if (ExpectedTemplateParams && 01878 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 01879 ExpectedTemplateParams, 01880 true, TPL_TemplateMatch)) 01881 Invalid = true; 01882 01883 if (!Invalid && 01884 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr, 01885 TPC_ClassTemplateMember)) 01886 Invalid = true; 01887 01888 ++ParamIdx; 01889 continue; 01890 } 01891 01892 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 01893 << T 01894 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 01895 Invalid = true; 01896 continue; 01897 } 01898 } 01899 01900 // If there were at least as many template-ids as there were template 01901 // parameter lists, then there are no template parameter lists remaining for 01902 // the declaration itself. 01903 if (ParamIdx >= ParamLists.size()) { 01904 if (TemplateId && !IsFriend) { 01905 // We don't have a template header for the declaration itself, but we 01906 // should. 01907 IsExplicitSpecialization = true; 01908 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc, 01909 TemplateId->RAngleLoc)); 01910 01911 // Fabricate an empty template parameter list for the invented header. 01912 return TemplateParameterList::Create(Context, SourceLocation(), 01913 SourceLocation(), nullptr, 0, 01914 SourceLocation()); 01915 } 01916 01917 return nullptr; 01918 } 01919 01920 // If there were too many template parameter lists, complain about that now. 01921 if (ParamIdx < ParamLists.size() - 1) { 01922 bool HasAnyExplicitSpecHeader = false; 01923 bool AllExplicitSpecHeaders = true; 01924 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) { 01925 if (ParamLists[I]->size() == 0) 01926 HasAnyExplicitSpecHeader = true; 01927 else 01928 AllExplicitSpecHeaders = false; 01929 } 01930 01931 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 01932 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers 01933 : diag::err_template_spec_extra_headers) 01934 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 01935 ParamLists[ParamLists.size() - 2]->getRAngleLoc()); 01936 01937 // If there was a specialization somewhere, such that 'template<>' is 01938 // not required, and there were any 'template<>' headers, note where the 01939 // specialization occurred. 01940 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader) 01941 Diag(ExplicitSpecLoc, 01942 diag::note_explicit_template_spec_does_not_need_header) 01943 << NestedTypes.back(); 01944 01945 // We have a template parameter list with no corresponding scope, which 01946 // means that the resulting template declaration can't be instantiated 01947 // properly (we'll end up with dependent nodes when we shouldn't). 01948 if (!AllExplicitSpecHeaders) 01949 Invalid = true; 01950 } 01951 01952 // C++ [temp.expl.spec]p16: 01953 // In an explicit specialization declaration for a member of a class 01954 // template or a member template that ap- pears in namespace scope, the 01955 // member template and some of its enclosing class templates may remain 01956 // unspecialized, except that the declaration shall not explicitly 01957 // specialize a class member template if its en- closing class templates 01958 // are not explicitly specialized as well. 01959 if (ParamLists.back()->size() == 0 && 01960 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), 01961 false)) 01962 return nullptr; 01963 01964 // Return the last template parameter list, which corresponds to the 01965 // entity being declared. 01966 return ParamLists.back(); 01967 } 01968 01969 void Sema::NoteAllFoundTemplates(TemplateName Name) { 01970 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 01971 Diag(Template->getLocation(), diag::note_template_declared_here) 01972 << (isa<FunctionTemplateDecl>(Template) 01973 ? 0 01974 : isa<ClassTemplateDecl>(Template) 01975 ? 1 01976 : isa<VarTemplateDecl>(Template) 01977 ? 2 01978 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4) 01979 << Template->getDeclName(); 01980 return; 01981 } 01982 01983 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 01984 for (OverloadedTemplateStorage::iterator I = OST->begin(), 01985 IEnd = OST->end(); 01986 I != IEnd; ++I) 01987 Diag((*I)->getLocation(), diag::note_template_declared_here) 01988 << 0 << (*I)->getDeclName(); 01989 01990 return; 01991 } 01992 } 01993 01994 QualType Sema::CheckTemplateIdType(TemplateName Name, 01995 SourceLocation TemplateLoc, 01996 TemplateArgumentListInfo &TemplateArgs) { 01997 DependentTemplateName *DTN 01998 = Name.getUnderlying().getAsDependentTemplateName(); 01999 if (DTN && DTN->isIdentifier()) 02000 // When building a template-id where the template-name is dependent, 02001 // assume the template is a type template. Either our assumption is 02002 // correct, or the code is ill-formed and will be diagnosed when the 02003 // dependent name is substituted. 02004 return Context.getDependentTemplateSpecializationType(ETK_None, 02005 DTN->getQualifier(), 02006 DTN->getIdentifier(), 02007 TemplateArgs); 02008 02009 TemplateDecl *Template = Name.getAsTemplateDecl(); 02010 if (!Template || isa<FunctionTemplateDecl>(Template) || 02011 isa<VarTemplateDecl>(Template)) { 02012 // We might have a substituted template template parameter pack. If so, 02013 // build a template specialization type for it. 02014 if (Name.getAsSubstTemplateTemplateParmPack()) 02015 return Context.getTemplateSpecializationType(Name, TemplateArgs); 02016 02017 Diag(TemplateLoc, diag::err_template_id_not_a_type) 02018 << Name; 02019 NoteAllFoundTemplates(Name); 02020 return QualType(); 02021 } 02022 02023 // Check that the template argument list is well-formed for this 02024 // template. 02025 SmallVector<TemplateArgument, 4> Converted; 02026 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 02027 false, Converted)) 02028 return QualType(); 02029 02030 QualType CanonType; 02031 02032 bool InstantiationDependent = false; 02033 if (TypeAliasTemplateDecl *AliasTemplate = 02034 dyn_cast<TypeAliasTemplateDecl>(Template)) { 02035 // Find the canonical type for this type alias template specialization. 02036 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 02037 if (Pattern->isInvalidDecl()) 02038 return QualType(); 02039 02040 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 02041 Converted.data(), Converted.size()); 02042 02043 // Only substitute for the innermost template argument list. 02044 MultiLevelTemplateArgumentList TemplateArgLists; 02045 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 02046 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth(); 02047 for (unsigned I = 0; I < Depth; ++I) 02048 TemplateArgLists.addOuterTemplateArguments(None); 02049 02050 LocalInstantiationScope Scope(*this); 02051 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 02052 if (Inst.isInvalid()) 02053 return QualType(); 02054 02055 CanonType = SubstType(Pattern->getUnderlyingType(), 02056 TemplateArgLists, AliasTemplate->getLocation(), 02057 AliasTemplate->getDeclName()); 02058 if (CanonType.isNull()) 02059 return QualType(); 02060 } else if (Name.isDependent() || 02061 TemplateSpecializationType::anyDependentTemplateArguments( 02062 TemplateArgs, InstantiationDependent)) { 02063 // This class template specialization is a dependent 02064 // type. Therefore, its canonical type is another class template 02065 // specialization type that contains all of the converted 02066 // arguments in canonical form. This ensures that, e.g., A<T> and 02067 // A<T, T> have identical types when A is declared as: 02068 // 02069 // template<typename T, typename U = T> struct A; 02070 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 02071 CanonType = Context.getTemplateSpecializationType(CanonName, 02072 Converted.data(), 02073 Converted.size()); 02074 02075 // FIXME: CanonType is not actually the canonical type, and unfortunately 02076 // it is a TemplateSpecializationType that we will never use again. 02077 // In the future, we need to teach getTemplateSpecializationType to only 02078 // build the canonical type and return that to us. 02079 CanonType = Context.getCanonicalType(CanonType); 02080 02081 // This might work out to be a current instantiation, in which 02082 // case the canonical type needs to be the InjectedClassNameType. 02083 // 02084 // TODO: in theory this could be a simple hashtable lookup; most 02085 // changes to CurContext don't change the set of current 02086 // instantiations. 02087 if (isa<ClassTemplateDecl>(Template)) { 02088 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 02089 // If we get out to a namespace, we're done. 02090 if (Ctx->isFileContext()) break; 02091 02092 // If this isn't a record, keep looking. 02093 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 02094 if (!Record) continue; 02095 02096 // Look for one of the two cases with InjectedClassNameTypes 02097 // and check whether it's the same template. 02098 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 02099 !Record->getDescribedClassTemplate()) 02100 continue; 02101 02102 // Fetch the injected class name type and check whether its 02103 // injected type is equal to the type we just built. 02104 QualType ICNT = Context.getTypeDeclType(Record); 02105 QualType Injected = cast<InjectedClassNameType>(ICNT) 02106 ->getInjectedSpecializationType(); 02107 02108 if (CanonType != Injected->getCanonicalTypeInternal()) 02109 continue; 02110 02111 // If so, the canonical type of this TST is the injected 02112 // class name type of the record we just found. 02113 assert(ICNT.isCanonical()); 02114 CanonType = ICNT; 02115 break; 02116 } 02117 } 02118 } else if (ClassTemplateDecl *ClassTemplate 02119 = dyn_cast<ClassTemplateDecl>(Template)) { 02120 // Find the class template specialization declaration that 02121 // corresponds to these arguments. 02122 void *InsertPos = nullptr; 02123 ClassTemplateSpecializationDecl *Decl 02124 = ClassTemplate->findSpecialization(Converted, InsertPos); 02125 if (!Decl) { 02126 // This is the first time we have referenced this class template 02127 // specialization. Create the canonical declaration and add it to 02128 // the set of specializations. 02129 Decl = ClassTemplateSpecializationDecl::Create(Context, 02130 ClassTemplate->getTemplatedDecl()->getTagKind(), 02131 ClassTemplate->getDeclContext(), 02132 ClassTemplate->getTemplatedDecl()->getLocStart(), 02133 ClassTemplate->getLocation(), 02134 ClassTemplate, 02135 Converted.data(), 02136 Converted.size(), nullptr); 02137 ClassTemplate->AddSpecialization(Decl, InsertPos); 02138 if (ClassTemplate->isOutOfLine()) 02139 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext()); 02140 } 02141 02142 // Diagnose uses of this specialization. 02143 (void)DiagnoseUseOfDecl(Decl, TemplateLoc); 02144 02145 CanonType = Context.getTypeDeclType(Decl); 02146 assert(isa<RecordType>(CanonType) && 02147 "type of non-dependent specialization is not a RecordType"); 02148 } 02149 02150 // Build the fully-sugared type for this class template 02151 // specialization, which refers back to the class template 02152 // specialization we created or found. 02153 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 02154 } 02155 02156 TypeResult 02157 Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, 02158 TemplateTy TemplateD, SourceLocation TemplateLoc, 02159 SourceLocation LAngleLoc, 02160 ASTTemplateArgsPtr TemplateArgsIn, 02161 SourceLocation RAngleLoc, 02162 bool IsCtorOrDtorName) { 02163 if (SS.isInvalid()) 02164 return true; 02165 02166 TemplateName Template = TemplateD.get(); 02167 02168 // Translate the parser's template argument list in our AST format. 02169 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 02170 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 02171 02172 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 02173 QualType T 02174 = Context.getDependentTemplateSpecializationType(ETK_None, 02175 DTN->getQualifier(), 02176 DTN->getIdentifier(), 02177 TemplateArgs); 02178 // Build type-source information. 02179 TypeLocBuilder TLB; 02180 DependentTemplateSpecializationTypeLoc SpecTL 02181 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 02182 SpecTL.setElaboratedKeywordLoc(SourceLocation()); 02183 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 02184 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 02185 SpecTL.setTemplateNameLoc(TemplateLoc); 02186 SpecTL.setLAngleLoc(LAngleLoc); 02187 SpecTL.setRAngleLoc(RAngleLoc); 02188 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 02189 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 02190 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 02191 } 02192 02193 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 02194 02195 if (Result.isNull()) 02196 return true; 02197 02198 // Build type-source information. 02199 TypeLocBuilder TLB; 02200 TemplateSpecializationTypeLoc SpecTL 02201 = TLB.push<TemplateSpecializationTypeLoc>(Result); 02202 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 02203 SpecTL.setTemplateNameLoc(TemplateLoc); 02204 SpecTL.setLAngleLoc(LAngleLoc); 02205 SpecTL.setRAngleLoc(RAngleLoc); 02206 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 02207 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 02208 02209 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a 02210 // constructor or destructor name (in such a case, the scope specifier 02211 // will be attached to the enclosing Decl or Expr node). 02212 if (SS.isNotEmpty() && !IsCtorOrDtorName) { 02213 // Create an elaborated-type-specifier containing the nested-name-specifier. 02214 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 02215 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 02216 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 02217 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 02218 } 02219 02220 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 02221 } 02222 02223 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 02224 TypeSpecifierType TagSpec, 02225 SourceLocation TagLoc, 02226 CXXScopeSpec &SS, 02227 SourceLocation TemplateKWLoc, 02228 TemplateTy TemplateD, 02229 SourceLocation TemplateLoc, 02230 SourceLocation LAngleLoc, 02231 ASTTemplateArgsPtr TemplateArgsIn, 02232 SourceLocation RAngleLoc) { 02233 TemplateName Template = TemplateD.get(); 02234 02235 // Translate the parser's template argument list in our AST format. 02236 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 02237 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 02238 02239 // Determine the tag kind 02240 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 02241 ElaboratedTypeKeyword Keyword 02242 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 02243 02244 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 02245 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 02246 DTN->getQualifier(), 02247 DTN->getIdentifier(), 02248 TemplateArgs); 02249 02250 // Build type-source information. 02251 TypeLocBuilder TLB; 02252 DependentTemplateSpecializationTypeLoc SpecTL 02253 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 02254 SpecTL.setElaboratedKeywordLoc(TagLoc); 02255 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 02256 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 02257 SpecTL.setTemplateNameLoc(TemplateLoc); 02258 SpecTL.setLAngleLoc(LAngleLoc); 02259 SpecTL.setRAngleLoc(RAngleLoc); 02260 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 02261 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 02262 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 02263 } 02264 02265 if (TypeAliasTemplateDecl *TAT = 02266 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 02267 // C++0x [dcl.type.elab]p2: 02268 // If the identifier resolves to a typedef-name or the simple-template-id 02269 // resolves to an alias template specialization, the 02270 // elaborated-type-specifier is ill-formed. 02271 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4; 02272 Diag(TAT->getLocation(), diag::note_declared_at); 02273 } 02274 02275 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 02276 if (Result.isNull()) 02277 return TypeResult(true); 02278 02279 // Check the tag kind 02280 if (const RecordType *RT = Result->getAs<RecordType>()) { 02281 RecordDecl *D = RT->getDecl(); 02282 02283 IdentifierInfo *Id = D->getIdentifier(); 02284 assert(Id && "templated class must have an identifier"); 02285 02286 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, 02287 TagLoc, *Id)) { 02288 Diag(TagLoc, diag::err_use_with_wrong_tag) 02289 << Result 02290 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 02291 Diag(D->getLocation(), diag::note_previous_use); 02292 } 02293 } 02294 02295 // Provide source-location information for the template specialization. 02296 TypeLocBuilder TLB; 02297 TemplateSpecializationTypeLoc SpecTL 02298 = TLB.push<TemplateSpecializationTypeLoc>(Result); 02299 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 02300 SpecTL.setTemplateNameLoc(TemplateLoc); 02301 SpecTL.setLAngleLoc(LAngleLoc); 02302 SpecTL.setRAngleLoc(RAngleLoc); 02303 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 02304 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 02305 02306 // Construct an elaborated type containing the nested-name-specifier (if any) 02307 // and tag keyword. 02308 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 02309 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 02310 ElabTL.setElaboratedKeywordLoc(TagLoc); 02311 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 02312 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 02313 } 02314 02315 static bool CheckTemplatePartialSpecializationArgs( 02316 Sema &S, SourceLocation NameLoc, TemplateParameterList *TemplateParams, 02317 unsigned ExplicitArgs, SmallVectorImpl<TemplateArgument> &TemplateArgs); 02318 02319 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized, 02320 NamedDecl *PrevDecl, 02321 SourceLocation Loc, 02322 bool IsPartialSpecialization); 02323 02324 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D); 02325 02326 static bool isTemplateArgumentTemplateParameter( 02327 const TemplateArgument &Arg, unsigned Depth, unsigned Index) { 02328 switch (Arg.getKind()) { 02329 case TemplateArgument::Null: 02330 case TemplateArgument::NullPtr: 02331 case TemplateArgument::Integral: 02332 case TemplateArgument::Declaration: 02333 case TemplateArgument::Pack: 02334 case TemplateArgument::TemplateExpansion: 02335 return false; 02336 02337 case TemplateArgument::Type: { 02338 QualType Type = Arg.getAsType(); 02339 const TemplateTypeParmType *TPT = 02340 Arg.getAsType()->getAs<TemplateTypeParmType>(); 02341 return TPT && !Type.hasQualifiers() && 02342 TPT->getDepth() == Depth && TPT->getIndex() == Index; 02343 } 02344 02345 case TemplateArgument::Expression: { 02346 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr()); 02347 if (!DRE || !DRE->getDecl()) 02348 return false; 02349 const NonTypeTemplateParmDecl *NTTP = 02350 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); 02351 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index; 02352 } 02353 02354 case TemplateArgument::Template: 02355 const TemplateTemplateParmDecl *TTP = 02356 dyn_cast_or_null<TemplateTemplateParmDecl>( 02357 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()); 02358 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index; 02359 } 02360 llvm_unreachable("unexpected kind of template argument"); 02361 } 02362 02363 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params, 02364 ArrayRef<TemplateArgument> Args) { 02365 if (Params->size() != Args.size()) 02366 return false; 02367 02368 unsigned Depth = Params->getDepth(); 02369 02370 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 02371 TemplateArgument Arg = Args[I]; 02372 02373 // If the parameter is a pack expansion, the argument must be a pack 02374 // whose only element is a pack expansion. 02375 if (Params->getParam(I)->isParameterPack()) { 02376 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 || 02377 !Arg.pack_begin()->isPackExpansion()) 02378 return false; 02379 Arg = Arg.pack_begin()->getPackExpansionPattern(); 02380 } 02381 02382 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I)) 02383 return false; 02384 } 02385 02386 return true; 02387 } 02388 02389 /// Convert the parser's template argument list representation into our form. 02390 static TemplateArgumentListInfo 02391 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) { 02392 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc, 02393 TemplateId.RAngleLoc); 02394 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(), 02395 TemplateId.NumArgs); 02396 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 02397 return TemplateArgs; 02398 } 02399 02400 DeclResult Sema::ActOnVarTemplateSpecialization( 02401 Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc, 02402 TemplateParameterList *TemplateParams, StorageClass SC, 02403 bool IsPartialSpecialization) { 02404 // D must be variable template id. 02405 assert(D.getName().getKind() == UnqualifiedId::IK_TemplateId && 02406 "Variable template specialization is declared with a template it."); 02407 02408 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 02409 TemplateArgumentListInfo TemplateArgs = 02410 makeTemplateArgumentListInfo(*this, *TemplateId); 02411 SourceLocation TemplateNameLoc = D.getIdentifierLoc(); 02412 SourceLocation LAngleLoc = TemplateId->LAngleLoc; 02413 SourceLocation RAngleLoc = TemplateId->RAngleLoc; 02414 02415 TemplateName Name = TemplateId->Template.get(); 02416 02417 // The template-id must name a variable template. 02418 VarTemplateDecl *VarTemplate = 02419 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl()); 02420 if (!VarTemplate) { 02421 NamedDecl *FnTemplate; 02422 if (auto *OTS = Name.getAsOverloadedTemplate()) 02423 FnTemplate = *OTS->begin(); 02424 else 02425 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl()); 02426 if (FnTemplate) 02427 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method) 02428 << FnTemplate->getDeclName(); 02429 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template) 02430 << IsPartialSpecialization; 02431 } 02432 02433 // Check for unexpanded parameter packs in any of the template arguments. 02434 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 02435 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 02436 UPPC_PartialSpecialization)) 02437 return true; 02438 02439 // Check that the template argument list is well-formed for this 02440 // template. 02441 SmallVector<TemplateArgument, 4> Converted; 02442 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs, 02443 false, Converted)) 02444 return true; 02445 02446 // Check that the type of this variable template specialization 02447 // matches the expected type. 02448 TypeSourceInfo *ExpectedDI; 02449 { 02450 // Do substitution on the type of the declaration 02451 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack, 02452 Converted.data(), Converted.size()); 02453 InstantiatingTemplate Inst(*this, TemplateKWLoc, VarTemplate); 02454 if (Inst.isInvalid()) 02455 return true; 02456 VarDecl *Templated = VarTemplate->getTemplatedDecl(); 02457 ExpectedDI = 02458 SubstType(Templated->getTypeSourceInfo(), 02459 MultiLevelTemplateArgumentList(TemplateArgList), 02460 Templated->getTypeSpecStartLoc(), Templated->getDeclName()); 02461 } 02462 if (!ExpectedDI) 02463 return true; 02464 02465 // Find the variable template (partial) specialization declaration that 02466 // corresponds to these arguments. 02467 if (IsPartialSpecialization) { 02468 if (CheckTemplatePartialSpecializationArgs( 02469 *this, TemplateNameLoc, VarTemplate->getTemplateParameters(), 02470 TemplateArgs.size(), Converted)) 02471 return true; 02472 02473 bool InstantiationDependent; 02474 if (!Name.isDependent() && 02475 !TemplateSpecializationType::anyDependentTemplateArguments( 02476 TemplateArgs.getArgumentArray(), TemplateArgs.size(), 02477 InstantiationDependent)) { 02478 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 02479 << VarTemplate->getDeclName(); 02480 IsPartialSpecialization = false; 02481 } 02482 02483 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(), 02484 Converted)) { 02485 // C++ [temp.class.spec]p9b3: 02486 // 02487 // -- The argument list of the specialization shall not be identical 02488 // to the implicit argument list of the primary template. 02489 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 02490 << /*variable template*/ 1 02491 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord()) 02492 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 02493 // FIXME: Recover from this by treating the declaration as a redeclaration 02494 // of the primary template. 02495 return true; 02496 } 02497 } 02498 02499 void *InsertPos = nullptr; 02500 VarTemplateSpecializationDecl *PrevDecl = nullptr; 02501 02502 if (IsPartialSpecialization) 02503 // FIXME: Template parameter list matters too 02504 PrevDecl = VarTemplate->findPartialSpecialization(Converted, InsertPos); 02505 else 02506 PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos); 02507 02508 VarTemplateSpecializationDecl *Specialization = nullptr; 02509 02510 // Check whether we can declare a variable template specialization in 02511 // the current scope. 02512 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl, 02513 TemplateNameLoc, 02514 IsPartialSpecialization)) 02515 return true; 02516 02517 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) { 02518 // Since the only prior variable template specialization with these 02519 // arguments was referenced but not declared, reuse that 02520 // declaration node as our own, updating its source location and 02521 // the list of outer template parameters to reflect our new declaration. 02522 Specialization = PrevDecl; 02523 Specialization->setLocation(TemplateNameLoc); 02524 PrevDecl = nullptr; 02525 } else if (IsPartialSpecialization) { 02526 // Create a new class template partial specialization declaration node. 02527 VarTemplatePartialSpecializationDecl *PrevPartial = 02528 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl); 02529 VarTemplatePartialSpecializationDecl *Partial = 02530 VarTemplatePartialSpecializationDecl::Create( 02531 Context, VarTemplate->getDeclContext(), TemplateKWLoc, 02532 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC, 02533 Converted.data(), Converted.size(), TemplateArgs); 02534 02535 if (!PrevPartial) 02536 VarTemplate->AddPartialSpecialization(Partial, InsertPos); 02537 Specialization = Partial; 02538 02539 // If we are providing an explicit specialization of a member variable 02540 // template specialization, make a note of that. 02541 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 02542 PrevPartial->setMemberSpecialization(); 02543 02544 // Check that all of the template parameters of the variable template 02545 // partial specialization are deducible from the template 02546 // arguments. If not, this variable template partial specialization 02547 // will never be used. 02548 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 02549 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 02550 TemplateParams->getDepth(), DeducibleParams); 02551 02552 if (!DeducibleParams.all()) { 02553 unsigned NumNonDeducible = 02554 DeducibleParams.size() - DeducibleParams.count(); 02555 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 02556 << /*variable template*/ 1 << (NumNonDeducible > 1) 02557 << SourceRange(TemplateNameLoc, RAngleLoc); 02558 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 02559 if (!DeducibleParams[I]) { 02560 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 02561 if (Param->getDeclName()) 02562 Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter) 02563 << Param->getDeclName(); 02564 else 02565 Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter) 02566 << "(anonymous)"; 02567 } 02568 } 02569 } 02570 } else { 02571 // Create a new class template specialization declaration node for 02572 // this explicit specialization or friend declaration. 02573 Specialization = VarTemplateSpecializationDecl::Create( 02574 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc, 02575 VarTemplate, DI->getType(), DI, SC, Converted.data(), Converted.size()); 02576 Specialization->setTemplateArgsInfo(TemplateArgs); 02577 02578 if (!PrevDecl) 02579 VarTemplate->AddSpecialization(Specialization, InsertPos); 02580 } 02581 02582 // C++ [temp.expl.spec]p6: 02583 // If a template, a member template or the member of a class template is 02584 // explicitly specialized then that specialization shall be declared 02585 // before the first use of that specialization that would cause an implicit 02586 // instantiation to take place, in every translation unit in which such a 02587 // use occurs; no diagnostic is required. 02588 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 02589 bool Okay = false; 02590 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 02591 // Is there any previous explicit specialization declaration? 02592 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 02593 Okay = true; 02594 break; 02595 } 02596 } 02597 02598 if (!Okay) { 02599 SourceRange Range(TemplateNameLoc, RAngleLoc); 02600 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 02601 << Name << Range; 02602 02603 Diag(PrevDecl->getPointOfInstantiation(), 02604 diag::note_instantiation_required_here) 02605 << (PrevDecl->getTemplateSpecializationKind() != 02606 TSK_ImplicitInstantiation); 02607 return true; 02608 } 02609 } 02610 02611 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 02612 Specialization->setLexicalDeclContext(CurContext); 02613 02614 // Add the specialization into its lexical context, so that it can 02615 // be seen when iterating through the list of declarations in that 02616 // context. However, specializations are not found by name lookup. 02617 CurContext->addDecl(Specialization); 02618 02619 // Note that this is an explicit specialization. 02620 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 02621 02622 if (PrevDecl) { 02623 // Check that this isn't a redefinition of this specialization, 02624 // merging with previous declarations. 02625 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName, 02626 ForRedeclaration); 02627 PrevSpec.addDecl(PrevDecl); 02628 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec)); 02629 } else if (Specialization->isStaticDataMember() && 02630 Specialization->isOutOfLine()) { 02631 Specialization->setAccess(VarTemplate->getAccess()); 02632 } 02633 02634 // Link instantiations of static data members back to the template from 02635 // which they were instantiated. 02636 if (Specialization->isStaticDataMember()) 02637 Specialization->setInstantiationOfStaticDataMember( 02638 VarTemplate->getTemplatedDecl(), 02639 Specialization->getSpecializationKind()); 02640 02641 return Specialization; 02642 } 02643 02644 namespace { 02645 /// \brief A partial specialization whose template arguments have matched 02646 /// a given template-id. 02647 struct PartialSpecMatchResult { 02648 VarTemplatePartialSpecializationDecl *Partial; 02649 TemplateArgumentList *Args; 02650 }; 02651 } 02652 02653 DeclResult 02654 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc, 02655 SourceLocation TemplateNameLoc, 02656 const TemplateArgumentListInfo &TemplateArgs) { 02657 assert(Template && "A variable template id without template?"); 02658 02659 // Check that the template argument list is well-formed for this template. 02660 SmallVector<TemplateArgument, 4> Converted; 02661 if (CheckTemplateArgumentList( 02662 Template, TemplateNameLoc, 02663 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false, 02664 Converted)) 02665 return true; 02666 02667 // Find the variable template specialization declaration that 02668 // corresponds to these arguments. 02669 void *InsertPos = nullptr; 02670 if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization( 02671 Converted, InsertPos)) 02672 // If we already have a variable template specialization, return it. 02673 return Spec; 02674 02675 // This is the first time we have referenced this variable template 02676 // specialization. Create the canonical declaration and add it to 02677 // the set of specializations, based on the closest partial specialization 02678 // that it represents. That is, 02679 VarDecl *InstantiationPattern = Template->getTemplatedDecl(); 02680 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack, 02681 Converted.data(), Converted.size()); 02682 TemplateArgumentList *InstantiationArgs = &TemplateArgList; 02683 bool AmbiguousPartialSpec = false; 02684 typedef PartialSpecMatchResult MatchResult; 02685 SmallVector<MatchResult, 4> Matched; 02686 SourceLocation PointOfInstantiation = TemplateNameLoc; 02687 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation); 02688 02689 // 1. Attempt to find the closest partial specialization that this 02690 // specializes, if any. 02691 // If any of the template arguments is dependent, then this is probably 02692 // a placeholder for an incomplete declarative context; which must be 02693 // complete by instantiation time. Thus, do not search through the partial 02694 // specializations yet. 02695 // TODO: Unify with InstantiateClassTemplateSpecialization()? 02696 // Perhaps better after unification of DeduceTemplateArguments() and 02697 // getMoreSpecializedPartialSpecialization(). 02698 bool InstantiationDependent = false; 02699 if (!TemplateSpecializationType::anyDependentTemplateArguments( 02700 TemplateArgs, InstantiationDependent)) { 02701 02702 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; 02703 Template->getPartialSpecializations(PartialSpecs); 02704 02705 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) { 02706 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I]; 02707 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 02708 02709 if (TemplateDeductionResult Result = 02710 DeduceTemplateArguments(Partial, TemplateArgList, Info)) { 02711 // Store the failed-deduction information for use in diagnostics, later. 02712 // TODO: Actually use the failed-deduction info? 02713 FailedCandidates.addCandidate() 02714 .set(Partial, MakeDeductionFailureInfo(Context, Result, Info)); 02715 (void)Result; 02716 } else { 02717 Matched.push_back(PartialSpecMatchResult()); 02718 Matched.back().Partial = Partial; 02719 Matched.back().Args = Info.take(); 02720 } 02721 } 02722 02723 if (Matched.size() >= 1) { 02724 SmallVector<MatchResult, 4>::iterator Best = Matched.begin(); 02725 if (Matched.size() == 1) { 02726 // -- If exactly one matching specialization is found, the 02727 // instantiation is generated from that specialization. 02728 // We don't need to do anything for this. 02729 } else { 02730 // -- If more than one matching specialization is found, the 02731 // partial order rules (14.5.4.2) are used to determine 02732 // whether one of the specializations is more specialized 02733 // than the others. If none of the specializations is more 02734 // specialized than all of the other matching 02735 // specializations, then the use of the variable template is 02736 // ambiguous and the program is ill-formed. 02737 for (SmallVector<MatchResult, 4>::iterator P = Best + 1, 02738 PEnd = Matched.end(); 02739 P != PEnd; ++P) { 02740 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial, 02741 PointOfInstantiation) == 02742 P->Partial) 02743 Best = P; 02744 } 02745 02746 // Determine if the best partial specialization is more specialized than 02747 // the others. 02748 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(), 02749 PEnd = Matched.end(); 02750 P != PEnd; ++P) { 02751 if (P != Best && getMoreSpecializedPartialSpecialization( 02752 P->Partial, Best->Partial, 02753 PointOfInstantiation) != Best->Partial) { 02754 AmbiguousPartialSpec = true; 02755 break; 02756 } 02757 } 02758 } 02759 02760 // Instantiate using the best variable template partial specialization. 02761 InstantiationPattern = Best->Partial; 02762 InstantiationArgs = Best->Args; 02763 } else { 02764 // -- If no match is found, the instantiation is generated 02765 // from the primary template. 02766 // InstantiationPattern = Template->getTemplatedDecl(); 02767 } 02768 } 02769 02770 // 2. Create the canonical declaration. 02771 // Note that we do not instantiate the variable just yet, since 02772 // instantiation is handled in DoMarkVarDeclReferenced(). 02773 // FIXME: LateAttrs et al.? 02774 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation( 02775 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs, 02776 Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/); 02777 if (!Decl) 02778 return true; 02779 02780 if (AmbiguousPartialSpec) { 02781 // Partial ordering did not produce a clear winner. Complain. 02782 Decl->setInvalidDecl(); 02783 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous) 02784 << Decl; 02785 02786 // Print the matching partial specializations. 02787 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(), 02788 PEnd = Matched.end(); 02789 P != PEnd; ++P) 02790 Diag(P->Partial->getLocation(), diag::note_partial_spec_match) 02791 << getTemplateArgumentBindingsText( 02792 P->Partial->getTemplateParameters(), *P->Args); 02793 return true; 02794 } 02795 02796 if (VarTemplatePartialSpecializationDecl *D = 02797 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern)) 02798 Decl->setInstantiationOf(D, InstantiationArgs); 02799 02800 assert(Decl && "No variable template specialization?"); 02801 return Decl; 02802 } 02803 02804 ExprResult 02805 Sema::CheckVarTemplateId(const CXXScopeSpec &SS, 02806 const DeclarationNameInfo &NameInfo, 02807 VarTemplateDecl *Template, SourceLocation TemplateLoc, 02808 const TemplateArgumentListInfo *TemplateArgs) { 02809 02810 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(), 02811 *TemplateArgs); 02812 if (Decl.isInvalid()) 02813 return ExprError(); 02814 02815 VarDecl *Var = cast<VarDecl>(Decl.get()); 02816 if (!Var->getTemplateSpecializationKind()) 02817 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, 02818 NameInfo.getLoc()); 02819 02820 // Build an ordinary singleton decl ref. 02821 return BuildDeclarationNameExpr(SS, NameInfo, Var, 02822 /*FoundD=*/nullptr, TemplateArgs); 02823 } 02824 02825 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 02826 SourceLocation TemplateKWLoc, 02827 LookupResult &R, 02828 bool RequiresADL, 02829 const TemplateArgumentListInfo *TemplateArgs) { 02830 // FIXME: Can we do any checking at this point? I guess we could check the 02831 // template arguments that we have against the template name, if the template 02832 // name refers to a single template. That's not a terribly common case, 02833 // though. 02834 // foo<int> could identify a single function unambiguously 02835 // This approach does NOT work, since f<int>(1); 02836 // gets resolved prior to resorting to overload resolution 02837 // i.e., template<class T> void f(double); 02838 // vs template<class T, class U> void f(U); 02839 02840 // These should be filtered out by our callers. 02841 assert(!R.empty() && "empty lookup results when building templateid"); 02842 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 02843 02844 // In C++1y, check variable template ids. 02845 bool InstantiationDependent; 02846 if (R.getAsSingle<VarTemplateDecl>() && 02847 !TemplateSpecializationType::anyDependentTemplateArguments( 02848 *TemplateArgs, InstantiationDependent)) { 02849 return CheckVarTemplateId(SS, R.getLookupNameInfo(), 02850 R.getAsSingle<VarTemplateDecl>(), 02851 TemplateKWLoc, TemplateArgs); 02852 } 02853 02854 // We don't want lookup warnings at this point. 02855 R.suppressDiagnostics(); 02856 02857 UnresolvedLookupExpr *ULE 02858 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 02859 SS.getWithLocInContext(Context), 02860 TemplateKWLoc, 02861 R.getLookupNameInfo(), 02862 RequiresADL, TemplateArgs, 02863 R.begin(), R.end()); 02864 02865 return ULE; 02866 } 02867 02868 // We actually only call this from template instantiation. 02869 ExprResult 02870 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 02871 SourceLocation TemplateKWLoc, 02872 const DeclarationNameInfo &NameInfo, 02873 const TemplateArgumentListInfo *TemplateArgs) { 02874 02875 assert(TemplateArgs || TemplateKWLoc.isValid()); 02876 DeclContext *DC; 02877 if (!(DC = computeDeclContext(SS, false)) || 02878 DC->isDependentContext() || 02879 RequireCompleteDeclContext(SS, DC)) 02880 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 02881 02882 bool MemberOfUnknownSpecialization; 02883 LookupResult R(*this, NameInfo, LookupOrdinaryName); 02884 LookupTemplateName(R, (Scope*)nullptr, SS, QualType(), /*Entering*/ false, 02885 MemberOfUnknownSpecialization); 02886 02887 if (R.isAmbiguous()) 02888 return ExprError(); 02889 02890 if (R.empty()) { 02891 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 02892 << NameInfo.getName() << SS.getRange(); 02893 return ExprError(); 02894 } 02895 02896 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 02897 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 02898 << SS.getScopeRep() 02899 << NameInfo.getName().getAsString() << SS.getRange(); 02900 Diag(Temp->getLocation(), diag::note_referenced_class_template); 02901 return ExprError(); 02902 } 02903 02904 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs); 02905 } 02906 02907 /// \brief Form a dependent template name. 02908 /// 02909 /// This action forms a dependent template name given the template 02910 /// name and its (presumably dependent) scope specifier. For 02911 /// example, given "MetaFun::template apply", the scope specifier \p 02912 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location 02913 /// of the "template" keyword, and "apply" is the \p Name. 02914 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 02915 CXXScopeSpec &SS, 02916 SourceLocation TemplateKWLoc, 02917 UnqualifiedId &Name, 02918 ParsedType ObjectType, 02919 bool EnteringContext, 02920 TemplateTy &Result) { 02921 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) 02922 Diag(TemplateKWLoc, 02923 getLangOpts().CPlusPlus11 ? 02924 diag::warn_cxx98_compat_template_outside_of_template : 02925 diag::ext_template_outside_of_template) 02926 << FixItHint::CreateRemoval(TemplateKWLoc); 02927 02928 DeclContext *LookupCtx = nullptr; 02929 if (SS.isSet()) 02930 LookupCtx = computeDeclContext(SS, EnteringContext); 02931 if (!LookupCtx && ObjectType) 02932 LookupCtx = computeDeclContext(ObjectType.get()); 02933 if (LookupCtx) { 02934 // C++0x [temp.names]p5: 02935 // If a name prefixed by the keyword template is not the name of 02936 // a template, the program is ill-formed. [Note: the keyword 02937 // template may not be applied to non-template members of class 02938 // templates. -end note ] [ Note: as is the case with the 02939 // typename prefix, the template prefix is allowed in cases 02940 // where it is not strictly necessary; i.e., when the 02941 // nested-name-specifier or the expression on the left of the -> 02942 // or . is not dependent on a template-parameter, or the use 02943 // does not appear in the scope of a template. -end note] 02944 // 02945 // Note: C++03 was more strict here, because it banned the use of 02946 // the "template" keyword prior to a template-name that was not a 02947 // dependent name. C++ DR468 relaxed this requirement (the 02948 // "template" keyword is now permitted). We follow the C++0x 02949 // rules, even in C++03 mode with a warning, retroactively applying the DR. 02950 bool MemberOfUnknownSpecialization; 02951 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name, 02952 ObjectType, EnteringContext, Result, 02953 MemberOfUnknownSpecialization); 02954 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 02955 isa<CXXRecordDecl>(LookupCtx) && 02956 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() || 02957 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) { 02958 // This is a dependent template. Handle it below. 02959 } else if (TNK == TNK_Non_template) { 02960 Diag(Name.getLocStart(), 02961 diag::err_template_kw_refers_to_non_template) 02962 << GetNameFromUnqualifiedId(Name).getName() 02963 << Name.getSourceRange() 02964 << TemplateKWLoc; 02965 return TNK_Non_template; 02966 } else { 02967 // We found something; return it. 02968 return TNK; 02969 } 02970 } 02971 02972 NestedNameSpecifier *Qualifier = SS.getScopeRep(); 02973 02974 switch (Name.getKind()) { 02975 case UnqualifiedId::IK_Identifier: 02976 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 02977 Name.Identifier)); 02978 return TNK_Dependent_template_name; 02979 02980 case UnqualifiedId::IK_OperatorFunctionId: 02981 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 02982 Name.OperatorFunctionId.Operator)); 02983 return TNK_Function_template; 02984 02985 case UnqualifiedId::IK_LiteralOperatorId: 02986 llvm_unreachable("literal operator id cannot have a dependent scope"); 02987 02988 default: 02989 break; 02990 } 02991 02992 Diag(Name.getLocStart(), 02993 diag::err_template_kw_refers_to_non_template) 02994 << GetNameFromUnqualifiedId(Name).getName() 02995 << Name.getSourceRange() 02996 << TemplateKWLoc; 02997 return TNK_Non_template; 02998 } 02999 03000 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 03001 TemplateArgumentLoc &AL, 03002 SmallVectorImpl<TemplateArgument> &Converted) { 03003 const TemplateArgument &Arg = AL.getArgument(); 03004 QualType ArgType; 03005 TypeSourceInfo *TSI = nullptr; 03006 03007 // Check template type parameter. 03008 switch(Arg.getKind()) { 03009 case TemplateArgument::Type: 03010 // C++ [temp.arg.type]p1: 03011 // A template-argument for a template-parameter which is a 03012 // type shall be a type-id. 03013 ArgType = Arg.getAsType(); 03014 TSI = AL.getTypeSourceInfo(); 03015 break; 03016 case TemplateArgument::Template: { 03017 // We have a template type parameter but the template argument 03018 // is a template without any arguments. 03019 SourceRange SR = AL.getSourceRange(); 03020 TemplateName Name = Arg.getAsTemplate(); 03021 Diag(SR.getBegin(), diag::err_template_missing_args) 03022 << Name << SR; 03023 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 03024 Diag(Decl->getLocation(), diag::note_template_decl_here); 03025 03026 return true; 03027 } 03028 case TemplateArgument::Expression: { 03029 // We have a template type parameter but the template argument is an 03030 // expression; see if maybe it is missing the "typename" keyword. 03031 CXXScopeSpec SS; 03032 DeclarationNameInfo NameInfo; 03033 03034 if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) { 03035 SS.Adopt(ArgExpr->getQualifierLoc()); 03036 NameInfo = ArgExpr->getNameInfo(); 03037 } else if (DependentScopeDeclRefExpr *ArgExpr = 03038 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) { 03039 SS.Adopt(ArgExpr->getQualifierLoc()); 03040 NameInfo = ArgExpr->getNameInfo(); 03041 } else if (CXXDependentScopeMemberExpr *ArgExpr = 03042 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) { 03043 if (ArgExpr->isImplicitAccess()) { 03044 SS.Adopt(ArgExpr->getQualifierLoc()); 03045 NameInfo = ArgExpr->getMemberNameInfo(); 03046 } 03047 } 03048 03049 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) { 03050 LookupResult Result(*this, NameInfo, LookupOrdinaryName); 03051 LookupParsedName(Result, CurScope, &SS); 03052 03053 if (Result.getAsSingle<TypeDecl>() || 03054 Result.getResultKind() == 03055 LookupResult::NotFoundInCurrentInstantiation) { 03056 // Suggest that the user add 'typename' before the NNS. 03057 SourceLocation Loc = AL.getSourceRange().getBegin(); 03058 Diag(Loc, getLangOpts().MSVCCompat 03059 ? diag::ext_ms_template_type_arg_missing_typename 03060 : diag::err_template_arg_must_be_type_suggest) 03061 << FixItHint::CreateInsertion(Loc, "typename "); 03062 Diag(Param->getLocation(), diag::note_template_param_here); 03063 03064 // Recover by synthesizing a type using the location information that we 03065 // already have. 03066 ArgType = 03067 Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II); 03068 TypeLocBuilder TLB; 03069 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType); 03070 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/)); 03071 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 03072 TL.setNameLoc(NameInfo.getLoc()); 03073 TSI = TLB.getTypeSourceInfo(Context, ArgType); 03074 03075 // Overwrite our input TemplateArgumentLoc so that we can recover 03076 // properly. 03077 AL = TemplateArgumentLoc(TemplateArgument(ArgType), 03078 TemplateArgumentLocInfo(TSI)); 03079 03080 break; 03081 } 03082 } 03083 // fallthrough 03084 } 03085 default: { 03086 // We have a template type parameter but the template argument 03087 // is not a type. 03088 SourceRange SR = AL.getSourceRange(); 03089 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 03090 Diag(Param->getLocation(), diag::note_template_param_here); 03091 03092 return true; 03093 } 03094 } 03095 03096 if (CheckTemplateArgument(Param, TSI)) 03097 return true; 03098 03099 // Add the converted template type argument. 03100 ArgType = Context.getCanonicalType(ArgType); 03101 03102 // Objective-C ARC: 03103 // If an explicitly-specified template argument type is a lifetime type 03104 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 03105 if (getLangOpts().ObjCAutoRefCount && 03106 ArgType->isObjCLifetimeType() && 03107 !ArgType.getObjCLifetime()) { 03108 Qualifiers Qs; 03109 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 03110 ArgType = Context.getQualifiedType(ArgType, Qs); 03111 } 03112 03113 Converted.push_back(TemplateArgument(ArgType)); 03114 return false; 03115 } 03116 03117 /// \brief Substitute template arguments into the default template argument for 03118 /// the given template type parameter. 03119 /// 03120 /// \param SemaRef the semantic analysis object for which we are performing 03121 /// the substitution. 03122 /// 03123 /// \param Template the template that we are synthesizing template arguments 03124 /// for. 03125 /// 03126 /// \param TemplateLoc the location of the template name that started the 03127 /// template-id we are checking. 03128 /// 03129 /// \param RAngleLoc the location of the right angle bracket ('>') that 03130 /// terminates the template-id. 03131 /// 03132 /// \param Param the template template parameter whose default we are 03133 /// substituting into. 03134 /// 03135 /// \param Converted the list of template arguments provided for template 03136 /// parameters that precede \p Param in the template parameter list. 03137 /// \returns the substituted template argument, or NULL if an error occurred. 03138 static TypeSourceInfo * 03139 SubstDefaultTemplateArgument(Sema &SemaRef, 03140 TemplateDecl *Template, 03141 SourceLocation TemplateLoc, 03142 SourceLocation RAngleLoc, 03143 TemplateTypeParmDecl *Param, 03144 SmallVectorImpl<TemplateArgument> &Converted) { 03145 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 03146 03147 // If the argument type is dependent, instantiate it now based 03148 // on the previously-computed template arguments. 03149 if (ArgType->getType()->isDependentType()) { 03150 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 03151 Template, Converted, 03152 SourceRange(TemplateLoc, RAngleLoc)); 03153 if (Inst.isInvalid()) 03154 return nullptr; 03155 03156 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 03157 Converted.data(), Converted.size()); 03158 03159 // Only substitute for the innermost template argument list. 03160 MultiLevelTemplateArgumentList TemplateArgLists; 03161 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 03162 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 03163 TemplateArgLists.addOuterTemplateArguments(None); 03164 03165 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 03166 ArgType = 03167 SemaRef.SubstType(ArgType, TemplateArgLists, 03168 Param->getDefaultArgumentLoc(), Param->getDeclName()); 03169 } 03170 03171 return ArgType; 03172 } 03173 03174 /// \brief Substitute template arguments into the default template argument for 03175 /// the given non-type template parameter. 03176 /// 03177 /// \param SemaRef the semantic analysis object for which we are performing 03178 /// the substitution. 03179 /// 03180 /// \param Template the template that we are synthesizing template arguments 03181 /// for. 03182 /// 03183 /// \param TemplateLoc the location of the template name that started the 03184 /// template-id we are checking. 03185 /// 03186 /// \param RAngleLoc the location of the right angle bracket ('>') that 03187 /// terminates the template-id. 03188 /// 03189 /// \param Param the non-type template parameter whose default we are 03190 /// substituting into. 03191 /// 03192 /// \param Converted the list of template arguments provided for template 03193 /// parameters that precede \p Param in the template parameter list. 03194 /// 03195 /// \returns the substituted template argument, or NULL if an error occurred. 03196 static ExprResult 03197 SubstDefaultTemplateArgument(Sema &SemaRef, 03198 TemplateDecl *Template, 03199 SourceLocation TemplateLoc, 03200 SourceLocation RAngleLoc, 03201 NonTypeTemplateParmDecl *Param, 03202 SmallVectorImpl<TemplateArgument> &Converted) { 03203 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 03204 Template, Converted, 03205 SourceRange(TemplateLoc, RAngleLoc)); 03206 if (Inst.isInvalid()) 03207 return ExprError(); 03208 03209 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 03210 Converted.data(), Converted.size()); 03211 03212 // Only substitute for the innermost template argument list. 03213 MultiLevelTemplateArgumentList TemplateArgLists; 03214 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 03215 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 03216 TemplateArgLists.addOuterTemplateArguments(None); 03217 03218 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 03219 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated); 03220 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists); 03221 } 03222 03223 /// \brief Substitute template arguments into the default template argument for 03224 /// the given template template parameter. 03225 /// 03226 /// \param SemaRef the semantic analysis object for which we are performing 03227 /// the substitution. 03228 /// 03229 /// \param Template the template that we are synthesizing template arguments 03230 /// for. 03231 /// 03232 /// \param TemplateLoc the location of the template name that started the 03233 /// template-id we are checking. 03234 /// 03235 /// \param RAngleLoc the location of the right angle bracket ('>') that 03236 /// terminates the template-id. 03237 /// 03238 /// \param Param the template template parameter whose default we are 03239 /// substituting into. 03240 /// 03241 /// \param Converted the list of template arguments provided for template 03242 /// parameters that precede \p Param in the template parameter list. 03243 /// 03244 /// \param QualifierLoc Will be set to the nested-name-specifier (with 03245 /// source-location information) that precedes the template name. 03246 /// 03247 /// \returns the substituted template argument, or NULL if an error occurred. 03248 static TemplateName 03249 SubstDefaultTemplateArgument(Sema &SemaRef, 03250 TemplateDecl *Template, 03251 SourceLocation TemplateLoc, 03252 SourceLocation RAngleLoc, 03253 TemplateTemplateParmDecl *Param, 03254 SmallVectorImpl<TemplateArgument> &Converted, 03255 NestedNameSpecifierLoc &QualifierLoc) { 03256 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Template, Converted, 03257 SourceRange(TemplateLoc, RAngleLoc)); 03258 if (Inst.isInvalid()) 03259 return TemplateName(); 03260 03261 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 03262 Converted.data(), Converted.size()); 03263 03264 // Only substitute for the innermost template argument list. 03265 MultiLevelTemplateArgumentList TemplateArgLists; 03266 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 03267 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 03268 TemplateArgLists.addOuterTemplateArguments(None); 03269 03270 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 03271 // Substitute into the nested-name-specifier first, 03272 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 03273 if (QualifierLoc) { 03274 QualifierLoc = 03275 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists); 03276 if (!QualifierLoc) 03277 return TemplateName(); 03278 } 03279 03280 return SemaRef.SubstTemplateName( 03281 QualifierLoc, 03282 Param->getDefaultArgument().getArgument().getAsTemplate(), 03283 Param->getDefaultArgument().getTemplateNameLoc(), 03284 TemplateArgLists); 03285 } 03286 03287 /// \brief If the given template parameter has a default template 03288 /// argument, substitute into that default template argument and 03289 /// return the corresponding template argument. 03290 TemplateArgumentLoc 03291 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 03292 SourceLocation TemplateLoc, 03293 SourceLocation RAngleLoc, 03294 Decl *Param, 03295 SmallVectorImpl<TemplateArgument> 03296 &Converted, 03297 bool &HasDefaultArg) { 03298 HasDefaultArg = false; 03299 03300 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 03301 if (!TypeParm->hasDefaultArgument()) 03302 return TemplateArgumentLoc(); 03303 03304 HasDefaultArg = true; 03305 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 03306 TemplateLoc, 03307 RAngleLoc, 03308 TypeParm, 03309 Converted); 03310 if (DI) 03311 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 03312 03313 return TemplateArgumentLoc(); 03314 } 03315 03316 if (NonTypeTemplateParmDecl *NonTypeParm 03317 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 03318 if (!NonTypeParm->hasDefaultArgument()) 03319 return TemplateArgumentLoc(); 03320 03321 HasDefaultArg = true; 03322 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 03323 TemplateLoc, 03324 RAngleLoc, 03325 NonTypeParm, 03326 Converted); 03327 if (Arg.isInvalid()) 03328 return TemplateArgumentLoc(); 03329 03330 Expr *ArgE = Arg.getAs<Expr>(); 03331 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 03332 } 03333 03334 TemplateTemplateParmDecl *TempTempParm 03335 = cast<TemplateTemplateParmDecl>(Param); 03336 if (!TempTempParm->hasDefaultArgument()) 03337 return TemplateArgumentLoc(); 03338 03339 HasDefaultArg = true; 03340 NestedNameSpecifierLoc QualifierLoc; 03341 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 03342 TemplateLoc, 03343 RAngleLoc, 03344 TempTempParm, 03345 Converted, 03346 QualifierLoc); 03347 if (TName.isNull()) 03348 return TemplateArgumentLoc(); 03349 03350 return TemplateArgumentLoc(TemplateArgument(TName), 03351 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 03352 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 03353 } 03354 03355 /// \brief Check that the given template argument corresponds to the given 03356 /// template parameter. 03357 /// 03358 /// \param Param The template parameter against which the argument will be 03359 /// checked. 03360 /// 03361 /// \param Arg The template argument. 03362 /// 03363 /// \param Template The template in which the template argument resides. 03364 /// 03365 /// \param TemplateLoc The location of the template name for the template 03366 /// whose argument list we're matching. 03367 /// 03368 /// \param RAngleLoc The location of the right angle bracket ('>') that closes 03369 /// the template argument list. 03370 /// 03371 /// \param ArgumentPackIndex The index into the argument pack where this 03372 /// argument will be placed. Only valid if the parameter is a parameter pack. 03373 /// 03374 /// \param Converted The checked, converted argument will be added to the 03375 /// end of this small vector. 03376 /// 03377 /// \param CTAK Describes how we arrived at this particular template argument: 03378 /// explicitly written, deduced, etc. 03379 /// 03380 /// \returns true on error, false otherwise. 03381 bool Sema::CheckTemplateArgument(NamedDecl *Param, 03382 TemplateArgumentLoc &Arg, 03383 NamedDecl *Template, 03384 SourceLocation TemplateLoc, 03385 SourceLocation RAngleLoc, 03386 unsigned ArgumentPackIndex, 03387 SmallVectorImpl<TemplateArgument> &Converted, 03388 CheckTemplateArgumentKind CTAK) { 03389 // Check template type parameters. 03390 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 03391 return CheckTemplateTypeArgument(TTP, Arg, Converted); 03392 03393 // Check non-type template parameters. 03394 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 03395 // Do substitution on the type of the non-type template parameter 03396 // with the template arguments we've seen thus far. But if the 03397 // template has a dependent context then we cannot substitute yet. 03398 QualType NTTPType = NTTP->getType(); 03399 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 03400 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 03401 03402 if (NTTPType->isDependentType() && 03403 !isa<TemplateTemplateParmDecl>(Template) && 03404 !Template->getDeclContext()->isDependentContext()) { 03405 // Do substitution on the type of the non-type template parameter. 03406 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 03407 NTTP, Converted, 03408 SourceRange(TemplateLoc, RAngleLoc)); 03409 if (Inst.isInvalid()) 03410 return true; 03411 03412 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 03413 Converted.data(), Converted.size()); 03414 NTTPType = SubstType(NTTPType, 03415 MultiLevelTemplateArgumentList(TemplateArgs), 03416 NTTP->getLocation(), 03417 NTTP->getDeclName()); 03418 // If that worked, check the non-type template parameter type 03419 // for validity. 03420 if (!NTTPType.isNull()) 03421 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 03422 NTTP->getLocation()); 03423 if (NTTPType.isNull()) 03424 return true; 03425 } 03426 03427 switch (Arg.getArgument().getKind()) { 03428 case TemplateArgument::Null: 03429 llvm_unreachable("Should never see a NULL template argument here"); 03430 03431 case TemplateArgument::Expression: { 03432 TemplateArgument Result; 03433 ExprResult Res = 03434 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 03435 Result, CTAK); 03436 if (Res.isInvalid()) 03437 return true; 03438 03439 Converted.push_back(Result); 03440 break; 03441 } 03442 03443 case TemplateArgument::Declaration: 03444 case TemplateArgument::Integral: 03445 case TemplateArgument::NullPtr: 03446 // We've already checked this template argument, so just copy 03447 // it to the list of converted arguments. 03448 Converted.push_back(Arg.getArgument()); 03449 break; 03450 03451 case TemplateArgument::Template: 03452 case TemplateArgument::TemplateExpansion: 03453 // We were given a template template argument. It may not be ill-formed; 03454 // see below. 03455 if (DependentTemplateName *DTN 03456 = Arg.getArgument().getAsTemplateOrTemplatePattern() 03457 .getAsDependentTemplateName()) { 03458 // We have a template argument such as \c T::template X, which we 03459 // parsed as a template template argument. However, since we now 03460 // know that we need a non-type template argument, convert this 03461 // template name into an expression. 03462 03463 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 03464 Arg.getTemplateNameLoc()); 03465 03466 CXXScopeSpec SS; 03467 SS.Adopt(Arg.getTemplateQualifierLoc()); 03468 // FIXME: the template-template arg was a DependentTemplateName, 03469 // so it was provided with a template keyword. However, its source 03470 // location is not stored in the template argument structure. 03471 SourceLocation TemplateKWLoc; 03472 ExprResult E = DependentScopeDeclRefExpr::Create( 03473 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, 03474 nullptr); 03475 03476 // If we parsed the template argument as a pack expansion, create a 03477 // pack expansion expression. 03478 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 03479 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc()); 03480 if (E.isInvalid()) 03481 return true; 03482 } 03483 03484 TemplateArgument Result; 03485 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result); 03486 if (E.isInvalid()) 03487 return true; 03488 03489 Converted.push_back(Result); 03490 break; 03491 } 03492 03493 // We have a template argument that actually does refer to a class 03494 // template, alias template, or template template parameter, and 03495 // therefore cannot be a non-type template argument. 03496 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 03497 << Arg.getSourceRange(); 03498 03499 Diag(Param->getLocation(), diag::note_template_param_here); 03500 return true; 03501 03502 case TemplateArgument::Type: { 03503 // We have a non-type template parameter but the template 03504 // argument is a type. 03505 03506 // C++ [temp.arg]p2: 03507 // In a template-argument, an ambiguity between a type-id and 03508 // an expression is resolved to a type-id, regardless of the 03509 // form of the corresponding template-parameter. 03510 // 03511 // We warn specifically about this case, since it can be rather 03512 // confusing for users. 03513 QualType T = Arg.getArgument().getAsType(); 03514 SourceRange SR = Arg.getSourceRange(); 03515 if (T->isFunctionType()) 03516 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 03517 else 03518 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 03519 Diag(Param->getLocation(), diag::note_template_param_here); 03520 return true; 03521 } 03522 03523 case TemplateArgument::Pack: 03524 llvm_unreachable("Caller must expand template argument packs"); 03525 } 03526 03527 return false; 03528 } 03529 03530 03531 // Check template template parameters. 03532 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 03533 03534 // Substitute into the template parameter list of the template 03535 // template parameter, since previously-supplied template arguments 03536 // may appear within the template template parameter. 03537 { 03538 // Set up a template instantiation context. 03539 LocalInstantiationScope Scope(*this); 03540 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 03541 TempParm, Converted, 03542 SourceRange(TemplateLoc, RAngleLoc)); 03543 if (Inst.isInvalid()) 03544 return true; 03545 03546 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 03547 Converted.data(), Converted.size()); 03548 TempParm = cast_or_null<TemplateTemplateParmDecl>( 03549 SubstDecl(TempParm, CurContext, 03550 MultiLevelTemplateArgumentList(TemplateArgs))); 03551 if (!TempParm) 03552 return true; 03553 } 03554 03555 switch (Arg.getArgument().getKind()) { 03556 case TemplateArgument::Null: 03557 llvm_unreachable("Should never see a NULL template argument here"); 03558 03559 case TemplateArgument::Template: 03560 case TemplateArgument::TemplateExpansion: 03561 if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex)) 03562 return true; 03563 03564 Converted.push_back(Arg.getArgument()); 03565 break; 03566 03567 case TemplateArgument::Expression: 03568 case TemplateArgument::Type: 03569 // We have a template template parameter but the template 03570 // argument does not refer to a template. 03571 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 03572 << getLangOpts().CPlusPlus11; 03573 return true; 03574 03575 case TemplateArgument::Declaration: 03576 llvm_unreachable("Declaration argument with template template parameter"); 03577 case TemplateArgument::Integral: 03578 llvm_unreachable("Integral argument with template template parameter"); 03579 case TemplateArgument::NullPtr: 03580 llvm_unreachable("Null pointer argument with template template parameter"); 03581 03582 case TemplateArgument::Pack: 03583 llvm_unreachable("Caller must expand template argument packs"); 03584 } 03585 03586 return false; 03587 } 03588 03589 /// \brief Diagnose an arity mismatch in the 03590 static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template, 03591 SourceLocation TemplateLoc, 03592 TemplateArgumentListInfo &TemplateArgs) { 03593 TemplateParameterList *Params = Template->getTemplateParameters(); 03594 unsigned NumParams = Params->size(); 03595 unsigned NumArgs = TemplateArgs.size(); 03596 03597 SourceRange Range; 03598 if (NumArgs > NumParams) 03599 Range = SourceRange(TemplateArgs[NumParams].getLocation(), 03600 TemplateArgs.getRAngleLoc()); 03601 S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 03602 << (NumArgs > NumParams) 03603 << (isa<ClassTemplateDecl>(Template)? 0 : 03604 isa<FunctionTemplateDecl>(Template)? 1 : 03605 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 03606 << Template << Range; 03607 S.Diag(Template->getLocation(), diag::note_template_decl_here) 03608 << Params->getSourceRange(); 03609 return true; 03610 } 03611 03612 /// \brief Check whether the template parameter is a pack expansion, and if so, 03613 /// determine the number of parameters produced by that expansion. For instance: 03614 /// 03615 /// \code 03616 /// template<typename ...Ts> struct A { 03617 /// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B; 03618 /// }; 03619 /// \endcode 03620 /// 03621 /// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us 03622 /// is not a pack expansion, so returns an empty Optional. 03623 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) { 03624 if (NonTypeTemplateParmDecl *NTTP 03625 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 03626 if (NTTP->isExpandedParameterPack()) 03627 return NTTP->getNumExpansionTypes(); 03628 } 03629 03630 if (TemplateTemplateParmDecl *TTP 03631 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 03632 if (TTP->isExpandedParameterPack()) 03633 return TTP->getNumExpansionTemplateParameters(); 03634 } 03635 03636 return None; 03637 } 03638 03639 /// \brief Check that the given template argument list is well-formed 03640 /// for specializing the given template. 03641 bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 03642 SourceLocation TemplateLoc, 03643 TemplateArgumentListInfo &TemplateArgs, 03644 bool PartialTemplateArgs, 03645 SmallVectorImpl<TemplateArgument> &Converted) { 03646 TemplateParameterList *Params = Template->getTemplateParameters(); 03647 03648 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 03649 03650 // C++ [temp.arg]p1: 03651 // [...] The type and form of each template-argument specified in 03652 // a template-id shall match the type and form specified for the 03653 // corresponding parameter declared by the template in its 03654 // template-parameter-list. 03655 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 03656 SmallVector<TemplateArgument, 2> ArgumentPack; 03657 unsigned ArgIdx = 0, NumArgs = TemplateArgs.size(); 03658 LocalInstantiationScope InstScope(*this, true); 03659 for (TemplateParameterList::iterator Param = Params->begin(), 03660 ParamEnd = Params->end(); 03661 Param != ParamEnd; /* increment in loop */) { 03662 // If we have an expanded parameter pack, make sure we don't have too 03663 // many arguments. 03664 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) { 03665 if (*Expansions == ArgumentPack.size()) { 03666 // We're done with this parameter pack. Pack up its arguments and add 03667 // them to the list. 03668 Converted.push_back( 03669 TemplateArgument::CreatePackCopy(Context, 03670 ArgumentPack.data(), 03671 ArgumentPack.size())); 03672 ArgumentPack.clear(); 03673 03674 // This argument is assigned to the next parameter. 03675 ++Param; 03676 continue; 03677 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) { 03678 // Not enough arguments for this parameter pack. 03679 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 03680 << false 03681 << (isa<ClassTemplateDecl>(Template)? 0 : 03682 isa<FunctionTemplateDecl>(Template)? 1 : 03683 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 03684 << Template; 03685 Diag(Template->getLocation(), diag::note_template_decl_here) 03686 << Params->getSourceRange(); 03687 return true; 03688 } 03689 } 03690 03691 if (ArgIdx < NumArgs) { 03692 // Check the template argument we were given. 03693 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 03694 TemplateLoc, RAngleLoc, 03695 ArgumentPack.size(), Converted)) 03696 return true; 03697 03698 bool PackExpansionIntoNonPack = 03699 TemplateArgs[ArgIdx].getArgument().isPackExpansion() && 03700 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param)); 03701 if (PackExpansionIntoNonPack && isa<TypeAliasTemplateDecl>(Template)) { 03702 // Core issue 1430: we have a pack expansion as an argument to an 03703 // alias template, and it's not part of a parameter pack. This 03704 // can't be canonicalized, so reject it now. 03705 Diag(TemplateArgs[ArgIdx].getLocation(), 03706 diag::err_alias_template_expansion_into_fixed_list) 03707 << TemplateArgs[ArgIdx].getSourceRange(); 03708 Diag((*Param)->getLocation(), diag::note_template_param_here); 03709 return true; 03710 } 03711 03712 // We're now done with this argument. 03713 ++ArgIdx; 03714 03715 if ((*Param)->isTemplateParameterPack()) { 03716 // The template parameter was a template parameter pack, so take the 03717 // deduced argument and place it on the argument pack. Note that we 03718 // stay on the same template parameter so that we can deduce more 03719 // arguments. 03720 ArgumentPack.push_back(Converted.pop_back_val()); 03721 } else { 03722 // Move to the next template parameter. 03723 ++Param; 03724 } 03725 03726 // If we just saw a pack expansion into a non-pack, then directly convert 03727 // the remaining arguments, because we don't know what parameters they'll 03728 // match up with. 03729 if (PackExpansionIntoNonPack) { 03730 if (!ArgumentPack.empty()) { 03731 // If we were part way through filling in an expanded parameter pack, 03732 // fall back to just producing individual arguments. 03733 Converted.insert(Converted.end(), 03734 ArgumentPack.begin(), ArgumentPack.end()); 03735 ArgumentPack.clear(); 03736 } 03737 03738 while (ArgIdx < NumArgs) { 03739 Converted.push_back(TemplateArgs[ArgIdx].getArgument()); 03740 ++ArgIdx; 03741 } 03742 03743 return false; 03744 } 03745 03746 continue; 03747 } 03748 03749 // If we're checking a partial template argument list, we're done. 03750 if (PartialTemplateArgs) { 03751 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) 03752 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 03753 ArgumentPack.data(), 03754 ArgumentPack.size())); 03755 03756 return false; 03757 } 03758 03759 // If we have a template parameter pack with no more corresponding 03760 // arguments, just break out now and we'll fill in the argument pack below. 03761 if ((*Param)->isTemplateParameterPack()) { 03762 assert(!getExpandedPackSize(*Param) && 03763 "Should have dealt with this already"); 03764 03765 // A non-expanded parameter pack before the end of the parameter list 03766 // only occurs for an ill-formed template parameter list, unless we've 03767 // got a partial argument list for a function template, so just bail out. 03768 if (Param + 1 != ParamEnd) 03769 return true; 03770 03771 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 03772 ArgumentPack.data(), 03773 ArgumentPack.size())); 03774 ArgumentPack.clear(); 03775 03776 ++Param; 03777 continue; 03778 } 03779 03780 // Check whether we have a default argument. 03781 TemplateArgumentLoc Arg; 03782 03783 // Retrieve the default template argument from the template 03784 // parameter. For each kind of template parameter, we substitute the 03785 // template arguments provided thus far and any "outer" template arguments 03786 // (when the template parameter was part of a nested template) into 03787 // the default argument. 03788 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 03789 if (!TTP->hasDefaultArgument()) 03790 return diagnoseArityMismatch(*this, Template, TemplateLoc, 03791 TemplateArgs); 03792 03793 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 03794 Template, 03795 TemplateLoc, 03796 RAngleLoc, 03797 TTP, 03798 Converted); 03799 if (!ArgType) 03800 return true; 03801 03802 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 03803 ArgType); 03804 } else if (NonTypeTemplateParmDecl *NTTP 03805 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 03806 if (!NTTP->hasDefaultArgument()) 03807 return diagnoseArityMismatch(*this, Template, TemplateLoc, 03808 TemplateArgs); 03809 03810 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 03811 TemplateLoc, 03812 RAngleLoc, 03813 NTTP, 03814 Converted); 03815 if (E.isInvalid()) 03816 return true; 03817 03818 Expr *Ex = E.getAs<Expr>(); 03819 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 03820 } else { 03821 TemplateTemplateParmDecl *TempParm 03822 = cast<TemplateTemplateParmDecl>(*Param); 03823 03824 if (!TempParm->hasDefaultArgument()) 03825 return diagnoseArityMismatch(*this, Template, TemplateLoc, 03826 TemplateArgs); 03827 03828 NestedNameSpecifierLoc QualifierLoc; 03829 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 03830 TemplateLoc, 03831 RAngleLoc, 03832 TempParm, 03833 Converted, 03834 QualifierLoc); 03835 if (Name.isNull()) 03836 return true; 03837 03838 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc, 03839 TempParm->getDefaultArgument().getTemplateNameLoc()); 03840 } 03841 03842 // Introduce an instantiation record that describes where we are using 03843 // the default template argument. 03844 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted, 03845 SourceRange(TemplateLoc, RAngleLoc)); 03846 if (Inst.isInvalid()) 03847 return true; 03848 03849 // Check the default template argument. 03850 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 03851 RAngleLoc, 0, Converted)) 03852 return true; 03853 03854 // Core issue 150 (assumed resolution): if this is a template template 03855 // parameter, keep track of the default template arguments from the 03856 // template definition. 03857 if (isTemplateTemplateParameter) 03858 TemplateArgs.addArgument(Arg); 03859 03860 // Move to the next template parameter and argument. 03861 ++Param; 03862 ++ArgIdx; 03863 } 03864 03865 // If we're performing a partial argument substitution, allow any trailing 03866 // pack expansions; they might be empty. This can happen even if 03867 // PartialTemplateArgs is false (the list of arguments is complete but 03868 // still dependent). 03869 if (ArgIdx < NumArgs && CurrentInstantiationScope && 03870 CurrentInstantiationScope->getPartiallySubstitutedPack()) { 03871 while (ArgIdx < NumArgs && 03872 TemplateArgs[ArgIdx].getArgument().isPackExpansion()) 03873 Converted.push_back(TemplateArgs[ArgIdx++].getArgument()); 03874 } 03875 03876 // If we have any leftover arguments, then there were too many arguments. 03877 // Complain and fail. 03878 if (ArgIdx < NumArgs) 03879 return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs); 03880 03881 return false; 03882 } 03883 03884 namespace { 03885 class UnnamedLocalNoLinkageFinder 03886 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 03887 { 03888 Sema &S; 03889 SourceRange SR; 03890 03891 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 03892 03893 public: 03894 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 03895 03896 bool Visit(QualType T) { 03897 return inherited::Visit(T.getTypePtr()); 03898 } 03899 03900 #define TYPE(Class, Parent) \ 03901 bool Visit##Class##Type(const Class##Type *); 03902 #define ABSTRACT_TYPE(Class, Parent) \ 03903 bool Visit##Class##Type(const Class##Type *) { return false; } 03904 #define NON_CANONICAL_TYPE(Class, Parent) \ 03905 bool Visit##Class##Type(const Class##Type *) { return false; } 03906 #include "clang/AST/TypeNodes.def" 03907 03908 bool VisitTagDecl(const TagDecl *Tag); 03909 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 03910 }; 03911 } 03912 03913 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 03914 return false; 03915 } 03916 03917 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 03918 return Visit(T->getElementType()); 03919 } 03920 03921 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 03922 return Visit(T->getPointeeType()); 03923 } 03924 03925 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 03926 const BlockPointerType* T) { 03927 return Visit(T->getPointeeType()); 03928 } 03929 03930 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 03931 const LValueReferenceType* T) { 03932 return Visit(T->getPointeeType()); 03933 } 03934 03935 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 03936 const RValueReferenceType* T) { 03937 return Visit(T->getPointeeType()); 03938 } 03939 03940 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 03941 const MemberPointerType* T) { 03942 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 03943 } 03944 03945 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 03946 const ConstantArrayType* T) { 03947 return Visit(T->getElementType()); 03948 } 03949 03950 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 03951 const IncompleteArrayType* T) { 03952 return Visit(T->getElementType()); 03953 } 03954 03955 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 03956 const VariableArrayType* T) { 03957 return Visit(T->getElementType()); 03958 } 03959 03960 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 03961 const DependentSizedArrayType* T) { 03962 return Visit(T->getElementType()); 03963 } 03964 03965 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 03966 const DependentSizedExtVectorType* T) { 03967 return Visit(T->getElementType()); 03968 } 03969 03970 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 03971 return Visit(T->getElementType()); 03972 } 03973 03974 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 03975 return Visit(T->getElementType()); 03976 } 03977 03978 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 03979 const FunctionProtoType* T) { 03980 for (const auto &A : T->param_types()) { 03981 if (Visit(A)) 03982 return true; 03983 } 03984 03985 return Visit(T->getReturnType()); 03986 } 03987 03988 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 03989 const FunctionNoProtoType* T) { 03990 return Visit(T->getReturnType()); 03991 } 03992 03993 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 03994 const UnresolvedUsingType*) { 03995 return false; 03996 } 03997 03998 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 03999 return false; 04000 } 04001 04002 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 04003 return Visit(T->getUnderlyingType()); 04004 } 04005 04006 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 04007 return false; 04008 } 04009 04010 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 04011 const UnaryTransformType*) { 04012 return false; 04013 } 04014 04015 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 04016 return Visit(T->getDeducedType()); 04017 } 04018 04019 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 04020 return VisitTagDecl(T->getDecl()); 04021 } 04022 04023 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 04024 return VisitTagDecl(T->getDecl()); 04025 } 04026 04027 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 04028 const TemplateTypeParmType*) { 04029 return false; 04030 } 04031 04032 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 04033 const SubstTemplateTypeParmPackType *) { 04034 return false; 04035 } 04036 04037 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 04038 const TemplateSpecializationType*) { 04039 return false; 04040 } 04041 04042 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 04043 const InjectedClassNameType* T) { 04044 return VisitTagDecl(T->getDecl()); 04045 } 04046 04047 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 04048 const DependentNameType* T) { 04049 return VisitNestedNameSpecifier(T->getQualifier()); 04050 } 04051 04052 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 04053 const DependentTemplateSpecializationType* T) { 04054 return VisitNestedNameSpecifier(T->getQualifier()); 04055 } 04056 04057 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 04058 const PackExpansionType* T) { 04059 return Visit(T->getPattern()); 04060 } 04061 04062 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 04063 return false; 04064 } 04065 04066 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 04067 const ObjCInterfaceType *) { 04068 return false; 04069 } 04070 04071 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 04072 const ObjCObjectPointerType *) { 04073 return false; 04074 } 04075 04076 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { 04077 return Visit(T->getValueType()); 04078 } 04079 04080 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 04081 if (Tag->getDeclContext()->isFunctionOrMethod()) { 04082 S.Diag(SR.getBegin(), 04083 S.getLangOpts().CPlusPlus11 ? 04084 diag::warn_cxx98_compat_template_arg_local_type : 04085 diag::ext_template_arg_local_type) 04086 << S.Context.getTypeDeclType(Tag) << SR; 04087 return true; 04088 } 04089 04090 if (!Tag->hasNameForLinkage()) { 04091 S.Diag(SR.getBegin(), 04092 S.getLangOpts().CPlusPlus11 ? 04093 diag::warn_cxx98_compat_template_arg_unnamed_type : 04094 diag::ext_template_arg_unnamed_type) << SR; 04095 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 04096 return true; 04097 } 04098 04099 return false; 04100 } 04101 04102 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 04103 NestedNameSpecifier *NNS) { 04104 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 04105 return true; 04106 04107 switch (NNS->getKind()) { 04108 case NestedNameSpecifier::Identifier: 04109 case NestedNameSpecifier::Namespace: 04110 case NestedNameSpecifier::NamespaceAlias: 04111 case NestedNameSpecifier::Global: 04112 case NestedNameSpecifier::Super: 04113 return false; 04114 04115 case NestedNameSpecifier::TypeSpec: 04116 case NestedNameSpecifier::TypeSpecWithTemplate: 04117 return Visit(QualType(NNS->getAsType(), 0)); 04118 } 04119 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 04120 } 04121 04122 04123 /// \brief Check a template argument against its corresponding 04124 /// template type parameter. 04125 /// 04126 /// This routine implements the semantics of C++ [temp.arg.type]. It 04127 /// returns true if an error occurred, and false otherwise. 04128 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 04129 TypeSourceInfo *ArgInfo) { 04130 assert(ArgInfo && "invalid TypeSourceInfo"); 04131 QualType Arg = ArgInfo->getType(); 04132 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 04133 04134 if (Arg->isVariablyModifiedType()) { 04135 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 04136 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 04137 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 04138 } 04139 04140 // C++03 [temp.arg.type]p2: 04141 // A local type, a type with no linkage, an unnamed type or a type 04142 // compounded from any of these types shall not be used as a 04143 // template-argument for a template type-parameter. 04144 // 04145 // C++11 allows these, and even in C++03 we allow them as an extension with 04146 // a warning. 04147 bool NeedsCheck; 04148 if (LangOpts.CPlusPlus11) 04149 NeedsCheck = 04150 !Diags.isIgnored(diag::warn_cxx98_compat_template_arg_unnamed_type, 04151 SR.getBegin()) || 04152 !Diags.isIgnored(diag::warn_cxx98_compat_template_arg_local_type, 04153 SR.getBegin()); 04154 else 04155 NeedsCheck = Arg->hasUnnamedOrLocalType(); 04156 04157 if (NeedsCheck) { 04158 UnnamedLocalNoLinkageFinder Finder(*this, SR); 04159 (void)Finder.Visit(Context.getCanonicalType(Arg)); 04160 } 04161 04162 return false; 04163 } 04164 04165 enum NullPointerValueKind { 04166 NPV_NotNullPointer, 04167 NPV_NullPointer, 04168 NPV_Error 04169 }; 04170 04171 /// \brief Determine whether the given template argument is a null pointer 04172 /// value of the appropriate type. 04173 static NullPointerValueKind 04174 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, 04175 QualType ParamType, Expr *Arg) { 04176 if (Arg->isValueDependent() || Arg->isTypeDependent()) 04177 return NPV_NotNullPointer; 04178 04179 if (!S.getLangOpts().CPlusPlus11) 04180 return NPV_NotNullPointer; 04181 04182 // Determine whether we have a constant expression. 04183 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg); 04184 if (ArgRV.isInvalid()) 04185 return NPV_Error; 04186 Arg = ArgRV.get(); 04187 04188 Expr::EvalResult EvalResult; 04189 SmallVector<PartialDiagnosticAt, 8> Notes; 04190 EvalResult.Diag = &Notes; 04191 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) || 04192 EvalResult.HasSideEffects) { 04193 SourceLocation DiagLoc = Arg->getExprLoc(); 04194 04195 // If our only note is the usual "invalid subexpression" note, just point 04196 // the caret at its location rather than producing an essentially 04197 // redundant note. 04198 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 04199 diag::note_invalid_subexpr_in_const_expr) { 04200 DiagLoc = Notes[0].first; 04201 Notes.clear(); 04202 } 04203 04204 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant) 04205 << Arg->getType() << Arg->getSourceRange(); 04206 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 04207 S.Diag(Notes[I].first, Notes[I].second); 04208 04209 S.Diag(Param->getLocation(), diag::note_template_param_here); 04210 return NPV_Error; 04211 } 04212 04213 // C++11 [temp.arg.nontype]p1: 04214 // - an address constant expression of type std::nullptr_t 04215 if (Arg->getType()->isNullPtrType()) 04216 return NPV_NullPointer; 04217 04218 // - a constant expression that evaluates to a null pointer value (4.10); or 04219 // - a constant expression that evaluates to a null member pointer value 04220 // (4.11); or 04221 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) || 04222 (EvalResult.Val.isMemberPointer() && 04223 !EvalResult.Val.getMemberPointerDecl())) { 04224 // If our expression has an appropriate type, we've succeeded. 04225 bool ObjCLifetimeConversion; 04226 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) || 04227 S.IsQualificationConversion(Arg->getType(), ParamType, false, 04228 ObjCLifetimeConversion)) 04229 return NPV_NullPointer; 04230 04231 // The types didn't match, but we know we got a null pointer; complain, 04232 // then recover as if the types were correct. 04233 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant) 04234 << Arg->getType() << ParamType << Arg->getSourceRange(); 04235 S.Diag(Param->getLocation(), diag::note_template_param_here); 04236 return NPV_NullPointer; 04237 } 04238 04239 // If we don't have a null pointer value, but we do have a NULL pointer 04240 // constant, suggest a cast to the appropriate type. 04241 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) { 04242 std::string Code = "static_cast<" + ParamType.getAsString() + ">("; 04243 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant) 04244 << ParamType << FixItHint::CreateInsertion(Arg->getLocStart(), Code) 04245 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getLocEnd()), 04246 ")"); 04247 S.Diag(Param->getLocation(), diag::note_template_param_here); 04248 return NPV_NullPointer; 04249 } 04250 04251 // FIXME: If we ever want to support general, address-constant expressions 04252 // as non-type template arguments, we should return the ExprResult here to 04253 // be interpreted by the caller. 04254 return NPV_NotNullPointer; 04255 } 04256 04257 /// \brief Checks whether the given template argument is compatible with its 04258 /// template parameter. 04259 static bool CheckTemplateArgumentIsCompatibleWithParameter( 04260 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn, 04261 Expr *Arg, QualType ArgType) { 04262 bool ObjCLifetimeConversion; 04263 if (ParamType->isPointerType() && 04264 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 04265 S.IsQualificationConversion(ArgType, ParamType, false, 04266 ObjCLifetimeConversion)) { 04267 // For pointer-to-object types, qualification conversions are 04268 // permitted. 04269 } else { 04270 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 04271 if (!ParamRef->getPointeeType()->isFunctionType()) { 04272 // C++ [temp.arg.nontype]p5b3: 04273 // For a non-type template-parameter of type reference to 04274 // object, no conversions apply. The type referred to by the 04275 // reference may be more cv-qualified than the (otherwise 04276 // identical) type of the template- argument. The 04277 // template-parameter is bound directly to the 04278 // template-argument, which shall be an lvalue. 04279 04280 // FIXME: Other qualifiers? 04281 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 04282 unsigned ArgQuals = ArgType.getCVRQualifiers(); 04283 04284 if ((ParamQuals | ArgQuals) != ParamQuals) { 04285 S.Diag(Arg->getLocStart(), 04286 diag::err_template_arg_ref_bind_ignores_quals) 04287 << ParamType << Arg->getType() << Arg->getSourceRange(); 04288 S.Diag(Param->getLocation(), diag::note_template_param_here); 04289 return true; 04290 } 04291 } 04292 } 04293 04294 // At this point, the template argument refers to an object or 04295 // function with external linkage. We now need to check whether the 04296 // argument and parameter types are compatible. 04297 if (!S.Context.hasSameUnqualifiedType(ArgType, 04298 ParamType.getNonReferenceType())) { 04299 // We can't perform this conversion or binding. 04300 if (ParamType->isReferenceType()) 04301 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 04302 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 04303 else 04304 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 04305 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 04306 S.Diag(Param->getLocation(), diag::note_template_param_here); 04307 return true; 04308 } 04309 } 04310 04311 return false; 04312 } 04313 04314 /// \brief Checks whether the given template argument is the address 04315 /// of an object or function according to C++ [temp.arg.nontype]p1. 04316 static bool 04317 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 04318 NonTypeTemplateParmDecl *Param, 04319 QualType ParamType, 04320 Expr *ArgIn, 04321 TemplateArgument &Converted) { 04322 bool Invalid = false; 04323 Expr *Arg = ArgIn; 04324 QualType ArgType = Arg->getType(); 04325 04326 bool AddressTaken = false; 04327 SourceLocation AddrOpLoc; 04328 if (S.getLangOpts().MicrosoftExt) { 04329 // Microsoft Visual C++ strips all casts, allows an arbitrary number of 04330 // dereference and address-of operators. 04331 Arg = Arg->IgnoreParenCasts(); 04332 04333 bool ExtWarnMSTemplateArg = false; 04334 UnaryOperatorKind FirstOpKind; 04335 SourceLocation FirstOpLoc; 04336 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 04337 UnaryOperatorKind UnOpKind = UnOp->getOpcode(); 04338 if (UnOpKind == UO_Deref) 04339 ExtWarnMSTemplateArg = true; 04340 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) { 04341 Arg = UnOp->getSubExpr()->IgnoreParenCasts(); 04342 if (!AddrOpLoc.isValid()) { 04343 FirstOpKind = UnOpKind; 04344 FirstOpLoc = UnOp->getOperatorLoc(); 04345 } 04346 } else 04347 break; 04348 } 04349 if (FirstOpLoc.isValid()) { 04350 if (ExtWarnMSTemplateArg) 04351 S.Diag(ArgIn->getLocStart(), diag::ext_ms_deref_template_argument) 04352 << ArgIn->getSourceRange(); 04353 04354 if (FirstOpKind == UO_AddrOf) 04355 AddressTaken = true; 04356 else if (Arg->getType()->isPointerType()) { 04357 // We cannot let pointers get dereferenced here, that is obviously not a 04358 // constant expression. 04359 assert(FirstOpKind == UO_Deref); 04360 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 04361 << Arg->getSourceRange(); 04362 } 04363 } 04364 } else { 04365 // See through any implicit casts we added to fix the type. 04366 Arg = Arg->IgnoreImpCasts(); 04367 04368 // C++ [temp.arg.nontype]p1: 04369 // 04370 // A template-argument for a non-type, non-template 04371 // template-parameter shall be one of: [...] 04372 // 04373 // -- the address of an object or function with external 04374 // linkage, including function templates and function 04375 // template-ids but excluding non-static class members, 04376 // expressed as & id-expression where the & is optional if 04377 // the name refers to a function or array, or if the 04378 // corresponding template-parameter is a reference; or 04379 04380 // In C++98/03 mode, give an extension warning on any extra parentheses. 04381 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 04382 bool ExtraParens = false; 04383 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 04384 if (!Invalid && !ExtraParens) { 04385 S.Diag(Arg->getLocStart(), 04386 S.getLangOpts().CPlusPlus11 04387 ? diag::warn_cxx98_compat_template_arg_extra_parens 04388 : diag::ext_template_arg_extra_parens) 04389 << Arg->getSourceRange(); 04390 ExtraParens = true; 04391 } 04392 04393 Arg = Parens->getSubExpr(); 04394 } 04395 04396 while (SubstNonTypeTemplateParmExpr *subst = 04397 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 04398 Arg = subst->getReplacement()->IgnoreImpCasts(); 04399 04400 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 04401 if (UnOp->getOpcode() == UO_AddrOf) { 04402 Arg = UnOp->getSubExpr(); 04403 AddressTaken = true; 04404 AddrOpLoc = UnOp->getOperatorLoc(); 04405 } 04406 } 04407 04408 while (SubstNonTypeTemplateParmExpr *subst = 04409 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 04410 Arg = subst->getReplacement()->IgnoreImpCasts(); 04411 } 04412 04413 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg); 04414 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr; 04415 04416 // If our parameter has pointer type, check for a null template value. 04417 if (ParamType->isPointerType() || ParamType->isNullPtrType()) { 04418 NullPointerValueKind NPV; 04419 // dllimport'd entities aren't constant but are available inside of template 04420 // arguments. 04421 if (Entity && Entity->hasAttr<DLLImportAttr>()) 04422 NPV = NPV_NotNullPointer; 04423 else 04424 NPV = isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn); 04425 switch (NPV) { 04426 case NPV_NullPointer: 04427 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 04428 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType), 04429 /*isNullPtr=*/true); 04430 return false; 04431 04432 case NPV_Error: 04433 return true; 04434 04435 case NPV_NotNullPointer: 04436 break; 04437 } 04438 } 04439 04440 // Stop checking the precise nature of the argument if it is value dependent, 04441 // it should be checked when instantiated. 04442 if (Arg->isValueDependent()) { 04443 Converted = TemplateArgument(ArgIn); 04444 return false; 04445 } 04446 04447 if (isa<CXXUuidofExpr>(Arg)) { 04448 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, 04449 ArgIn, Arg, ArgType)) 04450 return true; 04451 04452 Converted = TemplateArgument(ArgIn); 04453 return false; 04454 } 04455 04456 if (!DRE) { 04457 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 04458 << Arg->getSourceRange(); 04459 S.Diag(Param->getLocation(), diag::note_template_param_here); 04460 return true; 04461 } 04462 04463 // Cannot refer to non-static data members 04464 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) { 04465 S.Diag(Arg->getLocStart(), diag::err_template_arg_field) 04466 << Entity << Arg->getSourceRange(); 04467 S.Diag(Param->getLocation(), diag::note_template_param_here); 04468 return true; 04469 } 04470 04471 // Cannot refer to non-static member functions 04472 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) { 04473 if (!Method->isStatic()) { 04474 S.Diag(Arg->getLocStart(), diag::err_template_arg_method) 04475 << Method << Arg->getSourceRange(); 04476 S.Diag(Param->getLocation(), diag::note_template_param_here); 04477 return true; 04478 } 04479 } 04480 04481 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity); 04482 VarDecl *Var = dyn_cast<VarDecl>(Entity); 04483 04484 // A non-type template argument must refer to an object or function. 04485 if (!Func && !Var) { 04486 // We found something, but we don't know specifically what it is. 04487 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func) 04488 << Arg->getSourceRange(); 04489 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 04490 return true; 04491 } 04492 04493 // Address / reference template args must have external linkage in C++98. 04494 if (Entity->getFormalLinkage() == InternalLinkage) { 04495 S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ? 04496 diag::warn_cxx98_compat_template_arg_object_internal : 04497 diag::ext_template_arg_object_internal) 04498 << !Func << Entity << Arg->getSourceRange(); 04499 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 04500 << !Func; 04501 } else if (!Entity->hasLinkage()) { 04502 S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage) 04503 << !Func << Entity << Arg->getSourceRange(); 04504 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 04505 << !Func; 04506 return true; 04507 } 04508 04509 if (Func) { 04510 // If the template parameter has pointer type, the function decays. 04511 if (ParamType->isPointerType() && !AddressTaken) 04512 ArgType = S.Context.getPointerType(Func->getType()); 04513 else if (AddressTaken && ParamType->isReferenceType()) { 04514 // If we originally had an address-of operator, but the 04515 // parameter has reference type, complain and (if things look 04516 // like they will work) drop the address-of operator. 04517 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 04518 ParamType.getNonReferenceType())) { 04519 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 04520 << ParamType; 04521 S.Diag(Param->getLocation(), diag::note_template_param_here); 04522 return true; 04523 } 04524 04525 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 04526 << ParamType 04527 << FixItHint::CreateRemoval(AddrOpLoc); 04528 S.Diag(Param->getLocation(), diag::note_template_param_here); 04529 04530 ArgType = Func->getType(); 04531 } 04532 } else { 04533 // A value of reference type is not an object. 04534 if (Var->getType()->isReferenceType()) { 04535 S.Diag(Arg->getLocStart(), 04536 diag::err_template_arg_reference_var) 04537 << Var->getType() << Arg->getSourceRange(); 04538 S.Diag(Param->getLocation(), diag::note_template_param_here); 04539 return true; 04540 } 04541 04542 // A template argument must have static storage duration. 04543 if (Var->getTLSKind()) { 04544 S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local) 04545 << Arg->getSourceRange(); 04546 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here); 04547 return true; 04548 } 04549 04550 // If the template parameter has pointer type, we must have taken 04551 // the address of this object. 04552 if (ParamType->isReferenceType()) { 04553 if (AddressTaken) { 04554 // If we originally had an address-of operator, but the 04555 // parameter has reference type, complain and (if things look 04556 // like they will work) drop the address-of operator. 04557 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 04558 ParamType.getNonReferenceType())) { 04559 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 04560 << ParamType; 04561 S.Diag(Param->getLocation(), diag::note_template_param_here); 04562 return true; 04563 } 04564 04565 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 04566 << ParamType 04567 << FixItHint::CreateRemoval(AddrOpLoc); 04568 S.Diag(Param->getLocation(), diag::note_template_param_here); 04569 04570 ArgType = Var->getType(); 04571 } 04572 } else if (!AddressTaken && ParamType->isPointerType()) { 04573 if (Var->getType()->isArrayType()) { 04574 // Array-to-pointer decay. 04575 ArgType = S.Context.getArrayDecayedType(Var->getType()); 04576 } else { 04577 // If the template parameter has pointer type but the address of 04578 // this object was not taken, complain and (possibly) recover by 04579 // taking the address of the entity. 04580 ArgType = S.Context.getPointerType(Var->getType()); 04581 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 04582 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 04583 << ParamType; 04584 S.Diag(Param->getLocation(), diag::note_template_param_here); 04585 return true; 04586 } 04587 04588 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 04589 << ParamType 04590 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 04591 04592 S.Diag(Param->getLocation(), diag::note_template_param_here); 04593 } 04594 } 04595 } 04596 04597 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn, 04598 Arg, ArgType)) 04599 return true; 04600 04601 // Create the template argument. 04602 Converted = 04603 TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType); 04604 S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false); 04605 return false; 04606 } 04607 04608 /// \brief Checks whether the given template argument is a pointer to 04609 /// member constant according to C++ [temp.arg.nontype]p1. 04610 static bool CheckTemplateArgumentPointerToMember(Sema &S, 04611 NonTypeTemplateParmDecl *Param, 04612 QualType ParamType, 04613 Expr *&ResultArg, 04614 TemplateArgument &Converted) { 04615 bool Invalid = false; 04616 04617 // Check for a null pointer value. 04618 Expr *Arg = ResultArg; 04619 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) { 04620 case NPV_Error: 04621 return true; 04622 case NPV_NullPointer: 04623 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 04624 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType), 04625 /*isNullPtr*/true); 04626 if (S.Context.getTargetInfo().getCXXABI().isMicrosoft()) 04627 S.RequireCompleteType(Arg->getExprLoc(), ParamType, 0); 04628 return false; 04629 case NPV_NotNullPointer: 04630 break; 04631 } 04632 04633 bool ObjCLifetimeConversion; 04634 if (S.IsQualificationConversion(Arg->getType(), 04635 ParamType.getNonReferenceType(), 04636 false, ObjCLifetimeConversion)) { 04637 Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp, 04638 Arg->getValueKind()).get(); 04639 ResultArg = Arg; 04640 } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(), 04641 ParamType.getNonReferenceType())) { 04642 // We can't perform this conversion. 04643 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 04644 << Arg->getType() << ParamType << Arg->getSourceRange(); 04645 S.Diag(Param->getLocation(), diag::note_template_param_here); 04646 return true; 04647 } 04648 04649 // See through any implicit casts we added to fix the type. 04650 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 04651 Arg = Cast->getSubExpr(); 04652 04653 // C++ [temp.arg.nontype]p1: 04654 // 04655 // A template-argument for a non-type, non-template 04656 // template-parameter shall be one of: [...] 04657 // 04658 // -- a pointer to member expressed as described in 5.3.1. 04659 DeclRefExpr *DRE = nullptr; 04660 04661 // In C++98/03 mode, give an extension warning on any extra parentheses. 04662 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 04663 bool ExtraParens = false; 04664 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 04665 if (!Invalid && !ExtraParens) { 04666 S.Diag(Arg->getLocStart(), 04667 S.getLangOpts().CPlusPlus11 ? 04668 diag::warn_cxx98_compat_template_arg_extra_parens : 04669 diag::ext_template_arg_extra_parens) 04670 << Arg->getSourceRange(); 04671 ExtraParens = true; 04672 } 04673 04674 Arg = Parens->getSubExpr(); 04675 } 04676 04677 while (SubstNonTypeTemplateParmExpr *subst = 04678 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 04679 Arg = subst->getReplacement()->IgnoreImpCasts(); 04680 04681 // A pointer-to-member constant written &Class::member. 04682 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 04683 if (UnOp->getOpcode() == UO_AddrOf) { 04684 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 04685 if (DRE && !DRE->getQualifier()) 04686 DRE = nullptr; 04687 } 04688 } 04689 // A constant of pointer-to-member type. 04690 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 04691 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 04692 if (VD->getType()->isMemberPointerType()) { 04693 if (isa<NonTypeTemplateParmDecl>(VD)) { 04694 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 04695 Converted = TemplateArgument(Arg); 04696 } else { 04697 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 04698 Converted = TemplateArgument(VD, ParamType); 04699 } 04700 return Invalid; 04701 } 04702 } 04703 } 04704 04705 DRE = nullptr; 04706 } 04707 04708 if (!DRE) 04709 return S.Diag(Arg->getLocStart(), 04710 diag::err_template_arg_not_pointer_to_member_form) 04711 << Arg->getSourceRange(); 04712 04713 if (isa<FieldDecl>(DRE->getDecl()) || 04714 isa<IndirectFieldDecl>(DRE->getDecl()) || 04715 isa<CXXMethodDecl>(DRE->getDecl())) { 04716 assert((isa<FieldDecl>(DRE->getDecl()) || 04717 isa<IndirectFieldDecl>(DRE->getDecl()) || 04718 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 04719 "Only non-static member pointers can make it here"); 04720 04721 // Okay: this is the address of a non-static member, and therefore 04722 // a member pointer constant. 04723 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 04724 Converted = TemplateArgument(Arg); 04725 } else { 04726 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); 04727 Converted = TemplateArgument(D, ParamType); 04728 } 04729 return Invalid; 04730 } 04731 04732 // We found something else, but we don't know specifically what it is. 04733 S.Diag(Arg->getLocStart(), 04734 diag::err_template_arg_not_pointer_to_member_form) 04735 << Arg->getSourceRange(); 04736 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 04737 return true; 04738 } 04739 04740 /// \brief Check a template argument against its corresponding 04741 /// non-type template parameter. 04742 /// 04743 /// This routine implements the semantics of C++ [temp.arg.nontype]. 04744 /// If an error occurred, it returns ExprError(); otherwise, it 04745 /// returns the converted template argument. \p 04746 /// InstantiatedParamType is the type of the non-type template 04747 /// parameter after it has been instantiated. 04748 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 04749 QualType InstantiatedParamType, Expr *Arg, 04750 TemplateArgument &Converted, 04751 CheckTemplateArgumentKind CTAK) { 04752 SourceLocation StartLoc = Arg->getLocStart(); 04753 04754 // If either the parameter has a dependent type or the argument is 04755 // type-dependent, there's nothing we can check now. 04756 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 04757 // FIXME: Produce a cloned, canonical expression? 04758 Converted = TemplateArgument(Arg); 04759 return Arg; 04760 } 04761 04762 // C++ [temp.arg.nontype]p5: 04763 // The following conversions are performed on each expression used 04764 // as a non-type template-argument. If a non-type 04765 // template-argument cannot be converted to the type of the 04766 // corresponding template-parameter then the program is 04767 // ill-formed. 04768 QualType ParamType = InstantiatedParamType; 04769 if (ParamType->isIntegralOrEnumerationType()) { 04770 // C++11: 04771 // -- for a non-type template-parameter of integral or 04772 // enumeration type, conversions permitted in a converted 04773 // constant expression are applied. 04774 // 04775 // C++98: 04776 // -- for a non-type template-parameter of integral or 04777 // enumeration type, integral promotions (4.5) and integral 04778 // conversions (4.7) are applied. 04779 04780 if (CTAK == CTAK_Deduced && 04781 !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) { 04782 // C++ [temp.deduct.type]p17: 04783 // If, in the declaration of a function template with a non-type 04784 // template-parameter, the non-type template-parameter is used 04785 // in an expression in the function parameter-list and, if the 04786 // corresponding template-argument is deduced, the 04787 // template-argument type shall match the type of the 04788 // template-parameter exactly, except that a template-argument 04789 // deduced from an array bound may be of any integral type. 04790 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 04791 << Arg->getType().getUnqualifiedType() 04792 << ParamType.getUnqualifiedType(); 04793 Diag(Param->getLocation(), diag::note_template_param_here); 04794 return ExprError(); 04795 } 04796 04797 if (getLangOpts().CPlusPlus11) { 04798 // We can't check arbitrary value-dependent arguments. 04799 // FIXME: If there's no viable conversion to the template parameter type, 04800 // we should be able to diagnose that prior to instantiation. 04801 if (Arg->isValueDependent()) { 04802 Converted = TemplateArgument(Arg); 04803 return Arg; 04804 } 04805 04806 // C++ [temp.arg.nontype]p1: 04807 // A template-argument for a non-type, non-template template-parameter 04808 // shall be one of: 04809 // 04810 // -- for a non-type template-parameter of integral or enumeration 04811 // type, a converted constant expression of the type of the 04812 // template-parameter; or 04813 llvm::APSInt Value; 04814 ExprResult ArgResult = 04815 CheckConvertedConstantExpression(Arg, ParamType, Value, 04816 CCEK_TemplateArg); 04817 if (ArgResult.isInvalid()) 04818 return ExprError(); 04819 04820 // Widen the argument value to sizeof(parameter type). This is almost 04821 // always a no-op, except when the parameter type is bool. In 04822 // that case, this may extend the argument from 1 bit to 8 bits. 04823 QualType IntegerType = ParamType; 04824 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 04825 IntegerType = Enum->getDecl()->getIntegerType(); 04826 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType)); 04827 04828 Converted = TemplateArgument(Context, Value, 04829 Context.getCanonicalType(ParamType)); 04830 return ArgResult; 04831 } 04832 04833 ExprResult ArgResult = DefaultLvalueConversion(Arg); 04834 if (ArgResult.isInvalid()) 04835 return ExprError(); 04836 Arg = ArgResult.get(); 04837 04838 QualType ArgType = Arg->getType(); 04839 04840 // C++ [temp.arg.nontype]p1: 04841 // A template-argument for a non-type, non-template 04842 // template-parameter shall be one of: 04843 // 04844 // -- an integral constant-expression of integral or enumeration 04845 // type; or 04846 // -- the name of a non-type template-parameter; or 04847 SourceLocation NonConstantLoc; 04848 llvm::APSInt Value; 04849 if (!ArgType->isIntegralOrEnumerationType()) { 04850 Diag(Arg->getLocStart(), 04851 diag::err_template_arg_not_integral_or_enumeral) 04852 << ArgType << Arg->getSourceRange(); 04853 Diag(Param->getLocation(), diag::note_template_param_here); 04854 return ExprError(); 04855 } else if (!Arg->isValueDependent()) { 04856 class TmplArgICEDiagnoser : public VerifyICEDiagnoser { 04857 QualType T; 04858 04859 public: 04860 TmplArgICEDiagnoser(QualType T) : T(T) { } 04861 04862 void diagnoseNotICE(Sema &S, SourceLocation Loc, 04863 SourceRange SR) override { 04864 S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR; 04865 } 04866 } Diagnoser(ArgType); 04867 04868 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser, 04869 false).get(); 04870 if (!Arg) 04871 return ExprError(); 04872 } 04873 04874 // From here on out, all we care about are the unqualified forms 04875 // of the parameter and argument types. 04876 ParamType = ParamType.getUnqualifiedType(); 04877 ArgType = ArgType.getUnqualifiedType(); 04878 04879 // Try to convert the argument to the parameter's type. 04880 if (Context.hasSameType(ParamType, ArgType)) { 04881 // Okay: no conversion necessary 04882 } else if (ParamType->isBooleanType()) { 04883 // This is an integral-to-boolean conversion. 04884 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get(); 04885 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 04886 !ParamType->isEnumeralType()) { 04887 // This is an integral promotion or conversion. 04888 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get(); 04889 } else { 04890 // We can't perform this conversion. 04891 Diag(Arg->getLocStart(), 04892 diag::err_template_arg_not_convertible) 04893 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 04894 Diag(Param->getLocation(), diag::note_template_param_here); 04895 return ExprError(); 04896 } 04897 04898 // Add the value of this argument to the list of converted 04899 // arguments. We use the bitwidth and signedness of the template 04900 // parameter. 04901 if (Arg->isValueDependent()) { 04902 // The argument is value-dependent. Create a new 04903 // TemplateArgument with the converted expression. 04904 Converted = TemplateArgument(Arg); 04905 return Arg; 04906 } 04907 04908 QualType IntegerType = Context.getCanonicalType(ParamType); 04909 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 04910 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 04911 04912 if (ParamType->isBooleanType()) { 04913 // Value must be zero or one. 04914 Value = Value != 0; 04915 unsigned AllowedBits = Context.getTypeSize(IntegerType); 04916 if (Value.getBitWidth() != AllowedBits) 04917 Value = Value.extOrTrunc(AllowedBits); 04918 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 04919 } else { 04920 llvm::APSInt OldValue = Value; 04921 04922 // Coerce the template argument's value to the value it will have 04923 // based on the template parameter's type. 04924 unsigned AllowedBits = Context.getTypeSize(IntegerType); 04925 if (Value.getBitWidth() != AllowedBits) 04926 Value = Value.extOrTrunc(AllowedBits); 04927 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 04928 04929 // Complain if an unsigned parameter received a negative value. 04930 if (IntegerType->isUnsignedIntegerOrEnumerationType() 04931 && (OldValue.isSigned() && OldValue.isNegative())) { 04932 Diag(Arg->getLocStart(), diag::warn_template_arg_negative) 04933 << OldValue.toString(10) << Value.toString(10) << Param->getType() 04934 << Arg->getSourceRange(); 04935 Diag(Param->getLocation(), diag::note_template_param_here); 04936 } 04937 04938 // Complain if we overflowed the template parameter's type. 04939 unsigned RequiredBits; 04940 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 04941 RequiredBits = OldValue.getActiveBits(); 04942 else if (OldValue.isUnsigned()) 04943 RequiredBits = OldValue.getActiveBits() + 1; 04944 else 04945 RequiredBits = OldValue.getMinSignedBits(); 04946 if (RequiredBits > AllowedBits) { 04947 Diag(Arg->getLocStart(), 04948 diag::warn_template_arg_too_large) 04949 << OldValue.toString(10) << Value.toString(10) << Param->getType() 04950 << Arg->getSourceRange(); 04951 Diag(Param->getLocation(), diag::note_template_param_here); 04952 } 04953 } 04954 04955 Converted = TemplateArgument(Context, Value, 04956 ParamType->isEnumeralType() 04957 ? Context.getCanonicalType(ParamType) 04958 : IntegerType); 04959 return Arg; 04960 } 04961 04962 QualType ArgType = Arg->getType(); 04963 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 04964 04965 // Handle pointer-to-function, reference-to-function, and 04966 // pointer-to-member-function all in (roughly) the same way. 04967 if (// -- For a non-type template-parameter of type pointer to 04968 // function, only the function-to-pointer conversion (4.3) is 04969 // applied. If the template-argument represents a set of 04970 // overloaded functions (or a pointer to such), the matching 04971 // function is selected from the set (13.4). 04972 (ParamType->isPointerType() && 04973 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 04974 // -- For a non-type template-parameter of type reference to 04975 // function, no conversions apply. If the template-argument 04976 // represents a set of overloaded functions, the matching 04977 // function is selected from the set (13.4). 04978 (ParamType->isReferenceType() && 04979 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 04980 // -- For a non-type template-parameter of type pointer to 04981 // member function, no conversions apply. If the 04982 // template-argument represents a set of overloaded member 04983 // functions, the matching member function is selected from 04984 // the set (13.4). 04985 (ParamType->isMemberPointerType() && 04986 ParamType->getAs<MemberPointerType>()->getPointeeType() 04987 ->isFunctionType())) { 04988 04989 if (Arg->getType() == Context.OverloadTy) { 04990 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 04991 true, 04992 FoundResult)) { 04993 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) 04994 return ExprError(); 04995 04996 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 04997 ArgType = Arg->getType(); 04998 } else 04999 return ExprError(); 05000 } 05001 05002 if (!ParamType->isMemberPointerType()) { 05003 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 05004 ParamType, 05005 Arg, Converted)) 05006 return ExprError(); 05007 return Arg; 05008 } 05009 05010 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 05011 Converted)) 05012 return ExprError(); 05013 return Arg; 05014 } 05015 05016 if (ParamType->isPointerType()) { 05017 // -- for a non-type template-parameter of type pointer to 05018 // object, qualification conversions (4.4) and the 05019 // array-to-pointer conversion (4.2) are applied. 05020 // C++0x also allows a value of std::nullptr_t. 05021 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 05022 "Only object pointers allowed here"); 05023 05024 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 05025 ParamType, 05026 Arg, Converted)) 05027 return ExprError(); 05028 return Arg; 05029 } 05030 05031 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 05032 // -- For a non-type template-parameter of type reference to 05033 // object, no conversions apply. The type referred to by the 05034 // reference may be more cv-qualified than the (otherwise 05035 // identical) type of the template-argument. The 05036 // template-parameter is bound directly to the 05037 // template-argument, which must be an lvalue. 05038 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 05039 "Only object references allowed here"); 05040 05041 if (Arg->getType() == Context.OverloadTy) { 05042 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 05043 ParamRefType->getPointeeType(), 05044 true, 05045 FoundResult)) { 05046 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) 05047 return ExprError(); 05048 05049 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 05050 ArgType = Arg->getType(); 05051 } else 05052 return ExprError(); 05053 } 05054 05055 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 05056 ParamType, 05057 Arg, Converted)) 05058 return ExprError(); 05059 return Arg; 05060 } 05061 05062 // Deal with parameters of type std::nullptr_t. 05063 if (ParamType->isNullPtrType()) { 05064 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 05065 Converted = TemplateArgument(Arg); 05066 return Arg; 05067 } 05068 05069 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) { 05070 case NPV_NotNullPointer: 05071 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible) 05072 << Arg->getType() << ParamType; 05073 Diag(Param->getLocation(), diag::note_template_param_here); 05074 return ExprError(); 05075 05076 case NPV_Error: 05077 return ExprError(); 05078 05079 case NPV_NullPointer: 05080 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 05081 Converted = TemplateArgument(Context.getCanonicalType(ParamType), 05082 /*isNullPtr*/true); 05083 return Arg; 05084 } 05085 } 05086 05087 // -- For a non-type template-parameter of type pointer to data 05088 // member, qualification conversions (4.4) are applied. 05089 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 05090 05091 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 05092 Converted)) 05093 return ExprError(); 05094 return Arg; 05095 } 05096 05097 /// \brief Check a template argument against its corresponding 05098 /// template template parameter. 05099 /// 05100 /// This routine implements the semantics of C++ [temp.arg.template]. 05101 /// It returns true if an error occurred, and false otherwise. 05102 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 05103 TemplateArgumentLoc &Arg, 05104 unsigned ArgumentPackIndex) { 05105 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern(); 05106 TemplateDecl *Template = Name.getAsTemplateDecl(); 05107 if (!Template) { 05108 // Any dependent template name is fine. 05109 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 05110 return false; 05111 } 05112 05113 // C++0x [temp.arg.template]p1: 05114 // A template-argument for a template template-parameter shall be 05115 // the name of a class template or an alias template, expressed as an 05116 // id-expression. When the template-argument names a class template, only 05117 // primary class templates are considered when matching the 05118 // template template argument with the corresponding parameter; 05119 // partial specializations are not considered even if their 05120 // parameter lists match that of the template template parameter. 05121 // 05122 // Note that we also allow template template parameters here, which 05123 // will happen when we are dealing with, e.g., class template 05124 // partial specializations. 05125 if (!isa<ClassTemplateDecl>(Template) && 05126 !isa<TemplateTemplateParmDecl>(Template) && 05127 !isa<TypeAliasTemplateDecl>(Template)) { 05128 assert(isa<FunctionTemplateDecl>(Template) && 05129 "Only function templates are possible here"); 05130 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 05131 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 05132 << Template; 05133 } 05134 05135 TemplateParameterList *Params = Param->getTemplateParameters(); 05136 if (Param->isExpandedParameterPack()) 05137 Params = Param->getExpansionTemplateParameters(ArgumentPackIndex); 05138 05139 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 05140 Params, 05141 true, 05142 TPL_TemplateTemplateArgumentMatch, 05143 Arg.getLocation()); 05144 } 05145 05146 /// \brief Given a non-type template argument that refers to a 05147 /// declaration and the type of its corresponding non-type template 05148 /// parameter, produce an expression that properly refers to that 05149 /// declaration. 05150 ExprResult 05151 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 05152 QualType ParamType, 05153 SourceLocation Loc) { 05154 // C++ [temp.param]p8: 05155 // 05156 // A non-type template-parameter of type "array of T" or 05157 // "function returning T" is adjusted to be of type "pointer to 05158 // T" or "pointer to function returning T", respectively. 05159 if (ParamType->isArrayType()) 05160 ParamType = Context.getArrayDecayedType(ParamType); 05161 else if (ParamType->isFunctionType()) 05162 ParamType = Context.getPointerType(ParamType); 05163 05164 // For a NULL non-type template argument, return nullptr casted to the 05165 // parameter's type. 05166 if (Arg.getKind() == TemplateArgument::NullPtr) { 05167 return ImpCastExprToType( 05168 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), 05169 ParamType, 05170 ParamType->getAs<MemberPointerType>() 05171 ? CK_NullToMemberPointer 05172 : CK_NullToPointer); 05173 } 05174 assert(Arg.getKind() == TemplateArgument::Declaration && 05175 "Only declaration template arguments permitted here"); 05176 05177 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 05178 05179 if (VD->getDeclContext()->isRecord() && 05180 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) || 05181 isa<IndirectFieldDecl>(VD))) { 05182 // If the value is a class member, we might have a pointer-to-member. 05183 // Determine whether the non-type template template parameter is of 05184 // pointer-to-member type. If so, we need to build an appropriate 05185 // expression for a pointer-to-member, since a "normal" DeclRefExpr 05186 // would refer to the member itself. 05187 if (ParamType->isMemberPointerType()) { 05188 QualType ClassType 05189 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 05190 NestedNameSpecifier *Qualifier 05191 = NestedNameSpecifier::Create(Context, nullptr, false, 05192 ClassType.getTypePtr()); 05193 CXXScopeSpec SS; 05194 SS.MakeTrivial(Context, Qualifier, Loc); 05195 05196 // The actual value-ness of this is unimportant, but for 05197 // internal consistency's sake, references to instance methods 05198 // are r-values. 05199 ExprValueKind VK = VK_LValue; 05200 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 05201 VK = VK_RValue; 05202 05203 ExprResult RefExpr = BuildDeclRefExpr(VD, 05204 VD->getType().getNonReferenceType(), 05205 VK, 05206 Loc, 05207 &SS); 05208 if (RefExpr.isInvalid()) 05209 return ExprError(); 05210 05211 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 05212 05213 // We might need to perform a trailing qualification conversion, since 05214 // the element type on the parameter could be more qualified than the 05215 // element type in the expression we constructed. 05216 bool ObjCLifetimeConversion; 05217 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 05218 ParamType.getUnqualifiedType(), false, 05219 ObjCLifetimeConversion)) 05220 RefExpr = ImpCastExprToType(RefExpr.get(), ParamType.getUnqualifiedType(), CK_NoOp); 05221 05222 assert(!RefExpr.isInvalid() && 05223 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 05224 ParamType.getUnqualifiedType())); 05225 return RefExpr; 05226 } 05227 } 05228 05229 QualType T = VD->getType().getNonReferenceType(); 05230 05231 if (ParamType->isPointerType()) { 05232 // When the non-type template parameter is a pointer, take the 05233 // address of the declaration. 05234 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 05235 if (RefExpr.isInvalid()) 05236 return ExprError(); 05237 05238 if (T->isFunctionType() || T->isArrayType()) { 05239 // Decay functions and arrays. 05240 RefExpr = DefaultFunctionArrayConversion(RefExpr.get()); 05241 if (RefExpr.isInvalid()) 05242 return ExprError(); 05243 05244 return RefExpr; 05245 } 05246 05247 // Take the address of everything else 05248 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 05249 } 05250 05251 ExprValueKind VK = VK_RValue; 05252 05253 // If the non-type template parameter has reference type, qualify the 05254 // resulting declaration reference with the extra qualifiers on the 05255 // type that the reference refers to. 05256 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 05257 VK = VK_LValue; 05258 T = Context.getQualifiedType(T, 05259 TargetRef->getPointeeType().getQualifiers()); 05260 } else if (isa<FunctionDecl>(VD)) { 05261 // References to functions are always lvalues. 05262 VK = VK_LValue; 05263 } 05264 05265 return BuildDeclRefExpr(VD, T, VK, Loc); 05266 } 05267 05268 /// \brief Construct a new expression that refers to the given 05269 /// integral template argument with the given source-location 05270 /// information. 05271 /// 05272 /// This routine takes care of the mapping from an integral template 05273 /// argument (which may have any integral type) to the appropriate 05274 /// literal value. 05275 ExprResult 05276 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 05277 SourceLocation Loc) { 05278 assert(Arg.getKind() == TemplateArgument::Integral && 05279 "Operation is only valid for integral template arguments"); 05280 QualType OrigT = Arg.getIntegralType(); 05281 05282 // If this is an enum type that we're instantiating, we need to use an integer 05283 // type the same size as the enumerator. We don't want to build an 05284 // IntegerLiteral with enum type. The integer type of an enum type can be of 05285 // any integral type with C++11 enum classes, make sure we create the right 05286 // type of literal for it. 05287 QualType T = OrigT; 05288 if (const EnumType *ET = OrigT->getAs<EnumType>()) 05289 T = ET->getDecl()->getIntegerType(); 05290 05291 Expr *E; 05292 if (T->isAnyCharacterType()) { 05293 CharacterLiteral::CharacterKind Kind; 05294 if (T->isWideCharType()) 05295 Kind = CharacterLiteral::Wide; 05296 else if (T->isChar16Type()) 05297 Kind = CharacterLiteral::UTF16; 05298 else if (T->isChar32Type()) 05299 Kind = CharacterLiteral::UTF32; 05300 else 05301 Kind = CharacterLiteral::Ascii; 05302 05303 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(), 05304 Kind, T, Loc); 05305 } else if (T->isBooleanType()) { 05306 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(), 05307 T, Loc); 05308 } else if (T->isNullPtrType()) { 05309 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 05310 } else { 05311 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc); 05312 } 05313 05314 if (OrigT->isEnumeralType()) { 05315 // FIXME: This is a hack. We need a better way to handle substituted 05316 // non-type template parameters. 05317 E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E, 05318 nullptr, 05319 Context.getTrivialTypeSourceInfo(OrigT, Loc), 05320 Loc, Loc); 05321 } 05322 05323 return E; 05324 } 05325 05326 /// \brief Match two template parameters within template parameter lists. 05327 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 05328 bool Complain, 05329 Sema::TemplateParameterListEqualKind Kind, 05330 SourceLocation TemplateArgLoc) { 05331 // Check the actual kind (type, non-type, template). 05332 if (Old->getKind() != New->getKind()) { 05333 if (Complain) { 05334 unsigned NextDiag = diag::err_template_param_different_kind; 05335 if (TemplateArgLoc.isValid()) { 05336 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 05337 NextDiag = diag::note_template_param_different_kind; 05338 } 05339 S.Diag(New->getLocation(), NextDiag) 05340 << (Kind != Sema::TPL_TemplateMatch); 05341 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 05342 << (Kind != Sema::TPL_TemplateMatch); 05343 } 05344 05345 return false; 05346 } 05347 05348 // Check that both are parameter packs are neither are parameter packs. 05349 // However, if we are matching a template template argument to a 05350 // template template parameter, the template template parameter can have 05351 // a parameter pack where the template template argument does not. 05352 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 05353 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 05354 Old->isTemplateParameterPack())) { 05355 if (Complain) { 05356 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 05357 if (TemplateArgLoc.isValid()) { 05358 S.Diag(TemplateArgLoc, 05359 diag::err_template_arg_template_params_mismatch); 05360 NextDiag = diag::note_template_parameter_pack_non_pack; 05361 } 05362 05363 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 05364 : isa<NonTypeTemplateParmDecl>(New)? 1 05365 : 2; 05366 S.Diag(New->getLocation(), NextDiag) 05367 << ParamKind << New->isParameterPack(); 05368 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 05369 << ParamKind << Old->isParameterPack(); 05370 } 05371 05372 return false; 05373 } 05374 05375 // For non-type template parameters, check the type of the parameter. 05376 if (NonTypeTemplateParmDecl *OldNTTP 05377 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 05378 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 05379 05380 // If we are matching a template template argument to a template 05381 // template parameter and one of the non-type template parameter types 05382 // is dependent, then we must wait until template instantiation time 05383 // to actually compare the arguments. 05384 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 05385 (OldNTTP->getType()->isDependentType() || 05386 NewNTTP->getType()->isDependentType())) 05387 return true; 05388 05389 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 05390 if (Complain) { 05391 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 05392 if (TemplateArgLoc.isValid()) { 05393 S.Diag(TemplateArgLoc, 05394 diag::err_template_arg_template_params_mismatch); 05395 NextDiag = diag::note_template_nontype_parm_different_type; 05396 } 05397 S.Diag(NewNTTP->getLocation(), NextDiag) 05398 << NewNTTP->getType() 05399 << (Kind != Sema::TPL_TemplateMatch); 05400 S.Diag(OldNTTP->getLocation(), 05401 diag::note_template_nontype_parm_prev_declaration) 05402 << OldNTTP->getType(); 05403 } 05404 05405 return false; 05406 } 05407 05408 return true; 05409 } 05410 05411 // For template template parameters, check the template parameter types. 05412 // The template parameter lists of template template 05413 // parameters must agree. 05414 if (TemplateTemplateParmDecl *OldTTP 05415 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 05416 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 05417 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 05418 OldTTP->getTemplateParameters(), 05419 Complain, 05420 (Kind == Sema::TPL_TemplateMatch 05421 ? Sema::TPL_TemplateTemplateParmMatch 05422 : Kind), 05423 TemplateArgLoc); 05424 } 05425 05426 return true; 05427 } 05428 05429 /// \brief Diagnose a known arity mismatch when comparing template argument 05430 /// lists. 05431 static 05432 void DiagnoseTemplateParameterListArityMismatch(Sema &S, 05433 TemplateParameterList *New, 05434 TemplateParameterList *Old, 05435 Sema::TemplateParameterListEqualKind Kind, 05436 SourceLocation TemplateArgLoc) { 05437 unsigned NextDiag = diag::err_template_param_list_different_arity; 05438 if (TemplateArgLoc.isValid()) { 05439 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 05440 NextDiag = diag::note_template_param_list_different_arity; 05441 } 05442 S.Diag(New->getTemplateLoc(), NextDiag) 05443 << (New->size() > Old->size()) 05444 << (Kind != Sema::TPL_TemplateMatch) 05445 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 05446 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 05447 << (Kind != Sema::TPL_TemplateMatch) 05448 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 05449 } 05450 05451 /// \brief Determine whether the given template parameter lists are 05452 /// equivalent. 05453 /// 05454 /// \param New The new template parameter list, typically written in the 05455 /// source code as part of a new template declaration. 05456 /// 05457 /// \param Old The old template parameter list, typically found via 05458 /// name lookup of the template declared with this template parameter 05459 /// list. 05460 /// 05461 /// \param Complain If true, this routine will produce a diagnostic if 05462 /// the template parameter lists are not equivalent. 05463 /// 05464 /// \param Kind describes how we are to match the template parameter lists. 05465 /// 05466 /// \param TemplateArgLoc If this source location is valid, then we 05467 /// are actually checking the template parameter list of a template 05468 /// argument (New) against the template parameter list of its 05469 /// corresponding template template parameter (Old). We produce 05470 /// slightly different diagnostics in this scenario. 05471 /// 05472 /// \returns True if the template parameter lists are equal, false 05473 /// otherwise. 05474 bool 05475 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 05476 TemplateParameterList *Old, 05477 bool Complain, 05478 TemplateParameterListEqualKind Kind, 05479 SourceLocation TemplateArgLoc) { 05480 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 05481 if (Complain) 05482 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 05483 TemplateArgLoc); 05484 05485 return false; 05486 } 05487 05488 // C++0x [temp.arg.template]p3: 05489 // A template-argument matches a template template-parameter (call it P) 05490 // when each of the template parameters in the template-parameter-list of 05491 // the template-argument's corresponding class template or alias template 05492 // (call it A) matches the corresponding template parameter in the 05493 // template-parameter-list of P. [...] 05494 TemplateParameterList::iterator NewParm = New->begin(); 05495 TemplateParameterList::iterator NewParmEnd = New->end(); 05496 for (TemplateParameterList::iterator OldParm = Old->begin(), 05497 OldParmEnd = Old->end(); 05498 OldParm != OldParmEnd; ++OldParm) { 05499 if (Kind != TPL_TemplateTemplateArgumentMatch || 05500 !(*OldParm)->isTemplateParameterPack()) { 05501 if (NewParm == NewParmEnd) { 05502 if (Complain) 05503 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 05504 TemplateArgLoc); 05505 05506 return false; 05507 } 05508 05509 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 05510 Kind, TemplateArgLoc)) 05511 return false; 05512 05513 ++NewParm; 05514 continue; 05515 } 05516 05517 // C++0x [temp.arg.template]p3: 05518 // [...] When P's template- parameter-list contains a template parameter 05519 // pack (14.5.3), the template parameter pack will match zero or more 05520 // template parameters or template parameter packs in the 05521 // template-parameter-list of A with the same type and form as the 05522 // template parameter pack in P (ignoring whether those template 05523 // parameters are template parameter packs). 05524 for (; NewParm != NewParmEnd; ++NewParm) { 05525 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 05526 Kind, TemplateArgLoc)) 05527 return false; 05528 } 05529 } 05530 05531 // Make sure we exhausted all of the arguments. 05532 if (NewParm != NewParmEnd) { 05533 if (Complain) 05534 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 05535 TemplateArgLoc); 05536 05537 return false; 05538 } 05539 05540 return true; 05541 } 05542 05543 /// \brief Check whether a template can be declared within this scope. 05544 /// 05545 /// If the template declaration is valid in this scope, returns 05546 /// false. Otherwise, issues a diagnostic and returns true. 05547 bool 05548 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 05549 if (!S) 05550 return false; 05551 05552 // Find the nearest enclosing declaration scope. 05553 while ((S->getFlags() & Scope::DeclScope) == 0 || 05554 (S->getFlags() & Scope::TemplateParamScope) != 0) 05555 S = S->getParent(); 05556 05557 // C++ [temp]p4: 05558 // A template [...] shall not have C linkage. 05559 DeclContext *Ctx = S->getEntity(); 05560 if (Ctx && Ctx->isExternCContext()) 05561 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 05562 << TemplateParams->getSourceRange(); 05563 05564 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 05565 Ctx = Ctx->getParent(); 05566 05567 // C++ [temp]p2: 05568 // A template-declaration can appear only as a namespace scope or 05569 // class scope declaration. 05570 if (Ctx) { 05571 if (Ctx->isFileContext()) 05572 return false; 05573 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) { 05574 // C++ [temp.mem]p2: 05575 // A local class shall not have member templates. 05576 if (RD->isLocalClass()) 05577 return Diag(TemplateParams->getTemplateLoc(), 05578 diag::err_template_inside_local_class) 05579 << TemplateParams->getSourceRange(); 05580 else 05581 return false; 05582 } 05583 } 05584 05585 return Diag(TemplateParams->getTemplateLoc(), 05586 diag::err_template_outside_namespace_or_class_scope) 05587 << TemplateParams->getSourceRange(); 05588 } 05589 05590 /// \brief Determine what kind of template specialization the given declaration 05591 /// is. 05592 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { 05593 if (!D) 05594 return TSK_Undeclared; 05595 05596 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 05597 return Record->getTemplateSpecializationKind(); 05598 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 05599 return Function->getTemplateSpecializationKind(); 05600 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 05601 return Var->getTemplateSpecializationKind(); 05602 05603 return TSK_Undeclared; 05604 } 05605 05606 /// \brief Check whether a specialization is well-formed in the current 05607 /// context. 05608 /// 05609 /// This routine determines whether a template specialization can be declared 05610 /// in the current context (C++ [temp.expl.spec]p2). 05611 /// 05612 /// \param S the semantic analysis object for which this check is being 05613 /// performed. 05614 /// 05615 /// \param Specialized the entity being specialized or instantiated, which 05616 /// may be a kind of template (class template, function template, etc.) or 05617 /// a member of a class template (member function, static data member, 05618 /// member class). 05619 /// 05620 /// \param PrevDecl the previous declaration of this entity, if any. 05621 /// 05622 /// \param Loc the location of the explicit specialization or instantiation of 05623 /// this entity. 05624 /// 05625 /// \param IsPartialSpecialization whether this is a partial specialization of 05626 /// a class template. 05627 /// 05628 /// \returns true if there was an error that we cannot recover from, false 05629 /// otherwise. 05630 static bool CheckTemplateSpecializationScope(Sema &S, 05631 NamedDecl *Specialized, 05632 NamedDecl *PrevDecl, 05633 SourceLocation Loc, 05634 bool IsPartialSpecialization) { 05635 // Keep these "kind" numbers in sync with the %select statements in the 05636 // various diagnostics emitted by this routine. 05637 int EntityKind = 0; 05638 if (isa<ClassTemplateDecl>(Specialized)) 05639 EntityKind = IsPartialSpecialization? 1 : 0; 05640 else if (isa<VarTemplateDecl>(Specialized)) 05641 EntityKind = IsPartialSpecialization ? 3 : 2; 05642 else if (isa<FunctionTemplateDecl>(Specialized)) 05643 EntityKind = 4; 05644 else if (isa<CXXMethodDecl>(Specialized)) 05645 EntityKind = 5; 05646 else if (isa<VarDecl>(Specialized)) 05647 EntityKind = 6; 05648 else if (isa<RecordDecl>(Specialized)) 05649 EntityKind = 7; 05650 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11) 05651 EntityKind = 8; 05652 else { 05653 S.Diag(Loc, diag::err_template_spec_unknown_kind) 05654 << S.getLangOpts().CPlusPlus11; 05655 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 05656 return true; 05657 } 05658 05659 // C++ [temp.expl.spec]p2: 05660 // An explicit specialization shall be declared in the namespace 05661 // of which the template is a member, or, for member templates, in 05662 // the namespace of which the enclosing class or enclosing class 05663 // template is a member. An explicit specialization of a member 05664 // function, member class or static data member of a class 05665 // template shall be declared in the namespace of which the class 05666 // template is a member. Such a declaration may also be a 05667 // definition. If the declaration is not a definition, the 05668 // specialization may be defined later in the name- space in which 05669 // the explicit specialization was declared, or in a namespace 05670 // that encloses the one in which the explicit specialization was 05671 // declared. 05672 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 05673 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 05674 << Specialized; 05675 return true; 05676 } 05677 05678 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 05679 if (S.getLangOpts().MicrosoftExt) { 05680 // Do not warn for class scope explicit specialization during 05681 // instantiation, warning was already emitted during pattern 05682 // semantic analysis. 05683 if (!S.ActiveTemplateInstantiations.size()) 05684 S.Diag(Loc, diag::ext_function_specialization_in_class) 05685 << Specialized; 05686 } else { 05687 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 05688 << Specialized; 05689 return true; 05690 } 05691 } 05692 05693 if (S.CurContext->isRecord() && 05694 !S.CurContext->Equals(Specialized->getDeclContext())) { 05695 // Make sure that we're specializing in the right record context. 05696 // Otherwise, things can go horribly wrong. 05697 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 05698 << Specialized; 05699 return true; 05700 } 05701 05702 // C++ [temp.class.spec]p6: 05703 // A class template partial specialization may be declared or redeclared 05704 // in any namespace scope in which its definition may be defined (14.5.1 05705 // and 14.5.2). 05706 DeclContext *SpecializedContext 05707 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 05708 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 05709 05710 // Make sure that this redeclaration (or definition) occurs in an enclosing 05711 // namespace. 05712 // Note that HandleDeclarator() performs this check for explicit 05713 // specializations of function templates, static data members, and member 05714 // functions, so we skip the check here for those kinds of entities. 05715 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 05716 // Should we refactor that check, so that it occurs later? 05717 if (!DC->Encloses(SpecializedContext) && 05718 !(isa<FunctionTemplateDecl>(Specialized) || 05719 isa<FunctionDecl>(Specialized) || 05720 isa<VarTemplateDecl>(Specialized) || 05721 isa<VarDecl>(Specialized))) { 05722 if (isa<TranslationUnitDecl>(SpecializedContext)) 05723 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 05724 << EntityKind << Specialized; 05725 else if (isa<NamespaceDecl>(SpecializedContext)) 05726 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 05727 << EntityKind << Specialized 05728 << cast<NamedDecl>(SpecializedContext); 05729 else 05730 llvm_unreachable("unexpected namespace context for specialization"); 05731 05732 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 05733 } else if ((!PrevDecl || 05734 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 05735 getTemplateSpecializationKind(PrevDecl) == 05736 TSK_ImplicitInstantiation)) { 05737 // C++ [temp.exp.spec]p2: 05738 // An explicit specialization shall be declared in the namespace of which 05739 // the template is a member, or, for member templates, in the namespace 05740 // of which the enclosing class or enclosing class template is a member. 05741 // An explicit specialization of a member function, member class or 05742 // static data member of a class template shall be declared in the 05743 // namespace of which the class template is a member. 05744 // 05745 // C++11 [temp.expl.spec]p2: 05746 // An explicit specialization shall be declared in a namespace enclosing 05747 // the specialized template. 05748 // C++11 [temp.explicit]p3: 05749 // An explicit instantiation shall appear in an enclosing namespace of its 05750 // template. 05751 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) { 05752 bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext); 05753 if (isa<TranslationUnitDecl>(SpecializedContext)) { 05754 assert(!IsCPlusPlus11Extension && 05755 "DC encloses TU but isn't in enclosing namespace set"); 05756 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 05757 << EntityKind << Specialized; 05758 } else if (isa<NamespaceDecl>(SpecializedContext)) { 05759 int Diag; 05760 if (!IsCPlusPlus11Extension) 05761 Diag = diag::err_template_spec_decl_out_of_scope; 05762 else if (!S.getLangOpts().CPlusPlus11) 05763 Diag = diag::ext_template_spec_decl_out_of_scope; 05764 else 05765 Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope; 05766 S.Diag(Loc, Diag) 05767 << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext); 05768 } 05769 05770 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 05771 } 05772 } 05773 05774 return false; 05775 } 05776 05777 static SourceRange findTemplateParameter(unsigned Depth, Expr *E) { 05778 if (!E->isInstantiationDependent()) 05779 return SourceLocation(); 05780 DependencyChecker Checker(Depth); 05781 Checker.TraverseStmt(E); 05782 if (Checker.Match && Checker.MatchLoc.isInvalid()) 05783 return E->getSourceRange(); 05784 return Checker.MatchLoc; 05785 } 05786 05787 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) { 05788 if (!TL.getType()->isDependentType()) 05789 return SourceLocation(); 05790 DependencyChecker Checker(Depth); 05791 Checker.TraverseTypeLoc(TL); 05792 if (Checker.Match && Checker.MatchLoc.isInvalid()) 05793 return TL.getSourceRange(); 05794 return Checker.MatchLoc; 05795 } 05796 05797 /// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs 05798 /// that checks non-type template partial specialization arguments. 05799 static bool CheckNonTypeTemplatePartialSpecializationArgs( 05800 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param, 05801 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) { 05802 for (unsigned I = 0; I != NumArgs; ++I) { 05803 if (Args[I].getKind() == TemplateArgument::Pack) { 05804 if (CheckNonTypeTemplatePartialSpecializationArgs( 05805 S, TemplateNameLoc, Param, Args[I].pack_begin(), 05806 Args[I].pack_size(), IsDefaultArgument)) 05807 return true; 05808 05809 continue; 05810 } 05811 05812 if (Args[I].getKind() != TemplateArgument::Expression) 05813 continue; 05814 05815 Expr *ArgExpr = Args[I].getAsExpr(); 05816 05817 // We can have a pack expansion of any of the bullets below. 05818 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 05819 ArgExpr = Expansion->getPattern(); 05820 05821 // Strip off any implicit casts we added as part of type checking. 05822 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 05823 ArgExpr = ICE->getSubExpr(); 05824 05825 // C++ [temp.class.spec]p8: 05826 // A non-type argument is non-specialized if it is the name of a 05827 // non-type parameter. All other non-type arguments are 05828 // specialized. 05829 // 05830 // Below, we check the two conditions that only apply to 05831 // specialized non-type arguments, so skip any non-specialized 05832 // arguments. 05833 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 05834 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 05835 continue; 05836 05837 // C++ [temp.class.spec]p9: 05838 // Within the argument list of a class template partial 05839 // specialization, the following restrictions apply: 05840 // -- A partially specialized non-type argument expression 05841 // shall not involve a template parameter of the partial 05842 // specialization except when the argument expression is a 05843 // simple identifier. 05844 SourceRange ParamUseRange = 05845 findTemplateParameter(Param->getDepth(), ArgExpr); 05846 if (ParamUseRange.isValid()) { 05847 if (IsDefaultArgument) { 05848 S.Diag(TemplateNameLoc, 05849 diag::err_dependent_non_type_arg_in_partial_spec); 05850 S.Diag(ParamUseRange.getBegin(), 05851 diag::note_dependent_non_type_default_arg_in_partial_spec) 05852 << ParamUseRange; 05853 } else { 05854 S.Diag(ParamUseRange.getBegin(), 05855 diag::err_dependent_non_type_arg_in_partial_spec) 05856 << ParamUseRange; 05857 } 05858 return true; 05859 } 05860 05861 // -- The type of a template parameter corresponding to a 05862 // specialized non-type argument shall not be dependent on a 05863 // parameter of the specialization. 05864 // 05865 // FIXME: We need to delay this check until instantiation in some cases: 05866 // 05867 // template<template<typename> class X> struct A { 05868 // template<typename T, X<T> N> struct B; 05869 // template<typename T> struct B<T, 0>; 05870 // }; 05871 // template<typename> using X = int; 05872 // A<X>::B<int, 0> b; 05873 ParamUseRange = findTemplateParameter( 05874 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc()); 05875 if (ParamUseRange.isValid()) { 05876 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getLocStart(), 05877 diag::err_dependent_typed_non_type_arg_in_partial_spec) 05878 << Param->getType() << ParamUseRange; 05879 S.Diag(Param->getLocation(), diag::note_template_param_here) 05880 << (IsDefaultArgument ? ParamUseRange : SourceRange()); 05881 return true; 05882 } 05883 } 05884 05885 return false; 05886 } 05887 05888 /// \brief Check the non-type template arguments of a class template 05889 /// partial specialization according to C++ [temp.class.spec]p9. 05890 /// 05891 /// \param TemplateNameLoc the location of the template name. 05892 /// \param TemplateParams the template parameters of the primary class 05893 /// template. 05894 /// \param NumExplicit the number of explicitly-specified template arguments. 05895 /// \param TemplateArgs the template arguments of the class template 05896 /// partial specialization. 05897 /// 05898 /// \returns \c true if there was an error, \c false otherwise. 05899 static bool CheckTemplatePartialSpecializationArgs( 05900 Sema &S, SourceLocation TemplateNameLoc, 05901 TemplateParameterList *TemplateParams, unsigned NumExplicit, 05902 SmallVectorImpl<TemplateArgument> &TemplateArgs) { 05903 const TemplateArgument *ArgList = TemplateArgs.data(); 05904 05905 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 05906 NonTypeTemplateParmDecl *Param 05907 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 05908 if (!Param) 05909 continue; 05910 05911 if (CheckNonTypeTemplatePartialSpecializationArgs( 05912 S, TemplateNameLoc, Param, &ArgList[I], 1, I >= NumExplicit)) 05913 return true; 05914 } 05915 05916 return false; 05917 } 05918 05919 DeclResult 05920 Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 05921 TagUseKind TUK, 05922 SourceLocation KWLoc, 05923 SourceLocation ModulePrivateLoc, 05924 TemplateIdAnnotation &TemplateId, 05925 AttributeList *Attr, 05926 MultiTemplateParamsArg TemplateParameterLists) { 05927 assert(TUK != TUK_Reference && "References are not specializations"); 05928 05929 CXXScopeSpec &SS = TemplateId.SS; 05930 05931 // NOTE: KWLoc is the location of the tag keyword. This will instead 05932 // store the location of the outermost template keyword in the declaration. 05933 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 05934 ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc; 05935 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc; 05936 SourceLocation LAngleLoc = TemplateId.LAngleLoc; 05937 SourceLocation RAngleLoc = TemplateId.RAngleLoc; 05938 05939 // Find the class template we're specializing 05940 TemplateName Name = TemplateId.Template.get(); 05941 ClassTemplateDecl *ClassTemplate 05942 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 05943 05944 if (!ClassTemplate) { 05945 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 05946 << (Name.getAsTemplateDecl() && 05947 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 05948 return true; 05949 } 05950 05951 bool isExplicitSpecialization = false; 05952 bool isPartialSpecialization = false; 05953 05954 // Check the validity of the template headers that introduce this 05955 // template. 05956 // FIXME: We probably shouldn't complain about these headers for 05957 // friend declarations. 05958 bool Invalid = false; 05959 TemplateParameterList *TemplateParams = 05960 MatchTemplateParametersToScopeSpecifier( 05961 KWLoc, TemplateNameLoc, SS, &TemplateId, 05962 TemplateParameterLists, TUK == TUK_Friend, isExplicitSpecialization, 05963 Invalid); 05964 if (Invalid) 05965 return true; 05966 05967 if (TemplateParams && TemplateParams->size() > 0) { 05968 isPartialSpecialization = true; 05969 05970 if (TUK == TUK_Friend) { 05971 Diag(KWLoc, diag::err_partial_specialization_friend) 05972 << SourceRange(LAngleLoc, RAngleLoc); 05973 return true; 05974 } 05975 05976 // C++ [temp.class.spec]p10: 05977 // The template parameter list of a specialization shall not 05978 // contain default template argument values. 05979 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 05980 Decl *Param = TemplateParams->getParam(I); 05981 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 05982 if (TTP->hasDefaultArgument()) { 05983 Diag(TTP->getDefaultArgumentLoc(), 05984 diag::err_default_arg_in_partial_spec); 05985 TTP->removeDefaultArgument(); 05986 } 05987 } else if (NonTypeTemplateParmDecl *NTTP 05988 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 05989 if (Expr *DefArg = NTTP->getDefaultArgument()) { 05990 Diag(NTTP->getDefaultArgumentLoc(), 05991 diag::err_default_arg_in_partial_spec) 05992 << DefArg->getSourceRange(); 05993 NTTP->removeDefaultArgument(); 05994 } 05995 } else { 05996 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 05997 if (TTP->hasDefaultArgument()) { 05998 Diag(TTP->getDefaultArgument().getLocation(), 05999 diag::err_default_arg_in_partial_spec) 06000 << TTP->getDefaultArgument().getSourceRange(); 06001 TTP->removeDefaultArgument(); 06002 } 06003 } 06004 } 06005 } else if (TemplateParams) { 06006 if (TUK == TUK_Friend) 06007 Diag(KWLoc, diag::err_template_spec_friend) 06008 << FixItHint::CreateRemoval( 06009 SourceRange(TemplateParams->getTemplateLoc(), 06010 TemplateParams->getRAngleLoc())) 06011 << SourceRange(LAngleLoc, RAngleLoc); 06012 else 06013 isExplicitSpecialization = true; 06014 } else { 06015 assert(TUK == TUK_Friend && "should have a 'template<>' for this decl"); 06016 } 06017 06018 // Check that the specialization uses the same tag kind as the 06019 // original template. 06020 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 06021 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 06022 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 06023 Kind, TUK == TUK_Definition, KWLoc, 06024 *ClassTemplate->getIdentifier())) { 06025 Diag(KWLoc, diag::err_use_with_wrong_tag) 06026 << ClassTemplate 06027 << FixItHint::CreateReplacement(KWLoc, 06028 ClassTemplate->getTemplatedDecl()->getKindName()); 06029 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 06030 diag::note_previous_use); 06031 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 06032 } 06033 06034 // Translate the parser's template argument list in our AST format. 06035 TemplateArgumentListInfo TemplateArgs = 06036 makeTemplateArgumentListInfo(*this, TemplateId); 06037 06038 // Check for unexpanded parameter packs in any of the template arguments. 06039 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 06040 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 06041 UPPC_PartialSpecialization)) 06042 return true; 06043 06044 // Check that the template argument list is well-formed for this 06045 // template. 06046 SmallVector<TemplateArgument, 4> Converted; 06047 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 06048 TemplateArgs, false, Converted)) 06049 return true; 06050 06051 // Find the class template (partial) specialization declaration that 06052 // corresponds to these arguments. 06053 if (isPartialSpecialization) { 06054 if (CheckTemplatePartialSpecializationArgs( 06055 *this, TemplateNameLoc, ClassTemplate->getTemplateParameters(), 06056 TemplateArgs.size(), Converted)) 06057 return true; 06058 06059 bool InstantiationDependent; 06060 if (!Name.isDependent() && 06061 !TemplateSpecializationType::anyDependentTemplateArguments( 06062 TemplateArgs.getArgumentArray(), 06063 TemplateArgs.size(), 06064 InstantiationDependent)) { 06065 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 06066 << ClassTemplate->getDeclName(); 06067 isPartialSpecialization = false; 06068 } 06069 } 06070 06071 void *InsertPos = nullptr; 06072 ClassTemplateSpecializationDecl *PrevDecl = nullptr; 06073 06074 if (isPartialSpecialization) 06075 // FIXME: Template parameter list matters, too 06076 PrevDecl = ClassTemplate->findPartialSpecialization(Converted, InsertPos); 06077 else 06078 PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos); 06079 06080 ClassTemplateSpecializationDecl *Specialization = nullptr; 06081 06082 // Check whether we can declare a class template specialization in 06083 // the current scope. 06084 if (TUK != TUK_Friend && 06085 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 06086 TemplateNameLoc, 06087 isPartialSpecialization)) 06088 return true; 06089 06090 // The canonical type 06091 QualType CanonType; 06092 if (isPartialSpecialization) { 06093 // Build the canonical type that describes the converted template 06094 // arguments of the class template partial specialization. 06095 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 06096 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 06097 Converted.data(), 06098 Converted.size()); 06099 06100 if (Context.hasSameType(CanonType, 06101 ClassTemplate->getInjectedClassNameSpecialization())) { 06102 // C++ [temp.class.spec]p9b3: 06103 // 06104 // -- The argument list of the specialization shall not be identical 06105 // to the implicit argument list of the primary template. 06106 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 06107 << /*class template*/0 << (TUK == TUK_Definition) 06108 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 06109 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 06110 ClassTemplate->getIdentifier(), 06111 TemplateNameLoc, 06112 Attr, 06113 TemplateParams, 06114 AS_none, /*ModulePrivateLoc=*/SourceLocation(), 06115 /*FriendLoc*/SourceLocation(), 06116 TemplateParameterLists.size() - 1, 06117 TemplateParameterLists.data()); 06118 } 06119 06120 // Create a new class template partial specialization declaration node. 06121 ClassTemplatePartialSpecializationDecl *PrevPartial 06122 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 06123 ClassTemplatePartialSpecializationDecl *Partial 06124 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 06125 ClassTemplate->getDeclContext(), 06126 KWLoc, TemplateNameLoc, 06127 TemplateParams, 06128 ClassTemplate, 06129 Converted.data(), 06130 Converted.size(), 06131 TemplateArgs, 06132 CanonType, 06133 PrevPartial); 06134 SetNestedNameSpecifier(Partial, SS); 06135 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 06136 Partial->setTemplateParameterListsInfo(Context, 06137 TemplateParameterLists.size() - 1, 06138 TemplateParameterLists.data()); 06139 } 06140 06141 if (!PrevPartial) 06142 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 06143 Specialization = Partial; 06144 06145 // If we are providing an explicit specialization of a member class 06146 // template specialization, make a note of that. 06147 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 06148 PrevPartial->setMemberSpecialization(); 06149 06150 // Check that all of the template parameters of the class template 06151 // partial specialization are deducible from the template 06152 // arguments. If not, this class template partial specialization 06153 // will never be used. 06154 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 06155 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 06156 TemplateParams->getDepth(), 06157 DeducibleParams); 06158 06159 if (!DeducibleParams.all()) { 06160 unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count(); 06161 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 06162 << /*class template*/0 << (NumNonDeducible > 1) 06163 << SourceRange(TemplateNameLoc, RAngleLoc); 06164 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 06165 if (!DeducibleParams[I]) { 06166 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 06167 if (Param->getDeclName()) 06168 Diag(Param->getLocation(), 06169 diag::note_partial_spec_unused_parameter) 06170 << Param->getDeclName(); 06171 else 06172 Diag(Param->getLocation(), 06173 diag::note_partial_spec_unused_parameter) 06174 << "(anonymous)"; 06175 } 06176 } 06177 } 06178 } else { 06179 // Create a new class template specialization declaration node for 06180 // this explicit specialization or friend declaration. 06181 Specialization 06182 = ClassTemplateSpecializationDecl::Create(Context, Kind, 06183 ClassTemplate->getDeclContext(), 06184 KWLoc, TemplateNameLoc, 06185 ClassTemplate, 06186 Converted.data(), 06187 Converted.size(), 06188 PrevDecl); 06189 SetNestedNameSpecifier(Specialization, SS); 06190 if (TemplateParameterLists.size() > 0) { 06191 Specialization->setTemplateParameterListsInfo(Context, 06192 TemplateParameterLists.size(), 06193 TemplateParameterLists.data()); 06194 } 06195 06196 if (!PrevDecl) 06197 ClassTemplate->AddSpecialization(Specialization, InsertPos); 06198 06199 CanonType = Context.getTypeDeclType(Specialization); 06200 } 06201 06202 // C++ [temp.expl.spec]p6: 06203 // If a template, a member template or the member of a class template is 06204 // explicitly specialized then that specialization shall be declared 06205 // before the first use of that specialization that would cause an implicit 06206 // instantiation to take place, in every translation unit in which such a 06207 // use occurs; no diagnostic is required. 06208 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 06209 bool Okay = false; 06210 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 06211 // Is there any previous explicit specialization declaration? 06212 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 06213 Okay = true; 06214 break; 06215 } 06216 } 06217 06218 if (!Okay) { 06219 SourceRange Range(TemplateNameLoc, RAngleLoc); 06220 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 06221 << Context.getTypeDeclType(Specialization) << Range; 06222 06223 Diag(PrevDecl->getPointOfInstantiation(), 06224 diag::note_instantiation_required_here) 06225 << (PrevDecl->getTemplateSpecializationKind() 06226 != TSK_ImplicitInstantiation); 06227 return true; 06228 } 06229 } 06230 06231 // If this is not a friend, note that this is an explicit specialization. 06232 if (TUK != TUK_Friend) 06233 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 06234 06235 // Check that this isn't a redefinition of this specialization. 06236 if (TUK == TUK_Definition) { 06237 if (RecordDecl *Def = Specialization->getDefinition()) { 06238 SourceRange Range(TemplateNameLoc, RAngleLoc); 06239 Diag(TemplateNameLoc, diag::err_redefinition) 06240 << Context.getTypeDeclType(Specialization) << Range; 06241 Diag(Def->getLocation(), diag::note_previous_definition); 06242 Specialization->setInvalidDecl(); 06243 return true; 06244 } 06245 } 06246 06247 if (Attr) 06248 ProcessDeclAttributeList(S, Specialization, Attr); 06249 06250 // Add alignment attributes if necessary; these attributes are checked when 06251 // the ASTContext lays out the structure. 06252 if (TUK == TUK_Definition) { 06253 AddAlignmentAttributesForRecord(Specialization); 06254 AddMsStructLayoutForRecord(Specialization); 06255 } 06256 06257 if (ModulePrivateLoc.isValid()) 06258 Diag(Specialization->getLocation(), diag::err_module_private_specialization) 06259 << (isPartialSpecialization? 1 : 0) 06260 << FixItHint::CreateRemoval(ModulePrivateLoc); 06261 06262 // Build the fully-sugared type for this class template 06263 // specialization as the user wrote in the specialization 06264 // itself. This means that we'll pretty-print the type retrieved 06265 // from the specialization's declaration the way that the user 06266 // actually wrote the specialization, rather than formatting the 06267 // name based on the "canonical" representation used to store the 06268 // template arguments in the specialization. 06269 TypeSourceInfo *WrittenTy 06270 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 06271 TemplateArgs, CanonType); 06272 if (TUK != TUK_Friend) { 06273 Specialization->setTypeAsWritten(WrittenTy); 06274 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 06275 } 06276 06277 // C++ [temp.expl.spec]p9: 06278 // A template explicit specialization is in the scope of the 06279 // namespace in which the template was defined. 06280 // 06281 // We actually implement this paragraph where we set the semantic 06282 // context (in the creation of the ClassTemplateSpecializationDecl), 06283 // but we also maintain the lexical context where the actual 06284 // definition occurs. 06285 Specialization->setLexicalDeclContext(CurContext); 06286 06287 // We may be starting the definition of this specialization. 06288 if (TUK == TUK_Definition) 06289 Specialization->startDefinition(); 06290 06291 if (TUK == TUK_Friend) { 06292 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 06293 TemplateNameLoc, 06294 WrittenTy, 06295 /*FIXME:*/KWLoc); 06296 Friend->setAccess(AS_public); 06297 CurContext->addDecl(Friend); 06298 } else { 06299 // Add the specialization into its lexical context, so that it can 06300 // be seen when iterating through the list of declarations in that 06301 // context. However, specializations are not found by name lookup. 06302 CurContext->addDecl(Specialization); 06303 } 06304 return Specialization; 06305 } 06306 06307 Decl *Sema::ActOnTemplateDeclarator(Scope *S, 06308 MultiTemplateParamsArg TemplateParameterLists, 06309 Declarator &D) { 06310 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists); 06311 ActOnDocumentableDecl(NewDecl); 06312 return NewDecl; 06313 } 06314 06315 Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 06316 MultiTemplateParamsArg TemplateParameterLists, 06317 Declarator &D) { 06318 assert(getCurFunctionDecl() == nullptr && "Function parsing confused"); 06319 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 06320 06321 if (FTI.hasPrototype) { 06322 // FIXME: Diagnose arguments without names in C. 06323 } 06324 06325 Scope *ParentScope = FnBodyScope->getParent(); 06326 06327 D.setFunctionDefinitionKind(FDK_Definition); 06328 Decl *DP = HandleDeclarator(ParentScope, D, 06329 TemplateParameterLists); 06330 return ActOnStartOfFunctionDef(FnBodyScope, DP); 06331 } 06332 06333 /// \brief Strips various properties off an implicit instantiation 06334 /// that has just been explicitly specialized. 06335 static void StripImplicitInstantiation(NamedDecl *D) { 06336 D->dropAttrs(); 06337 06338 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 06339 FD->setInlineSpecified(false); 06340 06341 for (auto I : FD->params()) 06342 I->dropAttrs(); 06343 } 06344 } 06345 06346 /// \brief Compute the diagnostic location for an explicit instantiation 06347 // declaration or definition. 06348 static SourceLocation DiagLocForExplicitInstantiation( 06349 NamedDecl* D, SourceLocation PointOfInstantiation) { 06350 // Explicit instantiations following a specialization have no effect and 06351 // hence no PointOfInstantiation. In that case, walk decl backwards 06352 // until a valid name loc is found. 06353 SourceLocation PrevDiagLoc = PointOfInstantiation; 06354 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); 06355 Prev = Prev->getPreviousDecl()) { 06356 PrevDiagLoc = Prev->getLocation(); 06357 } 06358 assert(PrevDiagLoc.isValid() && 06359 "Explicit instantiation without point of instantiation?"); 06360 return PrevDiagLoc; 06361 } 06362 06363 /// \brief Diagnose cases where we have an explicit template specialization 06364 /// before/after an explicit template instantiation, producing diagnostics 06365 /// for those cases where they are required and determining whether the 06366 /// new specialization/instantiation will have any effect. 06367 /// 06368 /// \param NewLoc the location of the new explicit specialization or 06369 /// instantiation. 06370 /// 06371 /// \param NewTSK the kind of the new explicit specialization or instantiation. 06372 /// 06373 /// \param PrevDecl the previous declaration of the entity. 06374 /// 06375 /// \param PrevTSK the kind of the old explicit specialization or instantiatin. 06376 /// 06377 /// \param PrevPointOfInstantiation if valid, indicates where the previus 06378 /// declaration was instantiated (either implicitly or explicitly). 06379 /// 06380 /// \param HasNoEffect will be set to true to indicate that the new 06381 /// specialization or instantiation has no effect and should be ignored. 06382 /// 06383 /// \returns true if there was an error that should prevent the introduction of 06384 /// the new declaration into the AST, false otherwise. 06385 bool 06386 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 06387 TemplateSpecializationKind NewTSK, 06388 NamedDecl *PrevDecl, 06389 TemplateSpecializationKind PrevTSK, 06390 SourceLocation PrevPointOfInstantiation, 06391 bool &HasNoEffect) { 06392 HasNoEffect = false; 06393 06394 switch (NewTSK) { 06395 case TSK_Undeclared: 06396 case TSK_ImplicitInstantiation: 06397 assert( 06398 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && 06399 "previous declaration must be implicit!"); 06400 return false; 06401 06402 case TSK_ExplicitSpecialization: 06403 switch (PrevTSK) { 06404 case TSK_Undeclared: 06405 case TSK_ExplicitSpecialization: 06406 // Okay, we're just specializing something that is either already 06407 // explicitly specialized or has merely been mentioned without any 06408 // instantiation. 06409 return false; 06410 06411 case TSK_ImplicitInstantiation: 06412 if (PrevPointOfInstantiation.isInvalid()) { 06413 // The declaration itself has not actually been instantiated, so it is 06414 // still okay to specialize it. 06415 StripImplicitInstantiation(PrevDecl); 06416 return false; 06417 } 06418 // Fall through 06419 06420 case TSK_ExplicitInstantiationDeclaration: 06421 case TSK_ExplicitInstantiationDefinition: 06422 assert((PrevTSK == TSK_ImplicitInstantiation || 06423 PrevPointOfInstantiation.isValid()) && 06424 "Explicit instantiation without point of instantiation?"); 06425 06426 // C++ [temp.expl.spec]p6: 06427 // If a template, a member template or the member of a class template 06428 // is explicitly specialized then that specialization shall be declared 06429 // before the first use of that specialization that would cause an 06430 // implicit instantiation to take place, in every translation unit in 06431 // which such a use occurs; no diagnostic is required. 06432 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 06433 // Is there any previous explicit specialization declaration? 06434 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 06435 return false; 06436 } 06437 06438 Diag(NewLoc, diag::err_specialization_after_instantiation) 06439 << PrevDecl; 06440 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 06441 << (PrevTSK != TSK_ImplicitInstantiation); 06442 06443 return true; 06444 } 06445 06446 case TSK_ExplicitInstantiationDeclaration: 06447 switch (PrevTSK) { 06448 case TSK_ExplicitInstantiationDeclaration: 06449 // This explicit instantiation declaration is redundant (that's okay). 06450 HasNoEffect = true; 06451 return false; 06452 06453 case TSK_Undeclared: 06454 case TSK_ImplicitInstantiation: 06455 // We're explicitly instantiating something that may have already been 06456 // implicitly instantiated; that's fine. 06457 return false; 06458 06459 case TSK_ExplicitSpecialization: 06460 // C++0x [temp.explicit]p4: 06461 // For a given set of template parameters, if an explicit instantiation 06462 // of a template appears after a declaration of an explicit 06463 // specialization for that template, the explicit instantiation has no 06464 // effect. 06465 HasNoEffect = true; 06466 return false; 06467 06468 case TSK_ExplicitInstantiationDefinition: 06469 // C++0x [temp.explicit]p10: 06470 // If an entity is the subject of both an explicit instantiation 06471 // declaration and an explicit instantiation definition in the same 06472 // translation unit, the definition shall follow the declaration. 06473 Diag(NewLoc, 06474 diag::err_explicit_instantiation_declaration_after_definition); 06475 06476 // Explicit instantiations following a specialization have no effect and 06477 // hence no PrevPointOfInstantiation. In that case, walk decl backwards 06478 // until a valid name loc is found. 06479 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 06480 diag::note_explicit_instantiation_definition_here); 06481 HasNoEffect = true; 06482 return false; 06483 } 06484 06485 case TSK_ExplicitInstantiationDefinition: 06486 switch (PrevTSK) { 06487 case TSK_Undeclared: 06488 case TSK_ImplicitInstantiation: 06489 // We're explicitly instantiating something that may have already been 06490 // implicitly instantiated; that's fine. 06491 return false; 06492 06493 case TSK_ExplicitSpecialization: 06494 // C++ DR 259, C++0x [temp.explicit]p4: 06495 // For a given set of template parameters, if an explicit 06496 // instantiation of a template appears after a declaration of 06497 // an explicit specialization for that template, the explicit 06498 // instantiation has no effect. 06499 // 06500 // In C++98/03 mode, we only give an extension warning here, because it 06501 // is not harmful to try to explicitly instantiate something that 06502 // has been explicitly specialized. 06503 Diag(NewLoc, getLangOpts().CPlusPlus11 ? 06504 diag::warn_cxx98_compat_explicit_instantiation_after_specialization : 06505 diag::ext_explicit_instantiation_after_specialization) 06506 << PrevDecl; 06507 Diag(PrevDecl->getLocation(), 06508 diag::note_previous_template_specialization); 06509 HasNoEffect = true; 06510 return false; 06511 06512 case TSK_ExplicitInstantiationDeclaration: 06513 // We're explicity instantiating a definition for something for which we 06514 // were previously asked to suppress instantiations. That's fine. 06515 06516 // C++0x [temp.explicit]p4: 06517 // For a given set of template parameters, if an explicit instantiation 06518 // of a template appears after a declaration of an explicit 06519 // specialization for that template, the explicit instantiation has no 06520 // effect. 06521 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 06522 // Is there any previous explicit specialization declaration? 06523 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 06524 HasNoEffect = true; 06525 break; 06526 } 06527 } 06528 06529 return false; 06530 06531 case TSK_ExplicitInstantiationDefinition: 06532 // C++0x [temp.spec]p5: 06533 // For a given template and a given set of template-arguments, 06534 // - an explicit instantiation definition shall appear at most once 06535 // in a program, 06536 06537 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations. 06538 Diag(NewLoc, (getLangOpts().MSVCCompat) 06539 ? diag::ext_explicit_instantiation_duplicate 06540 : diag::err_explicit_instantiation_duplicate) 06541 << PrevDecl; 06542 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 06543 diag::note_previous_explicit_instantiation); 06544 HasNoEffect = true; 06545 return false; 06546 } 06547 } 06548 06549 llvm_unreachable("Missing specialization/instantiation case?"); 06550 } 06551 06552 /// \brief Perform semantic analysis for the given dependent function 06553 /// template specialization. 06554 /// 06555 /// The only possible way to get a dependent function template specialization 06556 /// is with a friend declaration, like so: 06557 /// 06558 /// \code 06559 /// template <class T> void foo(T); 06560 /// template <class T> class A { 06561 /// friend void foo<>(T); 06562 /// }; 06563 /// \endcode 06564 /// 06565 /// There really isn't any useful analysis we can do here, so we 06566 /// just store the information. 06567 bool 06568 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 06569 const TemplateArgumentListInfo &ExplicitTemplateArgs, 06570 LookupResult &Previous) { 06571 // Remove anything from Previous that isn't a function template in 06572 // the correct context. 06573 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 06574 LookupResult::Filter F = Previous.makeFilter(); 06575 while (F.hasNext()) { 06576 NamedDecl *D = F.next()->getUnderlyingDecl(); 06577 if (!isa<FunctionTemplateDecl>(D) || 06578 !FDLookupContext->InEnclosingNamespaceSetOf( 06579 D->getDeclContext()->getRedeclContext())) 06580 F.erase(); 06581 } 06582 F.done(); 06583 06584 // Should this be diagnosed here? 06585 if (Previous.empty()) return true; 06586 06587 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 06588 ExplicitTemplateArgs); 06589 return false; 06590 } 06591 06592 /// \brief Perform semantic analysis for the given function template 06593 /// specialization. 06594 /// 06595 /// This routine performs all of the semantic analysis required for an 06596 /// explicit function template specialization. On successful completion, 06597 /// the function declaration \p FD will become a function template 06598 /// specialization. 06599 /// 06600 /// \param FD the function declaration, which will be updated to become a 06601 /// function template specialization. 06602 /// 06603 /// \param ExplicitTemplateArgs the explicitly-provided template arguments, 06604 /// if any. Note that this may be valid info even when 0 arguments are 06605 /// explicitly provided as in, e.g., \c void sort<>(char*, char*); 06606 /// as it anyway contains info on the angle brackets locations. 06607 /// 06608 /// \param Previous the set of declarations that may be specialized by 06609 /// this function specialization. 06610 bool Sema::CheckFunctionTemplateSpecialization( 06611 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs, 06612 LookupResult &Previous) { 06613 // The set of function template specializations that could match this 06614 // explicit function template specialization. 06615 UnresolvedSet<8> Candidates; 06616 TemplateSpecCandidateSet FailedCandidates(FD->getLocation()); 06617 06618 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 06619 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 06620 I != E; ++I) { 06621 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 06622 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 06623 // Only consider templates found within the same semantic lookup scope as 06624 // FD. 06625 if (!FDLookupContext->InEnclosingNamespaceSetOf( 06626 Ovl->getDeclContext()->getRedeclContext())) 06627 continue; 06628 06629 // When matching a constexpr member function template specialization 06630 // against the primary template, we don't yet know whether the 06631 // specialization has an implicit 'const' (because we don't know whether 06632 // it will be a static member function until we know which template it 06633 // specializes), so adjust it now assuming it specializes this template. 06634 QualType FT = FD->getType(); 06635 if (FD->isConstexpr()) { 06636 CXXMethodDecl *OldMD = 06637 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl()); 06638 if (OldMD && OldMD->isConst()) { 06639 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>(); 06640 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 06641 EPI.TypeQuals |= Qualifiers::Const; 06642 FT = Context.getFunctionType(FPT->getReturnType(), 06643 FPT->getParamTypes(), EPI); 06644 } 06645 } 06646 06647 // C++ [temp.expl.spec]p11: 06648 // A trailing template-argument can be left unspecified in the 06649 // template-id naming an explicit function template specialization 06650 // provided it can be deduced from the function argument type. 06651 // Perform template argument deduction to determine whether we may be 06652 // specializing this template. 06653 // FIXME: It is somewhat wasteful to build 06654 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 06655 FunctionDecl *Specialization = nullptr; 06656 if (TemplateDeductionResult TDK = DeduceTemplateArguments( 06657 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()), 06658 ExplicitTemplateArgs, FT, Specialization, Info)) { 06659 // Template argument deduction failed; record why it failed, so 06660 // that we can provide nifty diagnostics. 06661 FailedCandidates.addCandidate() 06662 .set(FunTmpl->getTemplatedDecl(), 06663 MakeDeductionFailureInfo(Context, TDK, Info)); 06664 (void)TDK; 06665 continue; 06666 } 06667 06668 // Record this candidate. 06669 Candidates.addDecl(Specialization, I.getAccess()); 06670 } 06671 } 06672 06673 // Find the most specialized function template. 06674 UnresolvedSetIterator Result = getMostSpecialized( 06675 Candidates.begin(), Candidates.end(), FailedCandidates, 06676 FD->getLocation(), 06677 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(), 06678 PDiag(diag::err_function_template_spec_ambiguous) 06679 << FD->getDeclName() << (ExplicitTemplateArgs != nullptr), 06680 PDiag(diag::note_function_template_spec_matched)); 06681 06682 if (Result == Candidates.end()) 06683 return true; 06684 06685 // Ignore access information; it doesn't figure into redeclaration checking. 06686 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 06687 06688 FunctionTemplateSpecializationInfo *SpecInfo 06689 = Specialization->getTemplateSpecializationInfo(); 06690 assert(SpecInfo && "Function template specialization info missing?"); 06691 06692 // Note: do not overwrite location info if previous template 06693 // specialization kind was explicit. 06694 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 06695 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { 06696 Specialization->setLocation(FD->getLocation()); 06697 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr 06698 // function can differ from the template declaration with respect to 06699 // the constexpr specifier. 06700 Specialization->setConstexpr(FD->isConstexpr()); 06701 } 06702 06703 // FIXME: Check if the prior specialization has a point of instantiation. 06704 // If so, we have run afoul of . 06705 06706 // If this is a friend declaration, then we're not really declaring 06707 // an explicit specialization. 06708 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 06709 06710 // Check the scope of this explicit specialization. 06711 if (!isFriend && 06712 CheckTemplateSpecializationScope(*this, 06713 Specialization->getPrimaryTemplate(), 06714 Specialization, FD->getLocation(), 06715 false)) 06716 return true; 06717 06718 // C++ [temp.expl.spec]p6: 06719 // If a template, a member template or the member of a class template is 06720 // explicitly specialized then that specialization shall be declared 06721 // before the first use of that specialization that would cause an implicit 06722 // instantiation to take place, in every translation unit in which such a 06723 // use occurs; no diagnostic is required. 06724 bool HasNoEffect = false; 06725 if (!isFriend && 06726 CheckSpecializationInstantiationRedecl(FD->getLocation(), 06727 TSK_ExplicitSpecialization, 06728 Specialization, 06729 SpecInfo->getTemplateSpecializationKind(), 06730 SpecInfo->getPointOfInstantiation(), 06731 HasNoEffect)) 06732 return true; 06733 06734 // Mark the prior declaration as an explicit specialization, so that later 06735 // clients know that this is an explicit specialization. 06736 if (!isFriend) { 06737 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 06738 MarkUnusedFileScopedDecl(Specialization); 06739 } 06740 06741 // Turn the given function declaration into a function template 06742 // specialization, with the template arguments from the previous 06743 // specialization. 06744 // Take copies of (semantic and syntactic) template argument lists. 06745 const TemplateArgumentList* TemplArgs = new (Context) 06746 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 06747 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 06748 TemplArgs, /*InsertPos=*/nullptr, 06749 SpecInfo->getTemplateSpecializationKind(), 06750 ExplicitTemplateArgs); 06751 06752 // The "previous declaration" for this function template specialization is 06753 // the prior function template specialization. 06754 Previous.clear(); 06755 Previous.addDecl(Specialization); 06756 return false; 06757 } 06758 06759 /// \brief Perform semantic analysis for the given non-template member 06760 /// specialization. 06761 /// 06762 /// This routine performs all of the semantic analysis required for an 06763 /// explicit member function specialization. On successful completion, 06764 /// the function declaration \p FD will become a member function 06765 /// specialization. 06766 /// 06767 /// \param Member the member declaration, which will be updated to become a 06768 /// specialization. 06769 /// 06770 /// \param Previous the set of declarations, one of which may be specialized 06771 /// by this function specialization; the set will be modified to contain the 06772 /// redeclared member. 06773 bool 06774 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 06775 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 06776 06777 // Try to find the member we are instantiating. 06778 NamedDecl *Instantiation = nullptr; 06779 NamedDecl *InstantiatedFrom = nullptr; 06780 MemberSpecializationInfo *MSInfo = nullptr; 06781 06782 if (Previous.empty()) { 06783 // Nowhere to look anyway. 06784 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 06785 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 06786 I != E; ++I) { 06787 NamedDecl *D = (*I)->getUnderlyingDecl(); 06788 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 06789 QualType Adjusted = Function->getType(); 06790 if (!hasExplicitCallingConv(Adjusted)) 06791 Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType()); 06792 if (Context.hasSameType(Adjusted, Method->getType())) { 06793 Instantiation = Method; 06794 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 06795 MSInfo = Method->getMemberSpecializationInfo(); 06796 break; 06797 } 06798 } 06799 } 06800 } else if (isa<VarDecl>(Member)) { 06801 VarDecl *PrevVar; 06802 if (Previous.isSingleResult() && 06803 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 06804 if (PrevVar->isStaticDataMember()) { 06805 Instantiation = PrevVar; 06806 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 06807 MSInfo = PrevVar->getMemberSpecializationInfo(); 06808 } 06809 } else if (isa<RecordDecl>(Member)) { 06810 CXXRecordDecl *PrevRecord; 06811 if (Previous.isSingleResult() && 06812 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 06813 Instantiation = PrevRecord; 06814 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 06815 MSInfo = PrevRecord->getMemberSpecializationInfo(); 06816 } 06817 } else if (isa<EnumDecl>(Member)) { 06818 EnumDecl *PrevEnum; 06819 if (Previous.isSingleResult() && 06820 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) { 06821 Instantiation = PrevEnum; 06822 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); 06823 MSInfo = PrevEnum->getMemberSpecializationInfo(); 06824 } 06825 } 06826 06827 if (!Instantiation) { 06828 // There is no previous declaration that matches. Since member 06829 // specializations are always out-of-line, the caller will complain about 06830 // this mismatch later. 06831 return false; 06832 } 06833 06834 // If this is a friend, just bail out here before we start turning 06835 // things into explicit specializations. 06836 if (Member->getFriendObjectKind() != Decl::FOK_None) { 06837 // Preserve instantiation information. 06838 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 06839 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 06840 cast<CXXMethodDecl>(InstantiatedFrom), 06841 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 06842 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 06843 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 06844 cast<CXXRecordDecl>(InstantiatedFrom), 06845 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 06846 } 06847 06848 Previous.clear(); 06849 Previous.addDecl(Instantiation); 06850 return false; 06851 } 06852 06853 // Make sure that this is a specialization of a member. 06854 if (!InstantiatedFrom) { 06855 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 06856 << Member; 06857 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 06858 return true; 06859 } 06860 06861 // C++ [temp.expl.spec]p6: 06862 // If a template, a member template or the member of a class template is 06863 // explicitly specialized then that specialization shall be declared 06864 // before the first use of that specialization that would cause an implicit 06865 // instantiation to take place, in every translation unit in which such a 06866 // use occurs; no diagnostic is required. 06867 assert(MSInfo && "Member specialization info missing?"); 06868 06869 bool HasNoEffect = false; 06870 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 06871 TSK_ExplicitSpecialization, 06872 Instantiation, 06873 MSInfo->getTemplateSpecializationKind(), 06874 MSInfo->getPointOfInstantiation(), 06875 HasNoEffect)) 06876 return true; 06877 06878 // Check the scope of this explicit specialization. 06879 if (CheckTemplateSpecializationScope(*this, 06880 InstantiatedFrom, 06881 Instantiation, Member->getLocation(), 06882 false)) 06883 return true; 06884 06885 // Note that this is an explicit instantiation of a member. 06886 // the original declaration to note that it is an explicit specialization 06887 // (if it was previously an implicit instantiation). This latter step 06888 // makes bookkeeping easier. 06889 if (isa<FunctionDecl>(Member)) { 06890 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 06891 if (InstantiationFunction->getTemplateSpecializationKind() == 06892 TSK_ImplicitInstantiation) { 06893 InstantiationFunction->setTemplateSpecializationKind( 06894 TSK_ExplicitSpecialization); 06895 InstantiationFunction->setLocation(Member->getLocation()); 06896 } 06897 06898 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 06899 cast<CXXMethodDecl>(InstantiatedFrom), 06900 TSK_ExplicitSpecialization); 06901 MarkUnusedFileScopedDecl(InstantiationFunction); 06902 } else if (isa<VarDecl>(Member)) { 06903 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 06904 if (InstantiationVar->getTemplateSpecializationKind() == 06905 TSK_ImplicitInstantiation) { 06906 InstantiationVar->setTemplateSpecializationKind( 06907 TSK_ExplicitSpecialization); 06908 InstantiationVar->setLocation(Member->getLocation()); 06909 } 06910 06911 cast<VarDecl>(Member)->setInstantiationOfStaticDataMember( 06912 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 06913 MarkUnusedFileScopedDecl(InstantiationVar); 06914 } else if (isa<CXXRecordDecl>(Member)) { 06915 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 06916 if (InstantiationClass->getTemplateSpecializationKind() == 06917 TSK_ImplicitInstantiation) { 06918 InstantiationClass->setTemplateSpecializationKind( 06919 TSK_ExplicitSpecialization); 06920 InstantiationClass->setLocation(Member->getLocation()); 06921 } 06922 06923 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 06924 cast<CXXRecordDecl>(InstantiatedFrom), 06925 TSK_ExplicitSpecialization); 06926 } else { 06927 assert(isa<EnumDecl>(Member) && "Only member enums remain"); 06928 EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation); 06929 if (InstantiationEnum->getTemplateSpecializationKind() == 06930 TSK_ImplicitInstantiation) { 06931 InstantiationEnum->setTemplateSpecializationKind( 06932 TSK_ExplicitSpecialization); 06933 InstantiationEnum->setLocation(Member->getLocation()); 06934 } 06935 06936 cast<EnumDecl>(Member)->setInstantiationOfMemberEnum( 06937 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 06938 } 06939 06940 // Save the caller the trouble of having to figure out which declaration 06941 // this specialization matches. 06942 Previous.clear(); 06943 Previous.addDecl(Instantiation); 06944 return false; 06945 } 06946 06947 /// \brief Check the scope of an explicit instantiation. 06948 /// 06949 /// \returns true if a serious error occurs, false otherwise. 06950 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 06951 SourceLocation InstLoc, 06952 bool WasQualifiedName) { 06953 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 06954 DeclContext *CurContext = S.CurContext->getRedeclContext(); 06955 06956 if (CurContext->isRecord()) { 06957 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 06958 << D; 06959 return true; 06960 } 06961 06962 // C++11 [temp.explicit]p3: 06963 // An explicit instantiation shall appear in an enclosing namespace of its 06964 // template. If the name declared in the explicit instantiation is an 06965 // unqualified name, the explicit instantiation shall appear in the 06966 // namespace where its template is declared or, if that namespace is inline 06967 // (7.3.1), any namespace from its enclosing namespace set. 06968 // 06969 // This is DR275, which we do not retroactively apply to C++98/03. 06970 if (WasQualifiedName) { 06971 if (CurContext->Encloses(OrigContext)) 06972 return false; 06973 } else { 06974 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 06975 return false; 06976 } 06977 06978 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { 06979 if (WasQualifiedName) 06980 S.Diag(InstLoc, 06981 S.getLangOpts().CPlusPlus11? 06982 diag::err_explicit_instantiation_out_of_scope : 06983 diag::warn_explicit_instantiation_out_of_scope_0x) 06984 << D << NS; 06985 else 06986 S.Diag(InstLoc, 06987 S.getLangOpts().CPlusPlus11? 06988 diag::err_explicit_instantiation_unqualified_wrong_namespace : 06989 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 06990 << D << NS; 06991 } else 06992 S.Diag(InstLoc, 06993 S.getLangOpts().CPlusPlus11? 06994 diag::err_explicit_instantiation_must_be_global : 06995 diag::warn_explicit_instantiation_must_be_global_0x) 06996 << D; 06997 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 06998 return false; 06999 } 07000 07001 /// \brief Determine whether the given scope specifier has a template-id in it. 07002 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 07003 if (!SS.isSet()) 07004 return false; 07005 07006 // C++11 [temp.explicit]p3: 07007 // If the explicit instantiation is for a member function, a member class 07008 // or a static data member of a class template specialization, the name of 07009 // the class template specialization in the qualified-id for the member 07010 // name shall be a simple-template-id. 07011 // 07012 // C++98 has the same restriction, just worded differently. 07013 for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS; 07014 NNS = NNS->getPrefix()) 07015 if (const Type *T = NNS->getAsType()) 07016 if (isa<TemplateSpecializationType>(T)) 07017 return true; 07018 07019 return false; 07020 } 07021 07022 // Explicit instantiation of a class template specialization 07023 DeclResult 07024 Sema::ActOnExplicitInstantiation(Scope *S, 07025 SourceLocation ExternLoc, 07026 SourceLocation TemplateLoc, 07027 unsigned TagSpec, 07028 SourceLocation KWLoc, 07029 const CXXScopeSpec &SS, 07030 TemplateTy TemplateD, 07031 SourceLocation TemplateNameLoc, 07032 SourceLocation LAngleLoc, 07033 ASTTemplateArgsPtr TemplateArgsIn, 07034 SourceLocation RAngleLoc, 07035 AttributeList *Attr) { 07036 // Find the class template we're specializing 07037 TemplateName Name = TemplateD.get(); 07038 TemplateDecl *TD = Name.getAsTemplateDecl(); 07039 // Check that the specialization uses the same tag kind as the 07040 // original template. 07041 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 07042 assert(Kind != TTK_Enum && 07043 "Invalid enum tag in class template explicit instantiation!"); 07044 07045 if (isa<TypeAliasTemplateDecl>(TD)) { 07046 Diag(KWLoc, diag::err_tag_reference_non_tag) << Kind; 07047 Diag(TD->getTemplatedDecl()->getLocation(), 07048 diag::note_previous_use); 07049 return true; 07050 } 07051 07052 ClassTemplateDecl *ClassTemplate = cast<ClassTemplateDecl>(TD); 07053 07054 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 07055 Kind, /*isDefinition*/false, KWLoc, 07056 *ClassTemplate->getIdentifier())) { 07057 Diag(KWLoc, diag::err_use_with_wrong_tag) 07058 << ClassTemplate 07059 << FixItHint::CreateReplacement(KWLoc, 07060 ClassTemplate->getTemplatedDecl()->getKindName()); 07061 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 07062 diag::note_previous_use); 07063 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 07064 } 07065 07066 // C++0x [temp.explicit]p2: 07067 // There are two forms of explicit instantiation: an explicit instantiation 07068 // definition and an explicit instantiation declaration. An explicit 07069 // instantiation declaration begins with the extern keyword. [...] 07070 TemplateSpecializationKind TSK 07071 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 07072 : TSK_ExplicitInstantiationDeclaration; 07073 07074 // Translate the parser's template argument list in our AST format. 07075 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 07076 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 07077 07078 // Check that the template argument list is well-formed for this 07079 // template. 07080 SmallVector<TemplateArgument, 4> Converted; 07081 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 07082 TemplateArgs, false, Converted)) 07083 return true; 07084 07085 // Find the class template specialization declaration that 07086 // corresponds to these arguments. 07087 void *InsertPos = nullptr; 07088 ClassTemplateSpecializationDecl *PrevDecl 07089 = ClassTemplate->findSpecialization(Converted, InsertPos); 07090 07091 TemplateSpecializationKind PrevDecl_TSK 07092 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 07093 07094 // C++0x [temp.explicit]p2: 07095 // [...] An explicit instantiation shall appear in an enclosing 07096 // namespace of its template. [...] 07097 // 07098 // This is C++ DR 275. 07099 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 07100 SS.isSet())) 07101 return true; 07102 07103 ClassTemplateSpecializationDecl *Specialization = nullptr; 07104 07105 bool HasNoEffect = false; 07106 if (PrevDecl) { 07107 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 07108 PrevDecl, PrevDecl_TSK, 07109 PrevDecl->getPointOfInstantiation(), 07110 HasNoEffect)) 07111 return PrevDecl; 07112 07113 // Even though HasNoEffect == true means that this explicit instantiation 07114 // has no effect on semantics, we go on to put its syntax in the AST. 07115 07116 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 07117 PrevDecl_TSK == TSK_Undeclared) { 07118 // Since the only prior class template specialization with these 07119 // arguments was referenced but not declared, reuse that 07120 // declaration node as our own, updating the source location 07121 // for the template name to reflect our new declaration. 07122 // (Other source locations will be updated later.) 07123 Specialization = PrevDecl; 07124 Specialization->setLocation(TemplateNameLoc); 07125 PrevDecl = nullptr; 07126 } 07127 } 07128 07129 if (!Specialization) { 07130 // Create a new class template specialization declaration node for 07131 // this explicit specialization. 07132 Specialization 07133 = ClassTemplateSpecializationDecl::Create(Context, Kind, 07134 ClassTemplate->getDeclContext(), 07135 KWLoc, TemplateNameLoc, 07136 ClassTemplate, 07137 Converted.data(), 07138 Converted.size(), 07139 PrevDecl); 07140 SetNestedNameSpecifier(Specialization, SS); 07141 07142 if (!HasNoEffect && !PrevDecl) { 07143 // Insert the new specialization. 07144 ClassTemplate->AddSpecialization(Specialization, InsertPos); 07145 } 07146 } 07147 07148 // Build the fully-sugared type for this explicit instantiation as 07149 // the user wrote in the explicit instantiation itself. This means 07150 // that we'll pretty-print the type retrieved from the 07151 // specialization's declaration the way that the user actually wrote 07152 // the explicit instantiation, rather than formatting the name based 07153 // on the "canonical" representation used to store the template 07154 // arguments in the specialization. 07155 TypeSourceInfo *WrittenTy 07156 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 07157 TemplateArgs, 07158 Context.getTypeDeclType(Specialization)); 07159 Specialization->setTypeAsWritten(WrittenTy); 07160 07161 // Set source locations for keywords. 07162 Specialization->setExternLoc(ExternLoc); 07163 Specialization->setTemplateKeywordLoc(TemplateLoc); 07164 Specialization->setRBraceLoc(SourceLocation()); 07165 07166 if (Attr) 07167 ProcessDeclAttributeList(S, Specialization, Attr); 07168 07169 // Add the explicit instantiation into its lexical context. However, 07170 // since explicit instantiations are never found by name lookup, we 07171 // just put it into the declaration context directly. 07172 Specialization->setLexicalDeclContext(CurContext); 07173 CurContext->addDecl(Specialization); 07174 07175 // Syntax is now OK, so return if it has no other effect on semantics. 07176 if (HasNoEffect) { 07177 // Set the template specialization kind. 07178 Specialization->setTemplateSpecializationKind(TSK); 07179 return Specialization; 07180 } 07181 07182 // C++ [temp.explicit]p3: 07183 // A definition of a class template or class member template 07184 // shall be in scope at the point of the explicit instantiation of 07185 // the class template or class member template. 07186 // 07187 // This check comes when we actually try to perform the 07188 // instantiation. 07189 ClassTemplateSpecializationDecl *Def 07190 = cast_or_null<ClassTemplateSpecializationDecl>( 07191 Specialization->getDefinition()); 07192 if (!Def) 07193 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 07194 else if (TSK == TSK_ExplicitInstantiationDefinition) { 07195 MarkVTableUsed(TemplateNameLoc, Specialization, true); 07196 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 07197 } 07198 07199 // Instantiate the members of this class template specialization. 07200 Def = cast_or_null<ClassTemplateSpecializationDecl>( 07201 Specialization->getDefinition()); 07202 if (Def) { 07203 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 07204 07205 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 07206 // TSK_ExplicitInstantiationDefinition 07207 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 07208 TSK == TSK_ExplicitInstantiationDefinition) 07209 // FIXME: Need to notify the ASTMutationListener that we did this. 07210 Def->setTemplateSpecializationKind(TSK); 07211 07212 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 07213 } 07214 07215 // Set the template specialization kind. 07216 Specialization->setTemplateSpecializationKind(TSK); 07217 return Specialization; 07218 } 07219 07220 // Explicit instantiation of a member class of a class template. 07221 DeclResult 07222 Sema::ActOnExplicitInstantiation(Scope *S, 07223 SourceLocation ExternLoc, 07224 SourceLocation TemplateLoc, 07225 unsigned TagSpec, 07226 SourceLocation KWLoc, 07227 CXXScopeSpec &SS, 07228 IdentifierInfo *Name, 07229 SourceLocation NameLoc, 07230 AttributeList *Attr) { 07231 07232 bool Owned = false; 07233 bool IsDependent = false; 07234 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 07235 KWLoc, SS, Name, NameLoc, Attr, AS_none, 07236 /*ModulePrivateLoc=*/SourceLocation(), 07237 MultiTemplateParamsArg(), Owned, IsDependent, 07238 SourceLocation(), false, TypeResult(), 07239 /*IsTypeSpecifier*/false); 07240 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 07241 07242 if (!TagD) 07243 return true; 07244 07245 TagDecl *Tag = cast<TagDecl>(TagD); 07246 assert(!Tag->isEnum() && "shouldn't see enumerations here"); 07247 07248 if (Tag->isInvalidDecl()) 07249 return true; 07250 07251 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 07252 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 07253 if (!Pattern) { 07254 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 07255 << Context.getTypeDeclType(Record); 07256 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 07257 return true; 07258 } 07259 07260 // C++0x [temp.explicit]p2: 07261 // If the explicit instantiation is for a class or member class, the 07262 // elaborated-type-specifier in the declaration shall include a 07263 // simple-template-id. 07264 // 07265 // C++98 has the same restriction, just worded differently. 07266 if (!ScopeSpecifierHasTemplateId(SS)) 07267 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 07268 << Record << SS.getRange(); 07269 07270 // C++0x [temp.explicit]p2: 07271 // There are two forms of explicit instantiation: an explicit instantiation 07272 // definition and an explicit instantiation declaration. An explicit 07273 // instantiation declaration begins with the extern keyword. [...] 07274 TemplateSpecializationKind TSK 07275 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 07276 : TSK_ExplicitInstantiationDeclaration; 07277 07278 // C++0x [temp.explicit]p2: 07279 // [...] An explicit instantiation shall appear in an enclosing 07280 // namespace of its template. [...] 07281 // 07282 // This is C++ DR 275. 07283 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 07284 07285 // Verify that it is okay to explicitly instantiate here. 07286 CXXRecordDecl *PrevDecl 07287 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); 07288 if (!PrevDecl && Record->getDefinition()) 07289 PrevDecl = Record; 07290 if (PrevDecl) { 07291 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 07292 bool HasNoEffect = false; 07293 assert(MSInfo && "No member specialization information?"); 07294 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 07295 PrevDecl, 07296 MSInfo->getTemplateSpecializationKind(), 07297 MSInfo->getPointOfInstantiation(), 07298 HasNoEffect)) 07299 return true; 07300 if (HasNoEffect) 07301 return TagD; 07302 } 07303 07304 CXXRecordDecl *RecordDef 07305 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 07306 if (!RecordDef) { 07307 // C++ [temp.explicit]p3: 07308 // A definition of a member class of a class template shall be in scope 07309 // at the point of an explicit instantiation of the member class. 07310 CXXRecordDecl *Def 07311 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 07312 if (!Def) { 07313 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 07314 << 0 << Record->getDeclName() << Record->getDeclContext(); 07315 Diag(Pattern->getLocation(), diag::note_forward_declaration) 07316 << Pattern; 07317 return true; 07318 } else { 07319 if (InstantiateClass(NameLoc, Record, Def, 07320 getTemplateInstantiationArgs(Record), 07321 TSK)) 07322 return true; 07323 07324 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 07325 if (!RecordDef) 07326 return true; 07327 } 07328 } 07329 07330 // Instantiate all of the members of the class. 07331 InstantiateClassMembers(NameLoc, RecordDef, 07332 getTemplateInstantiationArgs(Record), TSK); 07333 07334 if (TSK == TSK_ExplicitInstantiationDefinition) 07335 MarkVTableUsed(NameLoc, RecordDef, true); 07336 07337 // FIXME: We don't have any representation for explicit instantiations of 07338 // member classes. Such a representation is not needed for compilation, but it 07339 // should be available for clients that want to see all of the declarations in 07340 // the source code. 07341 return TagD; 07342 } 07343 07344 DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 07345 SourceLocation ExternLoc, 07346 SourceLocation TemplateLoc, 07347 Declarator &D) { 07348 // Explicit instantiations always require a name. 07349 // TODO: check if/when DNInfo should replace Name. 07350 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 07351 DeclarationName Name = NameInfo.getName(); 07352 if (!Name) { 07353 if (!D.isInvalidType()) 07354 Diag(D.getDeclSpec().getLocStart(), 07355 diag::err_explicit_instantiation_requires_name) 07356 << D.getDeclSpec().getSourceRange() 07357 << D.getSourceRange(); 07358 07359 return true; 07360 } 07361 07362 // The scope passed in may not be a decl scope. Zip up the scope tree until 07363 // we find one that is. 07364 while ((S->getFlags() & Scope::DeclScope) == 0 || 07365 (S->getFlags() & Scope::TemplateParamScope) != 0) 07366 S = S->getParent(); 07367 07368 // Determine the type of the declaration. 07369 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 07370 QualType R = T->getType(); 07371 if (R.isNull()) 07372 return true; 07373 07374 // C++ [dcl.stc]p1: 07375 // A storage-class-specifier shall not be specified in [...] an explicit 07376 // instantiation (14.7.2) directive. 07377 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 07378 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 07379 << Name; 07380 return true; 07381 } else if (D.getDeclSpec().getStorageClassSpec() 07382 != DeclSpec::SCS_unspecified) { 07383 // Complain about then remove the storage class specifier. 07384 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 07385 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 07386 07387 D.getMutableDeclSpec().ClearStorageClassSpecs(); 07388 } 07389 07390 // C++0x [temp.explicit]p1: 07391 // [...] An explicit instantiation of a function template shall not use the 07392 // inline or constexpr specifiers. 07393 // Presumably, this also applies to member functions of class templates as 07394 // well. 07395 if (D.getDeclSpec().isInlineSpecified()) 07396 Diag(D.getDeclSpec().getInlineSpecLoc(), 07397 getLangOpts().CPlusPlus11 ? 07398 diag::err_explicit_instantiation_inline : 07399 diag::warn_explicit_instantiation_inline_0x) 07400 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 07401 if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType()) 07402 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is 07403 // not already specified. 07404 Diag(D.getDeclSpec().getConstexprSpecLoc(), 07405 diag::err_explicit_instantiation_constexpr); 07406 07407 // C++0x [temp.explicit]p2: 07408 // There are two forms of explicit instantiation: an explicit instantiation 07409 // definition and an explicit instantiation declaration. An explicit 07410 // instantiation declaration begins with the extern keyword. [...] 07411 TemplateSpecializationKind TSK 07412 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 07413 : TSK_ExplicitInstantiationDeclaration; 07414 07415 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 07416 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 07417 07418 if (!R->isFunctionType()) { 07419 // C++ [temp.explicit]p1: 07420 // A [...] static data member of a class template can be explicitly 07421 // instantiated from the member definition associated with its class 07422 // template. 07423 // C++1y [temp.explicit]p1: 07424 // A [...] variable [...] template specialization can be explicitly 07425 // instantiated from its template. 07426 if (Previous.isAmbiguous()) 07427 return true; 07428 07429 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 07430 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>(); 07431 07432 if (!PrevTemplate) { 07433 if (!Prev || !Prev->isStaticDataMember()) { 07434 // We expect to see a data data member here. 07435 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 07436 << Name; 07437 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 07438 P != PEnd; ++P) 07439 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 07440 return true; 07441 } 07442 07443 if (!Prev->getInstantiatedFromStaticDataMember()) { 07444 // FIXME: Check for explicit specialization? 07445 Diag(D.getIdentifierLoc(), 07446 diag::err_explicit_instantiation_data_member_not_instantiated) 07447 << Prev; 07448 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 07449 // FIXME: Can we provide a note showing where this was declared? 07450 return true; 07451 } 07452 } else { 07453 // Explicitly instantiate a variable template. 07454 07455 // C++1y [dcl.spec.auto]p6: 07456 // ... A program that uses auto or decltype(auto) in a context not 07457 // explicitly allowed in this section is ill-formed. 07458 // 07459 // This includes auto-typed variable template instantiations. 07460 if (R->isUndeducedType()) { 07461 Diag(T->getTypeLoc().getLocStart(), 07462 diag::err_auto_not_allowed_var_inst); 07463 return true; 07464 } 07465 07466 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) { 07467 // C++1y [temp.explicit]p3: 07468 // If the explicit instantiation is for a variable, the unqualified-id 07469 // in the declaration shall be a template-id. 07470 Diag(D.getIdentifierLoc(), 07471 diag::err_explicit_instantiation_without_template_id) 07472 << PrevTemplate; 07473 Diag(PrevTemplate->getLocation(), 07474 diag::note_explicit_instantiation_here); 07475 return true; 07476 } 07477 07478 // Translate the parser's template argument list into our AST format. 07479 TemplateArgumentListInfo TemplateArgs = 07480 makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); 07481 07482 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc, 07483 D.getIdentifierLoc(), TemplateArgs); 07484 if (Res.isInvalid()) 07485 return true; 07486 07487 // Ignore access control bits, we don't need them for redeclaration 07488 // checking. 07489 Prev = cast<VarDecl>(Res.get()); 07490 } 07491 07492 // C++0x [temp.explicit]p2: 07493 // If the explicit instantiation is for a member function, a member class 07494 // or a static data member of a class template specialization, the name of 07495 // the class template specialization in the qualified-id for the member 07496 // name shall be a simple-template-id. 07497 // 07498 // C++98 has the same restriction, just worded differently. 07499 // 07500 // This does not apply to variable template specializations, where the 07501 // template-id is in the unqualified-id instead. 07502 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate) 07503 Diag(D.getIdentifierLoc(), 07504 diag::ext_explicit_instantiation_without_qualified_id) 07505 << Prev << D.getCXXScopeSpec().getRange(); 07506 07507 // Check the scope of this explicit instantiation. 07508 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 07509 07510 // Verify that it is okay to explicitly instantiate here. 07511 TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind(); 07512 SourceLocation POI = Prev->getPointOfInstantiation(); 07513 bool HasNoEffect = false; 07514 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 07515 PrevTSK, POI, HasNoEffect)) 07516 return true; 07517 07518 if (!HasNoEffect) { 07519 // Instantiate static data member or variable template. 07520 07521 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 07522 if (PrevTemplate) { 07523 // Merge attributes. 07524 if (AttributeList *Attr = D.getDeclSpec().getAttributes().getList()) 07525 ProcessDeclAttributeList(S, Prev, Attr); 07526 } 07527 if (TSK == TSK_ExplicitInstantiationDefinition) 07528 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev); 07529 } 07530 07531 // Check the new variable specialization against the parsed input. 07532 if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) { 07533 Diag(T->getTypeLoc().getLocStart(), 07534 diag::err_invalid_var_template_spec_type) 07535 << 0 << PrevTemplate << R << Prev->getType(); 07536 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here) 07537 << 2 << PrevTemplate->getDeclName(); 07538 return true; 07539 } 07540 07541 // FIXME: Create an ExplicitInstantiation node? 07542 return (Decl*) nullptr; 07543 } 07544 07545 // If the declarator is a template-id, translate the parser's template 07546 // argument list into our AST format. 07547 bool HasExplicitTemplateArgs = false; 07548 TemplateArgumentListInfo TemplateArgs; 07549 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 07550 TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); 07551 HasExplicitTemplateArgs = true; 07552 } 07553 07554 // C++ [temp.explicit]p1: 07555 // A [...] function [...] can be explicitly instantiated from its template. 07556 // A member function [...] of a class template can be explicitly 07557 // instantiated from the member definition associated with its class 07558 // template. 07559 UnresolvedSet<8> Matches; 07560 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc()); 07561 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 07562 P != PEnd; ++P) { 07563 NamedDecl *Prev = *P; 07564 if (!HasExplicitTemplateArgs) { 07565 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 07566 QualType Adjusted = adjustCCAndNoReturn(R, Method->getType()); 07567 if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) { 07568 Matches.clear(); 07569 07570 Matches.addDecl(Method, P.getAccess()); 07571 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 07572 break; 07573 } 07574 } 07575 } 07576 07577 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 07578 if (!FunTmpl) 07579 continue; 07580 07581 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 07582 FunctionDecl *Specialization = nullptr; 07583 if (TemplateDeductionResult TDK 07584 = DeduceTemplateArguments(FunTmpl, 07585 (HasExplicitTemplateArgs ? &TemplateArgs 07586 : nullptr), 07587 R, Specialization, Info)) { 07588 // Keep track of almost-matches. 07589 FailedCandidates.addCandidate() 07590 .set(FunTmpl->getTemplatedDecl(), 07591 MakeDeductionFailureInfo(Context, TDK, Info)); 07592 (void)TDK; 07593 continue; 07594 } 07595 07596 Matches.addDecl(Specialization, P.getAccess()); 07597 } 07598 07599 // Find the most specialized function template specialization. 07600 UnresolvedSetIterator Result = getMostSpecialized( 07601 Matches.begin(), Matches.end(), FailedCandidates, 07602 D.getIdentifierLoc(), 07603 PDiag(diag::err_explicit_instantiation_not_known) << Name, 07604 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 07605 PDiag(diag::note_explicit_instantiation_candidate)); 07606 07607 if (Result == Matches.end()) 07608 return true; 07609 07610 // Ignore access control bits, we don't need them for redeclaration checking. 07611 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 07612 07613 // C++11 [except.spec]p4 07614 // In an explicit instantiation an exception-specification may be specified, 07615 // but is not required. 07616 // If an exception-specification is specified in an explicit instantiation 07617 // directive, it shall be compatible with the exception-specifications of 07618 // other declarations of that function. 07619 if (auto *FPT = R->getAs<FunctionProtoType>()) 07620 if (FPT->hasExceptionSpec()) { 07621 unsigned DiagID = 07622 diag::err_mismatched_exception_spec_explicit_instantiation; 07623 if (getLangOpts().MicrosoftExt) 07624 DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation; 07625 bool Result = CheckEquivalentExceptionSpec( 07626 PDiag(DiagID) << Specialization->getType(), 07627 PDiag(diag::note_explicit_instantiation_here), 07628 Specialization->getType()->getAs<FunctionProtoType>(), 07629 Specialization->getLocation(), FPT, D.getLocStart()); 07630 // In Microsoft mode, mismatching exception specifications just cause a 07631 // warning. 07632 if (!getLangOpts().MicrosoftExt && Result) 07633 return true; 07634 } 07635 07636 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 07637 Diag(D.getIdentifierLoc(), 07638 diag::err_explicit_instantiation_member_function_not_instantiated) 07639 << Specialization 07640 << (Specialization->getTemplateSpecializationKind() == 07641 TSK_ExplicitSpecialization); 07642 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 07643 return true; 07644 } 07645 07646 FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); 07647 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 07648 PrevDecl = Specialization; 07649 07650 if (PrevDecl) { 07651 bool HasNoEffect = false; 07652 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 07653 PrevDecl, 07654 PrevDecl->getTemplateSpecializationKind(), 07655 PrevDecl->getPointOfInstantiation(), 07656 HasNoEffect)) 07657 return true; 07658 07659 // FIXME: We may still want to build some representation of this 07660 // explicit specialization. 07661 if (HasNoEffect) 07662 return (Decl*) nullptr; 07663 } 07664 07665 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 07666 AttributeList *Attr = D.getDeclSpec().getAttributes().getList(); 07667 if (Attr) 07668 ProcessDeclAttributeList(S, Specialization, Attr); 07669 07670 if (Specialization->isDefined()) { 07671 // Let the ASTConsumer know that this function has been explicitly 07672 // instantiated now, and its linkage might have changed. 07673 Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization)); 07674 } else if (TSK == TSK_ExplicitInstantiationDefinition) 07675 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 07676 07677 // C++0x [temp.explicit]p2: 07678 // If the explicit instantiation is for a member function, a member class 07679 // or a static data member of a class template specialization, the name of 07680 // the class template specialization in the qualified-id for the member 07681 // name shall be a simple-template-id. 07682 // 07683 // C++98 has the same restriction, just worded differently. 07684 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 07685 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 07686 D.getCXXScopeSpec().isSet() && 07687 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 07688 Diag(D.getIdentifierLoc(), 07689 diag::ext_explicit_instantiation_without_qualified_id) 07690 << Specialization << D.getCXXScopeSpec().getRange(); 07691 07692 CheckExplicitInstantiationScope(*this, 07693 FunTmpl? (NamedDecl *)FunTmpl 07694 : Specialization->getInstantiatedFromMemberFunction(), 07695 D.getIdentifierLoc(), 07696 D.getCXXScopeSpec().isSet()); 07697 07698 // FIXME: Create some kind of ExplicitInstantiationDecl here. 07699 return (Decl*) nullptr; 07700 } 07701 07702 TypeResult 07703 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 07704 const CXXScopeSpec &SS, IdentifierInfo *Name, 07705 SourceLocation TagLoc, SourceLocation NameLoc) { 07706 // This has to hold, because SS is expected to be defined. 07707 assert(Name && "Expected a name in a dependent tag"); 07708 07709 NestedNameSpecifier *NNS = SS.getScopeRep(); 07710 if (!NNS) 07711 return true; 07712 07713 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 07714 07715 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 07716 Diag(NameLoc, diag::err_dependent_tag_decl) 07717 << (TUK == TUK_Definition) << Kind << SS.getRange(); 07718 return true; 07719 } 07720 07721 // Create the resulting type. 07722 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 07723 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 07724 07725 // Create type-source location information for this type. 07726 TypeLocBuilder TLB; 07727 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 07728 TL.setElaboratedKeywordLoc(TagLoc); 07729 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 07730 TL.setNameLoc(NameLoc); 07731 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 07732 } 07733 07734 TypeResult 07735 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 07736 const CXXScopeSpec &SS, const IdentifierInfo &II, 07737 SourceLocation IdLoc) { 07738 if (SS.isInvalid()) 07739 return true; 07740 07741 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 07742 Diag(TypenameLoc, 07743 getLangOpts().CPlusPlus11 ? 07744 diag::warn_cxx98_compat_typename_outside_of_template : 07745 diag::ext_typename_outside_of_template) 07746 << FixItHint::CreateRemoval(TypenameLoc); 07747 07748 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 07749 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 07750 TypenameLoc, QualifierLoc, II, IdLoc); 07751 if (T.isNull()) 07752 return true; 07753 07754 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 07755 if (isa<DependentNameType>(T)) { 07756 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 07757 TL.setElaboratedKeywordLoc(TypenameLoc); 07758 TL.setQualifierLoc(QualifierLoc); 07759 TL.setNameLoc(IdLoc); 07760 } else { 07761 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>(); 07762 TL.setElaboratedKeywordLoc(TypenameLoc); 07763 TL.setQualifierLoc(QualifierLoc); 07764 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); 07765 } 07766 07767 return CreateParsedType(T, TSI); 07768 } 07769 07770 TypeResult 07771 Sema::ActOnTypenameType(Scope *S, 07772 SourceLocation TypenameLoc, 07773 const CXXScopeSpec &SS, 07774 SourceLocation TemplateKWLoc, 07775 TemplateTy TemplateIn, 07776 SourceLocation TemplateNameLoc, 07777 SourceLocation LAngleLoc, 07778 ASTTemplateArgsPtr TemplateArgsIn, 07779 SourceLocation RAngleLoc) { 07780 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 07781 Diag(TypenameLoc, 07782 getLangOpts().CPlusPlus11 ? 07783 diag::warn_cxx98_compat_typename_outside_of_template : 07784 diag::ext_typename_outside_of_template) 07785 << FixItHint::CreateRemoval(TypenameLoc); 07786 07787 // Translate the parser's template argument list in our AST format. 07788 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 07789 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 07790 07791 TemplateName Template = TemplateIn.get(); 07792 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 07793 // Construct a dependent template specialization type. 07794 assert(DTN && "dependent template has non-dependent name?"); 07795 assert(DTN->getQualifier() == SS.getScopeRep()); 07796 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 07797 DTN->getQualifier(), 07798 DTN->getIdentifier(), 07799 TemplateArgs); 07800 07801 // Create source-location information for this type. 07802 TypeLocBuilder Builder; 07803 DependentTemplateSpecializationTypeLoc SpecTL 07804 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 07805 SpecTL.setElaboratedKeywordLoc(TypenameLoc); 07806 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 07807 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 07808 SpecTL.setTemplateNameLoc(TemplateNameLoc); 07809 SpecTL.setLAngleLoc(LAngleLoc); 07810 SpecTL.setRAngleLoc(RAngleLoc); 07811 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 07812 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 07813 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 07814 } 07815 07816 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); 07817 if (T.isNull()) 07818 return true; 07819 07820 // Provide source-location information for the template specialization type. 07821 TypeLocBuilder Builder; 07822 TemplateSpecializationTypeLoc SpecTL 07823 = Builder.push<TemplateSpecializationTypeLoc>(T); 07824 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 07825 SpecTL.setTemplateNameLoc(TemplateNameLoc); 07826 SpecTL.setLAngleLoc(LAngleLoc); 07827 SpecTL.setRAngleLoc(RAngleLoc); 07828 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 07829 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 07830 07831 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 07832 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 07833 TL.setElaboratedKeywordLoc(TypenameLoc); 07834 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 07835 07836 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 07837 return CreateParsedType(T, TSI); 07838 } 07839 07840 07841 /// Determine whether this failed name lookup should be treated as being 07842 /// disabled by a usage of std::enable_if. 07843 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II, 07844 SourceRange &CondRange) { 07845 // We must be looking for a ::type... 07846 if (!II.isStr("type")) 07847 return false; 07848 07849 // ... within an explicitly-written template specialization... 07850 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType()) 07851 return false; 07852 TypeLoc EnableIfTy = NNS.getTypeLoc(); 07853 TemplateSpecializationTypeLoc EnableIfTSTLoc = 07854 EnableIfTy.getAs<TemplateSpecializationTypeLoc>(); 07855 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0) 07856 return false; 07857 const TemplateSpecializationType *EnableIfTST = 07858 cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr()); 07859 07860 // ... which names a complete class template declaration... 07861 const TemplateDecl *EnableIfDecl = 07862 EnableIfTST->getTemplateName().getAsTemplateDecl(); 07863 if (!EnableIfDecl || EnableIfTST->isIncompleteType()) 07864 return false; 07865 07866 // ... called "enable_if". 07867 const IdentifierInfo *EnableIfII = 07868 EnableIfDecl->getDeclName().getAsIdentifierInfo(); 07869 if (!EnableIfII || !EnableIfII->isStr("enable_if")) 07870 return false; 07871 07872 // Assume the first template argument is the condition. 07873 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange(); 07874 return true; 07875 } 07876 07877 /// \brief Build the type that describes a C++ typename specifier, 07878 /// e.g., "typename T::type". 07879 QualType 07880 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 07881 SourceLocation KeywordLoc, 07882 NestedNameSpecifierLoc QualifierLoc, 07883 const IdentifierInfo &II, 07884 SourceLocation IILoc) { 07885 CXXScopeSpec SS; 07886 SS.Adopt(QualifierLoc); 07887 07888 DeclContext *Ctx = computeDeclContext(SS); 07889 if (!Ctx) { 07890 // If the nested-name-specifier is dependent and couldn't be 07891 // resolved to a type, build a typename type. 07892 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 07893 return Context.getDependentNameType(Keyword, 07894 QualifierLoc.getNestedNameSpecifier(), 07895 &II); 07896 } 07897 07898 // If the nested-name-specifier refers to the current instantiation, 07899 // the "typename" keyword itself is superfluous. In C++03, the 07900 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 07901 // allows such extraneous "typename" keywords, and we retroactively 07902 // apply this DR to C++03 code with only a warning. In any case we continue. 07903 07904 if (RequireCompleteDeclContext(SS, Ctx)) 07905 return QualType(); 07906 07907 DeclarationName Name(&II); 07908 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 07909 NestedNameSpecifier *NNS = SS.getScopeRep(); 07910 if (NNS->getKind() == NestedNameSpecifier::Super) 07911 LookupInSuper(Result, NNS->getAsRecordDecl()); 07912 else 07913 LookupQualifiedName(Result, Ctx); 07914 unsigned DiagID = 0; 07915 Decl *Referenced = nullptr; 07916 switch (Result.getResultKind()) { 07917 case LookupResult::NotFound: { 07918 // If we're looking up 'type' within a template named 'enable_if', produce 07919 // a more specific diagnostic. 07920 SourceRange CondRange; 07921 if (isEnableIf(QualifierLoc, II, CondRange)) { 07922 Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if) 07923 << Ctx << CondRange; 07924 return QualType(); 07925 } 07926 07927 DiagID = diag::err_typename_nested_not_found; 07928 break; 07929 } 07930 07931 case LookupResult::FoundUnresolvedValue: { 07932 // We found a using declaration that is a value. Most likely, the using 07933 // declaration itself is meant to have the 'typename' keyword. 07934 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 07935 IILoc); 07936 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 07937 << Name << Ctx << FullRange; 07938 if (UnresolvedUsingValueDecl *Using 07939 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 07940 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 07941 Diag(Loc, diag::note_using_value_decl_missing_typename) 07942 << FixItHint::CreateInsertion(Loc, "typename "); 07943 } 07944 } 07945 // Fall through to create a dependent typename type, from which we can recover 07946 // better. 07947 07948 case LookupResult::NotFoundInCurrentInstantiation: 07949 // Okay, it's a member of an unknown instantiation. 07950 return Context.getDependentNameType(Keyword, 07951 QualifierLoc.getNestedNameSpecifier(), 07952 &II); 07953 07954 case LookupResult::Found: 07955 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 07956 // We found a type. Build an ElaboratedType, since the 07957 // typename-specifier was just sugar. 07958 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 07959 return Context.getElaboratedType(ETK_Typename, 07960 QualifierLoc.getNestedNameSpecifier(), 07961 Context.getTypeDeclType(Type)); 07962 } 07963 07964 DiagID = diag::err_typename_nested_not_type; 07965 Referenced = Result.getFoundDecl(); 07966 break; 07967 07968 case LookupResult::FoundOverloaded: 07969 DiagID = diag::err_typename_nested_not_type; 07970 Referenced = *Result.begin(); 07971 break; 07972 07973 case LookupResult::Ambiguous: 07974 return QualType(); 07975 } 07976 07977 // If we get here, it's because name lookup did not find a 07978 // type. Emit an appropriate diagnostic and return an error. 07979 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 07980 IILoc); 07981 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 07982 if (Referenced) 07983 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 07984 << Name; 07985 return QualType(); 07986 } 07987 07988 namespace { 07989 // See Sema::RebuildTypeInCurrentInstantiation 07990 class CurrentInstantiationRebuilder 07991 : public TreeTransform<CurrentInstantiationRebuilder> { 07992 SourceLocation Loc; 07993 DeclarationName Entity; 07994 07995 public: 07996 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 07997 07998 CurrentInstantiationRebuilder(Sema &SemaRef, 07999 SourceLocation Loc, 08000 DeclarationName Entity) 08001 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 08002 Loc(Loc), Entity(Entity) { } 08003 08004 /// \brief Determine whether the given type \p T has already been 08005 /// transformed. 08006 /// 08007 /// For the purposes of type reconstruction, a type has already been 08008 /// transformed if it is NULL or if it is not dependent. 08009 bool AlreadyTransformed(QualType T) { 08010 return T.isNull() || !T->isDependentType(); 08011 } 08012 08013 /// \brief Returns the location of the entity whose type is being 08014 /// rebuilt. 08015 SourceLocation getBaseLocation() { return Loc; } 08016 08017 /// \brief Returns the name of the entity whose type is being rebuilt. 08018 DeclarationName getBaseEntity() { return Entity; } 08019 08020 /// \brief Sets the "base" location and entity when that 08021 /// information is known based on another transformation. 08022 void setBase(SourceLocation Loc, DeclarationName Entity) { 08023 this->Loc = Loc; 08024 this->Entity = Entity; 08025 } 08026 08027 ExprResult TransformLambdaExpr(LambdaExpr *E) { 08028 // Lambdas never need to be transformed. 08029 return E; 08030 } 08031 }; 08032 } 08033 08034 /// \brief Rebuilds a type within the context of the current instantiation. 08035 /// 08036 /// The type \p T is part of the type of an out-of-line member definition of 08037 /// a class template (or class template partial specialization) that was parsed 08038 /// and constructed before we entered the scope of the class template (or 08039 /// partial specialization thereof). This routine will rebuild that type now 08040 /// that we have entered the declarator's scope, which may produce different 08041 /// canonical types, e.g., 08042 /// 08043 /// \code 08044 /// template<typename T> 08045 /// struct X { 08046 /// typedef T* pointer; 08047 /// pointer data(); 08048 /// }; 08049 /// 08050 /// template<typename T> 08051 /// typename X<T>::pointer X<T>::data() { ... } 08052 /// \endcode 08053 /// 08054 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 08055 /// since we do not know that we can look into X<T> when we parsed the type. 08056 /// This function will rebuild the type, performing the lookup of "pointer" 08057 /// in X<T> and returning an ElaboratedType whose canonical type is the same 08058 /// as the canonical type of T*, allowing the return types of the out-of-line 08059 /// definition and the declaration to match. 08060 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 08061 SourceLocation Loc, 08062 DeclarationName Name) { 08063 if (!T || !T->getType()->isDependentType()) 08064 return T; 08065 08066 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 08067 return Rebuilder.TransformType(T); 08068 } 08069 08070 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 08071 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 08072 DeclarationName()); 08073 return Rebuilder.TransformExpr(E); 08074 } 08075 08076 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 08077 if (SS.isInvalid()) 08078 return true; 08079 08080 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 08081 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 08082 DeclarationName()); 08083 NestedNameSpecifierLoc Rebuilt 08084 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 08085 if (!Rebuilt) 08086 return true; 08087 08088 SS.Adopt(Rebuilt); 08089 return false; 08090 } 08091 08092 /// \brief Rebuild the template parameters now that we know we're in a current 08093 /// instantiation. 08094 bool Sema::RebuildTemplateParamsInCurrentInstantiation( 08095 TemplateParameterList *Params) { 08096 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 08097 Decl *Param = Params->getParam(I); 08098 08099 // There is nothing to rebuild in a type parameter. 08100 if (isa<TemplateTypeParmDecl>(Param)) 08101 continue; 08102 08103 // Rebuild the template parameter list of a template template parameter. 08104 if (TemplateTemplateParmDecl *TTP 08105 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 08106 if (RebuildTemplateParamsInCurrentInstantiation( 08107 TTP->getTemplateParameters())) 08108 return true; 08109 08110 continue; 08111 } 08112 08113 // Rebuild the type of a non-type template parameter. 08114 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); 08115 TypeSourceInfo *NewTSI 08116 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), 08117 NTTP->getLocation(), 08118 NTTP->getDeclName()); 08119 if (!NewTSI) 08120 return true; 08121 08122 if (NewTSI != NTTP->getTypeSourceInfo()) { 08123 NTTP->setTypeSourceInfo(NewTSI); 08124 NTTP->setType(NewTSI->getType()); 08125 } 08126 } 08127 08128 return false; 08129 } 08130 08131 /// \brief Produces a formatted string that describes the binding of 08132 /// template parameters to template arguments. 08133 std::string 08134 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 08135 const TemplateArgumentList &Args) { 08136 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 08137 } 08138 08139 std::string 08140 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 08141 const TemplateArgument *Args, 08142 unsigned NumArgs) { 08143 SmallString<128> Str; 08144 llvm::raw_svector_ostream Out(Str); 08145 08146 if (!Params || Params->size() == 0 || NumArgs == 0) 08147 return std::string(); 08148 08149 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 08150 if (I >= NumArgs) 08151 break; 08152 08153 if (I == 0) 08154 Out << "[with "; 08155 else 08156 Out << ", "; 08157 08158 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 08159 Out << Id->getName(); 08160 } else { 08161 Out << '$' << I; 08162 } 08163 08164 Out << " = "; 08165 Args[I].print(getPrintingPolicy(), Out); 08166 } 08167 08168 Out << ']'; 08169 return Out.str(); 08170 } 08171 08172 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD, 08173 CachedTokens &Toks) { 08174 if (!FD) 08175 return; 08176 08177 LateParsedTemplate *LPT = new LateParsedTemplate; 08178 08179 // Take tokens to avoid allocations 08180 LPT->Toks.swap(Toks); 08181 LPT->D = FnD; 08182 LateParsedTemplateMap[FD] = LPT; 08183 08184 FD->setLateTemplateParsed(true); 08185 } 08186 08187 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) { 08188 if (!FD) 08189 return; 08190 FD->setLateTemplateParsed(false); 08191 } 08192 08193 bool Sema::IsInsideALocalClassWithinATemplateFunction() { 08194 DeclContext *DC = CurContext; 08195 08196 while (DC) { 08197 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 08198 const FunctionDecl *FD = RD->isLocalClass(); 08199 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 08200 } else if (DC->isTranslationUnit() || DC->isNamespace()) 08201 return false; 08202 08203 DC = DC->getParent(); 08204 } 08205 return false; 08206 }