clang API Documentation
00001 //===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // A intra-procedural analysis for thread safety (e.g. deadlocks and race 00011 // conditions), based off of an annotation system. 00012 // 00013 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html 00014 // for more information. 00015 // 00016 //===----------------------------------------------------------------------===// 00017 00018 #include "clang/AST/Attr.h" 00019 #include "clang/AST/DeclCXX.h" 00020 #include "clang/AST/ExprCXX.h" 00021 #include "clang/AST/StmtCXX.h" 00022 #include "clang/AST/StmtVisitor.h" 00023 #include "clang/Analysis/Analyses/PostOrderCFGView.h" 00024 #include "clang/Analysis/Analyses/ThreadSafety.h" 00025 #include "clang/Analysis/Analyses/ThreadSafetyLogical.h" 00026 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" 00027 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" 00028 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" 00029 #include "clang/Analysis/AnalysisContext.h" 00030 #include "clang/Analysis/CFG.h" 00031 #include "clang/Analysis/CFGStmtMap.h" 00032 #include "clang/Basic/OperatorKinds.h" 00033 #include "clang/Basic/SourceLocation.h" 00034 #include "clang/Basic/SourceManager.h" 00035 #include "llvm/ADT/BitVector.h" 00036 #include "llvm/ADT/FoldingSet.h" 00037 #include "llvm/ADT/ImmutableMap.h" 00038 #include "llvm/ADT/PostOrderIterator.h" 00039 #include "llvm/ADT/SmallVector.h" 00040 #include "llvm/ADT/StringRef.h" 00041 #include "llvm/Support/raw_ostream.h" 00042 #include <algorithm> 00043 #include <ostream> 00044 #include <sstream> 00045 #include <utility> 00046 #include <vector> 00047 00048 00049 namespace clang { 00050 namespace threadSafety { 00051 00052 // Key method definition 00053 ThreadSafetyHandler::~ThreadSafetyHandler() {} 00054 00055 class TILPrinter : 00056 public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {}; 00057 00058 00059 /// Issue a warning about an invalid lock expression 00060 static void warnInvalidLock(ThreadSafetyHandler &Handler, 00061 const Expr *MutexExp, const NamedDecl *D, 00062 const Expr *DeclExp, StringRef Kind) { 00063 SourceLocation Loc; 00064 if (DeclExp) 00065 Loc = DeclExp->getExprLoc(); 00066 00067 // FIXME: add a note about the attribute location in MutexExp or D 00068 if (Loc.isValid()) 00069 Handler.handleInvalidLockExp(Kind, Loc); 00070 } 00071 00072 00073 /// \brief A set of CapabilityInfo objects, which are compiled from the 00074 /// requires attributes on a function. 00075 class CapExprSet : public SmallVector<CapabilityExpr, 4> { 00076 public: 00077 /// \brief Push M onto list, but discard duplicates. 00078 void push_back_nodup(const CapabilityExpr &CapE) { 00079 iterator It = std::find_if(begin(), end(), 00080 [=](const CapabilityExpr &CapE2) { 00081 return CapE.equals(CapE2); 00082 }); 00083 if (It == end()) 00084 push_back(CapE); 00085 } 00086 }; 00087 00088 class FactManager; 00089 class FactSet; 00090 00091 /// \brief This is a helper class that stores a fact that is known at a 00092 /// particular point in program execution. Currently, a fact is a capability, 00093 /// along with additional information, such as where it was acquired, whether 00094 /// it is exclusive or shared, etc. 00095 /// 00096 /// FIXME: this analysis does not currently support either re-entrant 00097 /// locking or lock "upgrading" and "downgrading" between exclusive and 00098 /// shared. 00099 class FactEntry : public CapabilityExpr { 00100 private: 00101 LockKind LKind; ///< exclusive or shared 00102 SourceLocation AcquireLoc; ///< where it was acquired. 00103 bool Asserted; ///< true if the lock was asserted 00104 00105 public: 00106 FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 00107 bool Asrt) 00108 : CapabilityExpr(CE), LKind(LK), AcquireLoc(Loc), Asserted(Asrt) {} 00109 00110 virtual ~FactEntry() {} 00111 00112 LockKind kind() const { return LKind; } 00113 SourceLocation loc() const { return AcquireLoc; } 00114 bool asserted() const { return Asserted; } 00115 00116 virtual void 00117 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 00118 SourceLocation JoinLoc, LockErrorKind LEK, 00119 ThreadSafetyHandler &Handler) const = 0; 00120 virtual void handleUnlock(FactSet &FSet, FactManager &FactMan, 00121 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 00122 bool FullyRemove, ThreadSafetyHandler &Handler, 00123 StringRef DiagKind) const = 0; 00124 00125 // Return true if LKind >= LK, where exclusive > shared 00126 bool isAtLeast(LockKind LK) { 00127 return (LKind == LK_Exclusive) || (LK == LK_Shared); 00128 } 00129 }; 00130 00131 00132 typedef unsigned short FactID; 00133 00134 /// \brief FactManager manages the memory for all facts that are created during 00135 /// the analysis of a single routine. 00136 class FactManager { 00137 private: 00138 std::vector<std::unique_ptr<FactEntry>> Facts; 00139 00140 public: 00141 FactID newFact(std::unique_ptr<FactEntry> Entry) { 00142 Facts.push_back(std::move(Entry)); 00143 return static_cast<unsigned short>(Facts.size() - 1); 00144 } 00145 00146 const FactEntry &operator[](FactID F) const { return *Facts[F]; } 00147 FactEntry &operator[](FactID F) { return *Facts[F]; } 00148 }; 00149 00150 00151 /// \brief A FactSet is the set of facts that are known to be true at a 00152 /// particular program point. FactSets must be small, because they are 00153 /// frequently copied, and are thus implemented as a set of indices into a 00154 /// table maintained by a FactManager. A typical FactSet only holds 1 or 2 00155 /// locks, so we can get away with doing a linear search for lookup. Note 00156 /// that a hashtable or map is inappropriate in this case, because lookups 00157 /// may involve partial pattern matches, rather than exact matches. 00158 class FactSet { 00159 private: 00160 typedef SmallVector<FactID, 4> FactVec; 00161 00162 FactVec FactIDs; 00163 00164 public: 00165 typedef FactVec::iterator iterator; 00166 typedef FactVec::const_iterator const_iterator; 00167 00168 iterator begin() { return FactIDs.begin(); } 00169 const_iterator begin() const { return FactIDs.begin(); } 00170 00171 iterator end() { return FactIDs.end(); } 00172 const_iterator end() const { return FactIDs.end(); } 00173 00174 bool isEmpty() const { return FactIDs.size() == 0; } 00175 00176 // Return true if the set contains only negative facts 00177 bool isEmpty(FactManager &FactMan) const { 00178 for (FactID FID : *this) { 00179 if (!FactMan[FID].negative()) 00180 return false; 00181 } 00182 return true; 00183 } 00184 00185 void addLockByID(FactID ID) { FactIDs.push_back(ID); } 00186 00187 FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) { 00188 FactID F = FM.newFact(std::move(Entry)); 00189 FactIDs.push_back(F); 00190 return F; 00191 } 00192 00193 bool removeLock(FactManager& FM, const CapabilityExpr &CapE) { 00194 unsigned n = FactIDs.size(); 00195 if (n == 0) 00196 return false; 00197 00198 for (unsigned i = 0; i < n-1; ++i) { 00199 if (FM[FactIDs[i]].matches(CapE)) { 00200 FactIDs[i] = FactIDs[n-1]; 00201 FactIDs.pop_back(); 00202 return true; 00203 } 00204 } 00205 if (FM[FactIDs[n-1]].matches(CapE)) { 00206 FactIDs.pop_back(); 00207 return true; 00208 } 00209 return false; 00210 } 00211 00212 iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) { 00213 return std::find_if(begin(), end(), [&](FactID ID) { 00214 return FM[ID].matches(CapE); 00215 }); 00216 } 00217 00218 FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const { 00219 auto I = std::find_if(begin(), end(), [&](FactID ID) { 00220 return FM[ID].matches(CapE); 00221 }); 00222 return I != end() ? &FM[*I] : nullptr; 00223 } 00224 00225 FactEntry *findLockUniv(FactManager &FM, const CapabilityExpr &CapE) const { 00226 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 00227 return FM[ID].matchesUniv(CapE); 00228 }); 00229 return I != end() ? &FM[*I] : nullptr; 00230 } 00231 00232 FactEntry *findPartialMatch(FactManager &FM, 00233 const CapabilityExpr &CapE) const { 00234 auto I = std::find_if(begin(), end(), [&](FactID ID) { 00235 return FM[ID].partiallyMatches(CapE); 00236 }); 00237 return I != end() ? &FM[*I] : nullptr; 00238 } 00239 }; 00240 00241 00242 typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext; 00243 class LocalVariableMap; 00244 00245 /// A side (entry or exit) of a CFG node. 00246 enum CFGBlockSide { CBS_Entry, CBS_Exit }; 00247 00248 /// CFGBlockInfo is a struct which contains all the information that is 00249 /// maintained for each block in the CFG. See LocalVariableMap for more 00250 /// information about the contexts. 00251 struct CFGBlockInfo { 00252 FactSet EntrySet; // Lockset held at entry to block 00253 FactSet ExitSet; // Lockset held at exit from block 00254 LocalVarContext EntryContext; // Context held at entry to block 00255 LocalVarContext ExitContext; // Context held at exit from block 00256 SourceLocation EntryLoc; // Location of first statement in block 00257 SourceLocation ExitLoc; // Location of last statement in block. 00258 unsigned EntryIndex; // Used to replay contexts later 00259 bool Reachable; // Is this block reachable? 00260 00261 const FactSet &getSet(CFGBlockSide Side) const { 00262 return Side == CBS_Entry ? EntrySet : ExitSet; 00263 } 00264 SourceLocation getLocation(CFGBlockSide Side) const { 00265 return Side == CBS_Entry ? EntryLoc : ExitLoc; 00266 } 00267 00268 private: 00269 CFGBlockInfo(LocalVarContext EmptyCtx) 00270 : EntryContext(EmptyCtx), ExitContext(EmptyCtx), Reachable(false) 00271 { } 00272 00273 public: 00274 static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M); 00275 }; 00276 00277 00278 00279 // A LocalVariableMap maintains a map from local variables to their currently 00280 // valid definitions. It provides SSA-like functionality when traversing the 00281 // CFG. Like SSA, each definition or assignment to a variable is assigned a 00282 // unique name (an integer), which acts as the SSA name for that definition. 00283 // The total set of names is shared among all CFG basic blocks. 00284 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs 00285 // with their SSA-names. Instead, we compute a Context for each point in the 00286 // code, which maps local variables to the appropriate SSA-name. This map 00287 // changes with each assignment. 00288 // 00289 // The map is computed in a single pass over the CFG. Subsequent analyses can 00290 // then query the map to find the appropriate Context for a statement, and use 00291 // that Context to look up the definitions of variables. 00292 class LocalVariableMap { 00293 public: 00294 typedef LocalVarContext Context; 00295 00296 /// A VarDefinition consists of an expression, representing the value of the 00297 /// variable, along with the context in which that expression should be 00298 /// interpreted. A reference VarDefinition does not itself contain this 00299 /// information, but instead contains a pointer to a previous VarDefinition. 00300 struct VarDefinition { 00301 public: 00302 friend class LocalVariableMap; 00303 00304 const NamedDecl *Dec; // The original declaration for this variable. 00305 const Expr *Exp; // The expression for this variable, OR 00306 unsigned Ref; // Reference to another VarDefinition 00307 Context Ctx; // The map with which Exp should be interpreted. 00308 00309 bool isReference() { return !Exp; } 00310 00311 private: 00312 // Create ordinary variable definition 00313 VarDefinition(const NamedDecl *D, const Expr *E, Context C) 00314 : Dec(D), Exp(E), Ref(0), Ctx(C) 00315 { } 00316 00317 // Create reference to previous definition 00318 VarDefinition(const NamedDecl *D, unsigned R, Context C) 00319 : Dec(D), Exp(nullptr), Ref(R), Ctx(C) 00320 { } 00321 }; 00322 00323 private: 00324 Context::Factory ContextFactory; 00325 std::vector<VarDefinition> VarDefinitions; 00326 std::vector<unsigned> CtxIndices; 00327 std::vector<std::pair<Stmt*, Context> > SavedContexts; 00328 00329 public: 00330 LocalVariableMap() { 00331 // index 0 is a placeholder for undefined variables (aka phi-nodes). 00332 VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext())); 00333 } 00334 00335 /// Look up a definition, within the given context. 00336 const VarDefinition* lookup(const NamedDecl *D, Context Ctx) { 00337 const unsigned *i = Ctx.lookup(D); 00338 if (!i) 00339 return nullptr; 00340 assert(*i < VarDefinitions.size()); 00341 return &VarDefinitions[*i]; 00342 } 00343 00344 /// Look up the definition for D within the given context. Returns 00345 /// NULL if the expression is not statically known. If successful, also 00346 /// modifies Ctx to hold the context of the return Expr. 00347 const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) { 00348 const unsigned *P = Ctx.lookup(D); 00349 if (!P) 00350 return nullptr; 00351 00352 unsigned i = *P; 00353 while (i > 0) { 00354 if (VarDefinitions[i].Exp) { 00355 Ctx = VarDefinitions[i].Ctx; 00356 return VarDefinitions[i].Exp; 00357 } 00358 i = VarDefinitions[i].Ref; 00359 } 00360 return nullptr; 00361 } 00362 00363 Context getEmptyContext() { return ContextFactory.getEmptyMap(); } 00364 00365 /// Return the next context after processing S. This function is used by 00366 /// clients of the class to get the appropriate context when traversing the 00367 /// CFG. It must be called for every assignment or DeclStmt. 00368 Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) { 00369 if (SavedContexts[CtxIndex+1].first == S) { 00370 CtxIndex++; 00371 Context Result = SavedContexts[CtxIndex].second; 00372 return Result; 00373 } 00374 return C; 00375 } 00376 00377 void dumpVarDefinitionName(unsigned i) { 00378 if (i == 0) { 00379 llvm::errs() << "Undefined"; 00380 return; 00381 } 00382 const NamedDecl *Dec = VarDefinitions[i].Dec; 00383 if (!Dec) { 00384 llvm::errs() << "<<NULL>>"; 00385 return; 00386 } 00387 Dec->printName(llvm::errs()); 00388 llvm::errs() << "." << i << " " << ((const void*) Dec); 00389 } 00390 00391 /// Dumps an ASCII representation of the variable map to llvm::errs() 00392 void dump() { 00393 for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) { 00394 const Expr *Exp = VarDefinitions[i].Exp; 00395 unsigned Ref = VarDefinitions[i].Ref; 00396 00397 dumpVarDefinitionName(i); 00398 llvm::errs() << " = "; 00399 if (Exp) Exp->dump(); 00400 else { 00401 dumpVarDefinitionName(Ref); 00402 llvm::errs() << "\n"; 00403 } 00404 } 00405 } 00406 00407 /// Dumps an ASCII representation of a Context to llvm::errs() 00408 void dumpContext(Context C) { 00409 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { 00410 const NamedDecl *D = I.getKey(); 00411 D->printName(llvm::errs()); 00412 const unsigned *i = C.lookup(D); 00413 llvm::errs() << " -> "; 00414 dumpVarDefinitionName(*i); 00415 llvm::errs() << "\n"; 00416 } 00417 } 00418 00419 /// Builds the variable map. 00420 void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph, 00421 std::vector<CFGBlockInfo> &BlockInfo); 00422 00423 protected: 00424 // Get the current context index 00425 unsigned getContextIndex() { return SavedContexts.size()-1; } 00426 00427 // Save the current context for later replay 00428 void saveContext(Stmt *S, Context C) { 00429 SavedContexts.push_back(std::make_pair(S,C)); 00430 } 00431 00432 // Adds a new definition to the given context, and returns a new context. 00433 // This method should be called when declaring a new variable. 00434 Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) { 00435 assert(!Ctx.contains(D)); 00436 unsigned newID = VarDefinitions.size(); 00437 Context NewCtx = ContextFactory.add(Ctx, D, newID); 00438 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 00439 return NewCtx; 00440 } 00441 00442 // Add a new reference to an existing definition. 00443 Context addReference(const NamedDecl *D, unsigned i, Context Ctx) { 00444 unsigned newID = VarDefinitions.size(); 00445 Context NewCtx = ContextFactory.add(Ctx, D, newID); 00446 VarDefinitions.push_back(VarDefinition(D, i, Ctx)); 00447 return NewCtx; 00448 } 00449 00450 // Updates a definition only if that definition is already in the map. 00451 // This method should be called when assigning to an existing variable. 00452 Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) { 00453 if (Ctx.contains(D)) { 00454 unsigned newID = VarDefinitions.size(); 00455 Context NewCtx = ContextFactory.remove(Ctx, D); 00456 NewCtx = ContextFactory.add(NewCtx, D, newID); 00457 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 00458 return NewCtx; 00459 } 00460 return Ctx; 00461 } 00462 00463 // Removes a definition from the context, but keeps the variable name 00464 // as a valid variable. The index 0 is a placeholder for cleared definitions. 00465 Context clearDefinition(const NamedDecl *D, Context Ctx) { 00466 Context NewCtx = Ctx; 00467 if (NewCtx.contains(D)) { 00468 NewCtx = ContextFactory.remove(NewCtx, D); 00469 NewCtx = ContextFactory.add(NewCtx, D, 0); 00470 } 00471 return NewCtx; 00472 } 00473 00474 // Remove a definition entirely frmo the context. 00475 Context removeDefinition(const NamedDecl *D, Context Ctx) { 00476 Context NewCtx = Ctx; 00477 if (NewCtx.contains(D)) { 00478 NewCtx = ContextFactory.remove(NewCtx, D); 00479 } 00480 return NewCtx; 00481 } 00482 00483 Context intersectContexts(Context C1, Context C2); 00484 Context createReferenceContext(Context C); 00485 void intersectBackEdge(Context C1, Context C2); 00486 00487 friend class VarMapBuilder; 00488 }; 00489 00490 00491 // This has to be defined after LocalVariableMap. 00492 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) { 00493 return CFGBlockInfo(M.getEmptyContext()); 00494 } 00495 00496 00497 /// Visitor which builds a LocalVariableMap 00498 class VarMapBuilder : public StmtVisitor<VarMapBuilder> { 00499 public: 00500 LocalVariableMap* VMap; 00501 LocalVariableMap::Context Ctx; 00502 00503 VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C) 00504 : VMap(VM), Ctx(C) {} 00505 00506 void VisitDeclStmt(DeclStmt *S); 00507 void VisitBinaryOperator(BinaryOperator *BO); 00508 }; 00509 00510 00511 // Add new local variables to the variable map 00512 void VarMapBuilder::VisitDeclStmt(DeclStmt *S) { 00513 bool modifiedCtx = false; 00514 DeclGroupRef DGrp = S->getDeclGroup(); 00515 for (const auto *D : DGrp) { 00516 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) { 00517 const Expr *E = VD->getInit(); 00518 00519 // Add local variables with trivial type to the variable map 00520 QualType T = VD->getType(); 00521 if (T.isTrivialType(VD->getASTContext())) { 00522 Ctx = VMap->addDefinition(VD, E, Ctx); 00523 modifiedCtx = true; 00524 } 00525 } 00526 } 00527 if (modifiedCtx) 00528 VMap->saveContext(S, Ctx); 00529 } 00530 00531 // Update local variable definitions in variable map 00532 void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) { 00533 if (!BO->isAssignmentOp()) 00534 return; 00535 00536 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); 00537 00538 // Update the variable map and current context. 00539 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) { 00540 ValueDecl *VDec = DRE->getDecl(); 00541 if (Ctx.lookup(VDec)) { 00542 if (BO->getOpcode() == BO_Assign) 00543 Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx); 00544 else 00545 // FIXME -- handle compound assignment operators 00546 Ctx = VMap->clearDefinition(VDec, Ctx); 00547 VMap->saveContext(BO, Ctx); 00548 } 00549 } 00550 } 00551 00552 00553 // Computes the intersection of two contexts. The intersection is the 00554 // set of variables which have the same definition in both contexts; 00555 // variables with different definitions are discarded. 00556 LocalVariableMap::Context 00557 LocalVariableMap::intersectContexts(Context C1, Context C2) { 00558 Context Result = C1; 00559 for (const auto &P : C1) { 00560 const NamedDecl *Dec = P.first; 00561 const unsigned *i2 = C2.lookup(Dec); 00562 if (!i2) // variable doesn't exist on second path 00563 Result = removeDefinition(Dec, Result); 00564 else if (*i2 != P.second) // variable exists, but has different definition 00565 Result = clearDefinition(Dec, Result); 00566 } 00567 return Result; 00568 } 00569 00570 // For every variable in C, create a new variable that refers to the 00571 // definition in C. Return a new context that contains these new variables. 00572 // (We use this for a naive implementation of SSA on loop back-edges.) 00573 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) { 00574 Context Result = getEmptyContext(); 00575 for (const auto &P : C) 00576 Result = addReference(P.first, P.second, Result); 00577 return Result; 00578 } 00579 00580 // This routine also takes the intersection of C1 and C2, but it does so by 00581 // altering the VarDefinitions. C1 must be the result of an earlier call to 00582 // createReferenceContext. 00583 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) { 00584 for (const auto &P : C1) { 00585 unsigned i1 = P.second; 00586 VarDefinition *VDef = &VarDefinitions[i1]; 00587 assert(VDef->isReference()); 00588 00589 const unsigned *i2 = C2.lookup(P.first); 00590 if (!i2 || (*i2 != i1)) 00591 VDef->Ref = 0; // Mark this variable as undefined 00592 } 00593 } 00594 00595 00596 // Traverse the CFG in topological order, so all predecessors of a block 00597 // (excluding back-edges) are visited before the block itself. At 00598 // each point in the code, we calculate a Context, which holds the set of 00599 // variable definitions which are visible at that point in execution. 00600 // Visible variables are mapped to their definitions using an array that 00601 // contains all definitions. 00602 // 00603 // At join points in the CFG, the set is computed as the intersection of 00604 // the incoming sets along each edge, E.g. 00605 // 00606 // { Context | VarDefinitions } 00607 // int x = 0; { x -> x1 | x1 = 0 } 00608 // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 00609 // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... } 00610 // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... } 00611 // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... } 00612 // 00613 // This is essentially a simpler and more naive version of the standard SSA 00614 // algorithm. Those definitions that remain in the intersection are from blocks 00615 // that strictly dominate the current block. We do not bother to insert proper 00616 // phi nodes, because they are not used in our analysis; instead, wherever 00617 // a phi node would be required, we simply remove that definition from the 00618 // context (E.g. x above). 00619 // 00620 // The initial traversal does not capture back-edges, so those need to be 00621 // handled on a separate pass. Whenever the first pass encounters an 00622 // incoming back edge, it duplicates the context, creating new definitions 00623 // that refer back to the originals. (These correspond to places where SSA 00624 // might have to insert a phi node.) On the second pass, these definitions are 00625 // set to NULL if the variable has changed on the back-edge (i.e. a phi 00626 // node was actually required.) E.g. 00627 // 00628 // { Context | VarDefinitions } 00629 // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 00630 // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; } 00631 // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... } 00632 // ... { y -> y1 | x3 = 2, x2 = 1, ... } 00633 // 00634 void LocalVariableMap::traverseCFG(CFG *CFGraph, 00635 const PostOrderCFGView *SortedGraph, 00636 std::vector<CFGBlockInfo> &BlockInfo) { 00637 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 00638 00639 CtxIndices.resize(CFGraph->getNumBlockIDs()); 00640 00641 for (const auto *CurrBlock : *SortedGraph) { 00642 int CurrBlockID = CurrBlock->getBlockID(); 00643 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 00644 00645 VisitedBlocks.insert(CurrBlock); 00646 00647 // Calculate the entry context for the current block 00648 bool HasBackEdges = false; 00649 bool CtxInit = true; 00650 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 00651 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 00652 // if *PI -> CurrBlock is a back edge, so skip it 00653 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) { 00654 HasBackEdges = true; 00655 continue; 00656 } 00657 00658 int PrevBlockID = (*PI)->getBlockID(); 00659 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 00660 00661 if (CtxInit) { 00662 CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext; 00663 CtxInit = false; 00664 } 00665 else { 00666 CurrBlockInfo->EntryContext = 00667 intersectContexts(CurrBlockInfo->EntryContext, 00668 PrevBlockInfo->ExitContext); 00669 } 00670 } 00671 00672 // Duplicate the context if we have back-edges, so we can call 00673 // intersectBackEdges later. 00674 if (HasBackEdges) 00675 CurrBlockInfo->EntryContext = 00676 createReferenceContext(CurrBlockInfo->EntryContext); 00677 00678 // Create a starting context index for the current block 00679 saveContext(nullptr, CurrBlockInfo->EntryContext); 00680 CurrBlockInfo->EntryIndex = getContextIndex(); 00681 00682 // Visit all the statements in the basic block. 00683 VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext); 00684 for (CFGBlock::const_iterator BI = CurrBlock->begin(), 00685 BE = CurrBlock->end(); BI != BE; ++BI) { 00686 switch (BI->getKind()) { 00687 case CFGElement::Statement: { 00688 CFGStmt CS = BI->castAs<CFGStmt>(); 00689 VMapBuilder.Visit(const_cast<Stmt*>(CS.getStmt())); 00690 break; 00691 } 00692 default: 00693 break; 00694 } 00695 } 00696 CurrBlockInfo->ExitContext = VMapBuilder.Ctx; 00697 00698 // Mark variables on back edges as "unknown" if they've been changed. 00699 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 00700 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 00701 // if CurrBlock -> *SI is *not* a back edge 00702 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 00703 continue; 00704 00705 CFGBlock *FirstLoopBlock = *SI; 00706 Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext; 00707 Context LoopEnd = CurrBlockInfo->ExitContext; 00708 intersectBackEdge(LoopBegin, LoopEnd); 00709 } 00710 } 00711 00712 // Put an extra entry at the end of the indexed context array 00713 unsigned exitID = CFGraph->getExit().getBlockID(); 00714 saveContext(nullptr, BlockInfo[exitID].ExitContext); 00715 } 00716 00717 /// Find the appropriate source locations to use when producing diagnostics for 00718 /// each block in the CFG. 00719 static void findBlockLocations(CFG *CFGraph, 00720 const PostOrderCFGView *SortedGraph, 00721 std::vector<CFGBlockInfo> &BlockInfo) { 00722 for (const auto *CurrBlock : *SortedGraph) { 00723 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()]; 00724 00725 // Find the source location of the last statement in the block, if the 00726 // block is not empty. 00727 if (const Stmt *S = CurrBlock->getTerminator()) { 00728 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart(); 00729 } else { 00730 for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(), 00731 BE = CurrBlock->rend(); BI != BE; ++BI) { 00732 // FIXME: Handle other CFGElement kinds. 00733 if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { 00734 CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart(); 00735 break; 00736 } 00737 } 00738 } 00739 00740 if (!CurrBlockInfo->ExitLoc.isInvalid()) { 00741 // This block contains at least one statement. Find the source location 00742 // of the first statement in the block. 00743 for (CFGBlock::const_iterator BI = CurrBlock->begin(), 00744 BE = CurrBlock->end(); BI != BE; ++BI) { 00745 // FIXME: Handle other CFGElement kinds. 00746 if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { 00747 CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart(); 00748 break; 00749 } 00750 } 00751 } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() && 00752 CurrBlock != &CFGraph->getExit()) { 00753 // The block is empty, and has a single predecessor. Use its exit 00754 // location. 00755 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = 00756 BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc; 00757 } 00758 } 00759 } 00760 00761 class LockableFactEntry : public FactEntry { 00762 private: 00763 bool Managed; ///< managed by ScopedLockable object 00764 00765 public: 00766 LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 00767 bool Mng = false, bool Asrt = false) 00768 : FactEntry(CE, LK, Loc, Asrt), Managed(Mng) {} 00769 00770 void 00771 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 00772 SourceLocation JoinLoc, LockErrorKind LEK, 00773 ThreadSafetyHandler &Handler) const override { 00774 if (!Managed && !asserted() && !negative() && !isUniversal()) { 00775 Handler.handleMutexHeldEndOfScope("mutex", toString(), loc(), JoinLoc, 00776 LEK); 00777 } 00778 } 00779 00780 void handleUnlock(FactSet &FSet, FactManager &FactMan, 00781 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 00782 bool FullyRemove, ThreadSafetyHandler &Handler, 00783 StringRef DiagKind) const override { 00784 FSet.removeLock(FactMan, Cp); 00785 if (!Cp.negative()) { 00786 FSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>( 00787 !Cp, LK_Exclusive, UnlockLoc)); 00788 } 00789 } 00790 }; 00791 00792 class ScopedLockableFactEntry : public FactEntry { 00793 private: 00794 SmallVector<const til::SExpr *, 4> UnderlyingMutexes; 00795 00796 public: 00797 ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc, 00798 const CapExprSet &Excl, const CapExprSet &Shrd) 00799 : FactEntry(CE, LK_Exclusive, Loc, false) { 00800 for (const auto &M : Excl) 00801 UnderlyingMutexes.push_back(M.sexpr()); 00802 for (const auto &M : Shrd) 00803 UnderlyingMutexes.push_back(M.sexpr()); 00804 } 00805 00806 void 00807 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 00808 SourceLocation JoinLoc, LockErrorKind LEK, 00809 ThreadSafetyHandler &Handler) const override { 00810 for (const til::SExpr *UnderlyingMutex : UnderlyingMutexes) { 00811 if (FSet.findLock(FactMan, CapabilityExpr(UnderlyingMutex, false))) { 00812 // If this scoped lock manages another mutex, and if the underlying 00813 // mutex is still held, then warn about the underlying mutex. 00814 Handler.handleMutexHeldEndOfScope( 00815 "mutex", sx::toString(UnderlyingMutex), loc(), JoinLoc, LEK); 00816 } 00817 } 00818 } 00819 00820 void handleUnlock(FactSet &FSet, FactManager &FactMan, 00821 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 00822 bool FullyRemove, ThreadSafetyHandler &Handler, 00823 StringRef DiagKind) const override { 00824 assert(!Cp.negative() && "Managing object cannot be negative."); 00825 for (const til::SExpr *UnderlyingMutex : UnderlyingMutexes) { 00826 CapabilityExpr UnderCp(UnderlyingMutex, false); 00827 auto UnderEntry = llvm::make_unique<LockableFactEntry>( 00828 !UnderCp, LK_Exclusive, UnlockLoc); 00829 00830 if (FullyRemove) { 00831 // We're destroying the managing object. 00832 // Remove the underlying mutex if it exists; but don't warn. 00833 if (FSet.findLock(FactMan, UnderCp)) { 00834 FSet.removeLock(FactMan, UnderCp); 00835 FSet.addLock(FactMan, std::move(UnderEntry)); 00836 } 00837 } else { 00838 // We're releasing the underlying mutex, but not destroying the 00839 // managing object. Warn on dual release. 00840 if (!FSet.findLock(FactMan, UnderCp)) { 00841 Handler.handleUnmatchedUnlock(DiagKind, UnderCp.toString(), 00842 UnlockLoc); 00843 } 00844 FSet.removeLock(FactMan, UnderCp); 00845 FSet.addLock(FactMan, std::move(UnderEntry)); 00846 } 00847 } 00848 if (FullyRemove) 00849 FSet.removeLock(FactMan, Cp); 00850 } 00851 }; 00852 00853 /// \brief Class which implements the core thread safety analysis routines. 00854 class ThreadSafetyAnalyzer { 00855 friend class BuildLockset; 00856 00857 llvm::BumpPtrAllocator Bpa; 00858 threadSafety::til::MemRegionRef Arena; 00859 threadSafety::SExprBuilder SxBuilder; 00860 00861 ThreadSafetyHandler &Handler; 00862 const CXXMethodDecl *CurrentMethod; 00863 LocalVariableMap LocalVarMap; 00864 FactManager FactMan; 00865 std::vector<CFGBlockInfo> BlockInfo; 00866 00867 public: 00868 ThreadSafetyAnalyzer(ThreadSafetyHandler &H) 00869 : Arena(&Bpa), SxBuilder(Arena), Handler(H) {} 00870 00871 bool inCurrentScope(const CapabilityExpr &CapE); 00872 00873 void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry, 00874 StringRef DiagKind, bool ReqAttr = false); 00875 void removeLock(FactSet &FSet, const CapabilityExpr &CapE, 00876 SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind, 00877 StringRef DiagKind); 00878 00879 template <typename AttrType> 00880 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp, 00881 const NamedDecl *D, VarDecl *SelfDecl = nullptr); 00882 00883 template <class AttrType> 00884 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp, 00885 const NamedDecl *D, 00886 const CFGBlock *PredBlock, const CFGBlock *CurrBlock, 00887 Expr *BrE, bool Neg); 00888 00889 const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C, 00890 bool &Negate); 00891 00892 void getEdgeLockset(FactSet &Result, const FactSet &ExitSet, 00893 const CFGBlock* PredBlock, 00894 const CFGBlock *CurrBlock); 00895 00896 void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, 00897 SourceLocation JoinLoc, 00898 LockErrorKind LEK1, LockErrorKind LEK2, 00899 bool Modify=true); 00900 00901 void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, 00902 SourceLocation JoinLoc, LockErrorKind LEK1, 00903 bool Modify=true) { 00904 intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify); 00905 } 00906 00907 void runAnalysis(AnalysisDeclContext &AC); 00908 }; 00909 00910 /// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs. 00911 static const ValueDecl *getValueDecl(const Expr *Exp) { 00912 if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp)) 00913 return getValueDecl(CE->getSubExpr()); 00914 00915 if (const auto *DR = dyn_cast<DeclRefExpr>(Exp)) 00916 return DR->getDecl(); 00917 00918 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) 00919 return ME->getMemberDecl(); 00920 00921 return nullptr; 00922 } 00923 00924 template <typename Ty> 00925 class has_arg_iterator_range { 00926 typedef char yes[1]; 00927 typedef char no[2]; 00928 00929 template <typename Inner> 00930 static yes& test(Inner *I, decltype(I->args()) * = nullptr); 00931 00932 template <typename> 00933 static no& test(...); 00934 00935 public: 00936 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); 00937 }; 00938 00939 static StringRef ClassifyDiagnostic(const CapabilityAttr *A) { 00940 return A->getName(); 00941 } 00942 00943 static StringRef ClassifyDiagnostic(QualType VDT) { 00944 // We need to look at the declaration of the type of the value to determine 00945 // which it is. The type should either be a record or a typedef, or a pointer 00946 // or reference thereof. 00947 if (const auto *RT = VDT->getAs<RecordType>()) { 00948 if (const auto *RD = RT->getDecl()) 00949 if (const auto *CA = RD->getAttr<CapabilityAttr>()) 00950 return ClassifyDiagnostic(CA); 00951 } else if (const auto *TT = VDT->getAs<TypedefType>()) { 00952 if (const auto *TD = TT->getDecl()) 00953 if (const auto *CA = TD->getAttr<CapabilityAttr>()) 00954 return ClassifyDiagnostic(CA); 00955 } else if (VDT->isPointerType() || VDT->isReferenceType()) 00956 return ClassifyDiagnostic(VDT->getPointeeType()); 00957 00958 return "mutex"; 00959 } 00960 00961 static StringRef ClassifyDiagnostic(const ValueDecl *VD) { 00962 assert(VD && "No ValueDecl passed"); 00963 00964 // The ValueDecl is the declaration of a mutex or role (hopefully). 00965 return ClassifyDiagnostic(VD->getType()); 00966 } 00967 00968 template <typename AttrTy> 00969 static typename std::enable_if<!has_arg_iterator_range<AttrTy>::value, 00970 StringRef>::type 00971 ClassifyDiagnostic(const AttrTy *A) { 00972 if (const ValueDecl *VD = getValueDecl(A->getArg())) 00973 return ClassifyDiagnostic(VD); 00974 return "mutex"; 00975 } 00976 00977 template <typename AttrTy> 00978 static typename std::enable_if<has_arg_iterator_range<AttrTy>::value, 00979 StringRef>::type 00980 ClassifyDiagnostic(const AttrTy *A) { 00981 for (const auto *Arg : A->args()) { 00982 if (const ValueDecl *VD = getValueDecl(Arg)) 00983 return ClassifyDiagnostic(VD); 00984 } 00985 return "mutex"; 00986 } 00987 00988 00989 inline bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) { 00990 if (!CurrentMethod) 00991 return false; 00992 if (auto *P = dyn_cast_or_null<til::Project>(CapE.sexpr())) { 00993 auto *VD = P->clangDecl(); 00994 if (VD) 00995 return VD->getDeclContext() == CurrentMethod->getDeclContext(); 00996 } 00997 return false; 00998 } 00999 01000 01001 /// \brief Add a new lock to the lockset, warning if the lock is already there. 01002 /// \param ReqAttr -- true if this is part of an initial Requires attribute. 01003 void ThreadSafetyAnalyzer::addLock(FactSet &FSet, 01004 std::unique_ptr<FactEntry> Entry, 01005 StringRef DiagKind, bool ReqAttr) { 01006 if (Entry->shouldIgnore()) 01007 return; 01008 01009 if (!ReqAttr && !Entry->negative()) { 01010 // look for the negative capability, and remove it from the fact set. 01011 CapabilityExpr NegC = !*Entry; 01012 FactEntry *Nen = FSet.findLock(FactMan, NegC); 01013 if (Nen) { 01014 FSet.removeLock(FactMan, NegC); 01015 } 01016 else { 01017 if (inCurrentScope(*Entry) && !Entry->asserted()) 01018 Handler.handleNegativeNotHeld(DiagKind, Entry->toString(), 01019 NegC.toString(), Entry->loc()); 01020 } 01021 } 01022 01023 // FIXME: deal with acquired before/after annotations. 01024 // FIXME: Don't always warn when we have support for reentrant locks. 01025 if (FSet.findLock(FactMan, *Entry)) { 01026 if (!Entry->asserted()) 01027 Handler.handleDoubleLock(DiagKind, Entry->toString(), Entry->loc()); 01028 } else { 01029 FSet.addLock(FactMan, std::move(Entry)); 01030 } 01031 } 01032 01033 01034 /// \brief Remove a lock from the lockset, warning if the lock is not there. 01035 /// \param UnlockLoc The source location of the unlock (only used in error msg) 01036 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp, 01037 SourceLocation UnlockLoc, 01038 bool FullyRemove, LockKind ReceivedKind, 01039 StringRef DiagKind) { 01040 if (Cp.shouldIgnore()) 01041 return; 01042 01043 const FactEntry *LDat = FSet.findLock(FactMan, Cp); 01044 if (!LDat) { 01045 Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc); 01046 return; 01047 } 01048 01049 // Generic lock removal doesn't care about lock kind mismatches, but 01050 // otherwise diagnose when the lock kinds are mismatched. 01051 if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) { 01052 Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(), 01053 LDat->kind(), ReceivedKind, UnlockLoc); 01054 } 01055 01056 LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler, 01057 DiagKind); 01058 } 01059 01060 01061 /// \brief Extract the list of mutexIDs from the attribute on an expression, 01062 /// and push them onto Mtxs, discarding any duplicates. 01063 template <typename AttrType> 01064 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 01065 Expr *Exp, const NamedDecl *D, 01066 VarDecl *SelfDecl) { 01067 if (Attr->args_size() == 0) { 01068 // The mutex held is the "this" object. 01069 CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl); 01070 if (Cp.isInvalid()) { 01071 warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr)); 01072 return; 01073 } 01074 //else 01075 if (!Cp.shouldIgnore()) 01076 Mtxs.push_back_nodup(Cp); 01077 return; 01078 } 01079 01080 for (const auto *Arg : Attr->args()) { 01081 CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl); 01082 if (Cp.isInvalid()) { 01083 warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr)); 01084 continue; 01085 } 01086 //else 01087 if (!Cp.shouldIgnore()) 01088 Mtxs.push_back_nodup(Cp); 01089 } 01090 } 01091 01092 01093 /// \brief Extract the list of mutexIDs from a trylock attribute. If the 01094 /// trylock applies to the given edge, then push them onto Mtxs, discarding 01095 /// any duplicates. 01096 template <class AttrType> 01097 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 01098 Expr *Exp, const NamedDecl *D, 01099 const CFGBlock *PredBlock, 01100 const CFGBlock *CurrBlock, 01101 Expr *BrE, bool Neg) { 01102 // Find out which branch has the lock 01103 bool branch = false; 01104 if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) 01105 branch = BLE->getValue(); 01106 else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) 01107 branch = ILE->getValue().getBoolValue(); 01108 01109 int branchnum = branch ? 0 : 1; 01110 if (Neg) 01111 branchnum = !branchnum; 01112 01113 // If we've taken the trylock branch, then add the lock 01114 int i = 0; 01115 for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(), 01116 SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) { 01117 if (*SI == CurrBlock && i == branchnum) 01118 getMutexIDs(Mtxs, Attr, Exp, D); 01119 } 01120 } 01121 01122 01123 bool getStaticBooleanValue(Expr* E, bool& TCond) { 01124 if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) { 01125 TCond = false; 01126 return true; 01127 } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) { 01128 TCond = BLE->getValue(); 01129 return true; 01130 } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) { 01131 TCond = ILE->getValue().getBoolValue(); 01132 return true; 01133 } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) { 01134 return getStaticBooleanValue(CE->getSubExpr(), TCond); 01135 } 01136 return false; 01137 } 01138 01139 01140 // If Cond can be traced back to a function call, return the call expression. 01141 // The negate variable should be called with false, and will be set to true 01142 // if the function call is negated, e.g. if (!mu.tryLock(...)) 01143 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond, 01144 LocalVarContext C, 01145 bool &Negate) { 01146 if (!Cond) 01147 return nullptr; 01148 01149 if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) { 01150 return CallExp; 01151 } 01152 else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) { 01153 return getTrylockCallExpr(PE->getSubExpr(), C, Negate); 01154 } 01155 else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) { 01156 return getTrylockCallExpr(CE->getSubExpr(), C, Negate); 01157 } 01158 else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) { 01159 return getTrylockCallExpr(EWC->getSubExpr(), C, Negate); 01160 } 01161 else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) { 01162 const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C); 01163 return getTrylockCallExpr(E, C, Negate); 01164 } 01165 else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) { 01166 if (UOP->getOpcode() == UO_LNot) { 01167 Negate = !Negate; 01168 return getTrylockCallExpr(UOP->getSubExpr(), C, Negate); 01169 } 01170 return nullptr; 01171 } 01172 else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) { 01173 if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) { 01174 if (BOP->getOpcode() == BO_NE) 01175 Negate = !Negate; 01176 01177 bool TCond = false; 01178 if (getStaticBooleanValue(BOP->getRHS(), TCond)) { 01179 if (!TCond) Negate = !Negate; 01180 return getTrylockCallExpr(BOP->getLHS(), C, Negate); 01181 } 01182 TCond = false; 01183 if (getStaticBooleanValue(BOP->getLHS(), TCond)) { 01184 if (!TCond) Negate = !Negate; 01185 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 01186 } 01187 return nullptr; 01188 } 01189 if (BOP->getOpcode() == BO_LAnd) { 01190 // LHS must have been evaluated in a different block. 01191 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 01192 } 01193 if (BOP->getOpcode() == BO_LOr) { 01194 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 01195 } 01196 return nullptr; 01197 } 01198 return nullptr; 01199 } 01200 01201 01202 /// \brief Find the lockset that holds on the edge between PredBlock 01203 /// and CurrBlock. The edge set is the exit set of PredBlock (passed 01204 /// as the ExitSet parameter) plus any trylocks, which are conditionally held. 01205 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result, 01206 const FactSet &ExitSet, 01207 const CFGBlock *PredBlock, 01208 const CFGBlock *CurrBlock) { 01209 Result = ExitSet; 01210 01211 const Stmt *Cond = PredBlock->getTerminatorCondition(); 01212 if (!Cond) 01213 return; 01214 01215 bool Negate = false; 01216 const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()]; 01217 const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext; 01218 StringRef CapDiagKind = "mutex"; 01219 01220 CallExpr *Exp = 01221 const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate)); 01222 if (!Exp) 01223 return; 01224 01225 NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 01226 if(!FunDecl || !FunDecl->hasAttrs()) 01227 return; 01228 01229 CapExprSet ExclusiveLocksToAdd; 01230 CapExprSet SharedLocksToAdd; 01231 01232 // If the condition is a call to a Trylock function, then grab the attributes 01233 for (auto *Attr : FunDecl->getAttrs()) { 01234 switch (Attr->getKind()) { 01235 case attr::ExclusiveTrylockFunction: { 01236 ExclusiveTrylockFunctionAttr *A = 01237 cast<ExclusiveTrylockFunctionAttr>(Attr); 01238 getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, 01239 PredBlock, CurrBlock, A->getSuccessValue(), Negate); 01240 CapDiagKind = ClassifyDiagnostic(A); 01241 break; 01242 } 01243 case attr::SharedTrylockFunction: { 01244 SharedTrylockFunctionAttr *A = 01245 cast<SharedTrylockFunctionAttr>(Attr); 01246 getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, 01247 PredBlock, CurrBlock, A->getSuccessValue(), Negate); 01248 CapDiagKind = ClassifyDiagnostic(A); 01249 break; 01250 } 01251 default: 01252 break; 01253 } 01254 } 01255 01256 // Add and remove locks. 01257 SourceLocation Loc = Exp->getExprLoc(); 01258 for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd) 01259 addLock(Result, llvm::make_unique<LockableFactEntry>(ExclusiveLockToAdd, 01260 LK_Exclusive, Loc), 01261 CapDiagKind); 01262 for (const auto &SharedLockToAdd : SharedLocksToAdd) 01263 addLock(Result, llvm::make_unique<LockableFactEntry>(SharedLockToAdd, 01264 LK_Shared, Loc), 01265 CapDiagKind); 01266 } 01267 01268 /// \brief We use this class to visit different types of expressions in 01269 /// CFGBlocks, and build up the lockset. 01270 /// An expression may cause us to add or remove locks from the lockset, or else 01271 /// output error messages related to missing locks. 01272 /// FIXME: In future, we may be able to not inherit from a visitor. 01273 class BuildLockset : public StmtVisitor<BuildLockset> { 01274 friend class ThreadSafetyAnalyzer; 01275 01276 ThreadSafetyAnalyzer *Analyzer; 01277 FactSet FSet; 01278 LocalVariableMap::Context LVarCtx; 01279 unsigned CtxIndex; 01280 01281 // helper functions 01282 void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK, 01283 Expr *MutexExp, ProtectedOperationKind POK, 01284 StringRef DiagKind, SourceLocation Loc); 01285 void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp, 01286 StringRef DiagKind); 01287 01288 void checkAccess(const Expr *Exp, AccessKind AK, 01289 ProtectedOperationKind POK = POK_VarAccess); 01290 void checkPtAccess(const Expr *Exp, AccessKind AK, 01291 ProtectedOperationKind POK = POK_VarAccess); 01292 01293 void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr); 01294 01295 public: 01296 BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info) 01297 : StmtVisitor<BuildLockset>(), 01298 Analyzer(Anlzr), 01299 FSet(Info.EntrySet), 01300 LVarCtx(Info.EntryContext), 01301 CtxIndex(Info.EntryIndex) 01302 {} 01303 01304 void VisitUnaryOperator(UnaryOperator *UO); 01305 void VisitBinaryOperator(BinaryOperator *BO); 01306 void VisitCastExpr(CastExpr *CE); 01307 void VisitCallExpr(CallExpr *Exp); 01308 void VisitCXXConstructExpr(CXXConstructExpr *Exp); 01309 void VisitDeclStmt(DeclStmt *S); 01310 }; 01311 01312 01313 /// \brief Warn if the LSet does not contain a lock sufficient to protect access 01314 /// of at least the passed in AccessKind. 01315 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, 01316 AccessKind AK, Expr *MutexExp, 01317 ProtectedOperationKind POK, 01318 StringRef DiagKind, SourceLocation Loc) { 01319 LockKind LK = getLockKindFromAccessKind(AK); 01320 01321 CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp); 01322 if (Cp.isInvalid()) { 01323 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind); 01324 return; 01325 } else if (Cp.shouldIgnore()) { 01326 return; 01327 } 01328 01329 if (Cp.negative()) { 01330 // Negative capabilities act like locks excluded 01331 FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp); 01332 if (LDat) { 01333 Analyzer->Handler.handleFunExcludesLock( 01334 DiagKind, D->getNameAsString(), (!Cp).toString(), Loc); 01335 return; 01336 } 01337 01338 // If this does not refer to a negative capability in the same class, 01339 // then stop here. 01340 if (!Analyzer->inCurrentScope(Cp)) 01341 return; 01342 01343 // Otherwise the negative requirement must be propagated to the caller. 01344 LDat = FSet.findLock(Analyzer->FactMan, Cp); 01345 if (!LDat) { 01346 Analyzer->Handler.handleMutexNotHeld("", D, POK, Cp.toString(), 01347 LK_Shared, Loc); 01348 } 01349 return; 01350 } 01351 01352 FactEntry* LDat = FSet.findLockUniv(Analyzer->FactMan, Cp); 01353 bool NoError = true; 01354 if (!LDat) { 01355 // No exact match found. Look for a partial match. 01356 LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp); 01357 if (LDat) { 01358 // Warn that there's no precise match. 01359 std::string PartMatchStr = LDat->toString(); 01360 StringRef PartMatchName(PartMatchStr); 01361 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 01362 LK, Loc, &PartMatchName); 01363 } else { 01364 // Warn that there's no match at all. 01365 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 01366 LK, Loc); 01367 } 01368 NoError = false; 01369 } 01370 // Make sure the mutex we found is the right kind. 01371 if (NoError && LDat && !LDat->isAtLeast(LK)) { 01372 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 01373 LK, Loc); 01374 } 01375 } 01376 01377 /// \brief Warn if the LSet contains the given lock. 01378 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, 01379 Expr *MutexExp, StringRef DiagKind) { 01380 CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp); 01381 if (Cp.isInvalid()) { 01382 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind); 01383 return; 01384 } else if (Cp.shouldIgnore()) { 01385 return; 01386 } 01387 01388 FactEntry* LDat = FSet.findLock(Analyzer->FactMan, Cp); 01389 if (LDat) { 01390 Analyzer->Handler.handleFunExcludesLock( 01391 DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc()); 01392 } 01393 } 01394 01395 /// \brief Checks guarded_by and pt_guarded_by attributes. 01396 /// Whenever we identify an access (read or write) to a DeclRefExpr that is 01397 /// marked with guarded_by, we must ensure the appropriate mutexes are held. 01398 /// Similarly, we check if the access is to an expression that dereferences 01399 /// a pointer marked with pt_guarded_by. 01400 void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK, 01401 ProtectedOperationKind POK) { 01402 Exp = Exp->IgnoreParenCasts(); 01403 01404 SourceLocation Loc = Exp->getExprLoc(); 01405 01406 // Local variables of reference type cannot be re-assigned; 01407 // map them to their initializer. 01408 while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) { 01409 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl()); 01410 if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) { 01411 if (const auto *E = VD->getInit()) { 01412 Exp = E; 01413 continue; 01414 } 01415 } 01416 break; 01417 } 01418 01419 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp)) { 01420 // For dereferences 01421 if (UO->getOpcode() == clang::UO_Deref) 01422 checkPtAccess(UO->getSubExpr(), AK, POK); 01423 return; 01424 } 01425 01426 if (const ArraySubscriptExpr *AE = dyn_cast<ArraySubscriptExpr>(Exp)) { 01427 checkPtAccess(AE->getLHS(), AK, POK); 01428 return; 01429 } 01430 01431 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) { 01432 if (ME->isArrow()) 01433 checkPtAccess(ME->getBase(), AK, POK); 01434 else 01435 checkAccess(ME->getBase(), AK, POK); 01436 } 01437 01438 const ValueDecl *D = getValueDecl(Exp); 01439 if (!D || !D->hasAttrs()) 01440 return; 01441 01442 if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) { 01443 Analyzer->Handler.handleNoMutexHeld("mutex", D, POK, AK, Loc); 01444 } 01445 01446 for (const auto *I : D->specific_attrs<GuardedByAttr>()) 01447 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK, 01448 ClassifyDiagnostic(I), Loc); 01449 } 01450 01451 01452 /// \brief Checks pt_guarded_by and pt_guarded_var attributes. 01453 /// POK is the same operationKind that was passed to checkAccess. 01454 void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK, 01455 ProtectedOperationKind POK) { 01456 while (true) { 01457 if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) { 01458 Exp = PE->getSubExpr(); 01459 continue; 01460 } 01461 if (const CastExpr *CE = dyn_cast<CastExpr>(Exp)) { 01462 if (CE->getCastKind() == CK_ArrayToPointerDecay) { 01463 // If it's an actual array, and not a pointer, then it's elements 01464 // are protected by GUARDED_BY, not PT_GUARDED_BY; 01465 checkAccess(CE->getSubExpr(), AK, POK); 01466 return; 01467 } 01468 Exp = CE->getSubExpr(); 01469 continue; 01470 } 01471 break; 01472 } 01473 01474 // Pass by reference warnings are under a different flag. 01475 ProtectedOperationKind PtPOK = POK_VarDereference; 01476 if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef; 01477 01478 const ValueDecl *D = getValueDecl(Exp); 01479 if (!D || !D->hasAttrs()) 01480 return; 01481 01482 if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) 01483 Analyzer->Handler.handleNoMutexHeld("mutex", D, PtPOK, AK, 01484 Exp->getExprLoc()); 01485 01486 for (auto const *I : D->specific_attrs<PtGuardedByAttr>()) 01487 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK, 01488 ClassifyDiagnostic(I), Exp->getExprLoc()); 01489 } 01490 01491 /// \brief Process a function call, method call, constructor call, 01492 /// or destructor call. This involves looking at the attributes on the 01493 /// corresponding function/method/constructor/destructor, issuing warnings, 01494 /// and updating the locksets accordingly. 01495 /// 01496 /// FIXME: For classes annotated with one of the guarded annotations, we need 01497 /// to treat const method calls as reads and non-const method calls as writes, 01498 /// and check that the appropriate locks are held. Non-const method calls with 01499 /// the same signature as const method calls can be also treated as reads. 01500 /// 01501 void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) { 01502 SourceLocation Loc = Exp->getExprLoc(); 01503 const AttrVec &ArgAttrs = D->getAttrs(); 01504 CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd; 01505 CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove; 01506 StringRef CapDiagKind = "mutex"; 01507 01508 for(unsigned i = 0; i < ArgAttrs.size(); ++i) { 01509 Attr *At = const_cast<Attr*>(ArgAttrs[i]); 01510 switch (At->getKind()) { 01511 // When we encounter a lock function, we need to add the lock to our 01512 // lockset. 01513 case attr::AcquireCapability: { 01514 auto *A = cast<AcquireCapabilityAttr>(At); 01515 Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd 01516 : ExclusiveLocksToAdd, 01517 A, Exp, D, VD); 01518 01519 CapDiagKind = ClassifyDiagnostic(A); 01520 break; 01521 } 01522 01523 // An assert will add a lock to the lockset, but will not generate 01524 // a warning if it is already there, and will not generate a warning 01525 // if it is not removed. 01526 case attr::AssertExclusiveLock: { 01527 AssertExclusiveLockAttr *A = cast<AssertExclusiveLockAttr>(At); 01528 01529 CapExprSet AssertLocks; 01530 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); 01531 for (const auto &AssertLock : AssertLocks) 01532 Analyzer->addLock(FSet, 01533 llvm::make_unique<LockableFactEntry>( 01534 AssertLock, LK_Exclusive, Loc, false, true), 01535 ClassifyDiagnostic(A)); 01536 break; 01537 } 01538 case attr::AssertSharedLock: { 01539 AssertSharedLockAttr *A = cast<AssertSharedLockAttr>(At); 01540 01541 CapExprSet AssertLocks; 01542 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); 01543 for (const auto &AssertLock : AssertLocks) 01544 Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>( 01545 AssertLock, LK_Shared, Loc, false, true), 01546 ClassifyDiagnostic(A)); 01547 break; 01548 } 01549 01550 // When we encounter an unlock function, we need to remove unlocked 01551 // mutexes from the lockset, and flag a warning if they are not there. 01552 case attr::ReleaseCapability: { 01553 auto *A = cast<ReleaseCapabilityAttr>(At); 01554 if (A->isGeneric()) 01555 Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD); 01556 else if (A->isShared()) 01557 Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD); 01558 else 01559 Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD); 01560 01561 CapDiagKind = ClassifyDiagnostic(A); 01562 break; 01563 } 01564 01565 case attr::RequiresCapability: { 01566 RequiresCapabilityAttr *A = cast<RequiresCapabilityAttr>(At); 01567 for (auto *Arg : A->args()) 01568 warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg, 01569 POK_FunctionCall, ClassifyDiagnostic(A), 01570 Exp->getExprLoc()); 01571 break; 01572 } 01573 01574 case attr::LocksExcluded: { 01575 LocksExcludedAttr *A = cast<LocksExcludedAttr>(At); 01576 for (auto *Arg : A->args()) 01577 warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A)); 01578 break; 01579 } 01580 01581 // Ignore attributes unrelated to thread-safety 01582 default: 01583 break; 01584 } 01585 } 01586 01587 // Figure out if we're calling the constructor of scoped lockable class 01588 bool isScopedVar = false; 01589 if (VD) { 01590 if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) { 01591 const CXXRecordDecl* PD = CD->getParent(); 01592 if (PD && PD->hasAttr<ScopedLockableAttr>()) 01593 isScopedVar = true; 01594 } 01595 } 01596 01597 // Add locks. 01598 for (const auto &M : ExclusiveLocksToAdd) 01599 Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>( 01600 M, LK_Exclusive, Loc, isScopedVar), 01601 CapDiagKind); 01602 for (const auto &M : SharedLocksToAdd) 01603 Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>( 01604 M, LK_Shared, Loc, isScopedVar), 01605 CapDiagKind); 01606 01607 if (isScopedVar) { 01608 // Add the managing object as a dummy mutex, mapped to the underlying mutex. 01609 SourceLocation MLoc = VD->getLocation(); 01610 DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation()); 01611 // FIXME: does this store a pointer to DRE? 01612 CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr); 01613 01614 CapExprSet UnderlyingMutexes(ExclusiveLocksToAdd); 01615 std::copy(SharedLocksToAdd.begin(), SharedLocksToAdd.end(), 01616 std::back_inserter(UnderlyingMutexes)); 01617 Analyzer->addLock(FSet, 01618 llvm::make_unique<ScopedLockableFactEntry>( 01619 Scp, MLoc, ExclusiveLocksToAdd, SharedLocksToAdd), 01620 CapDiagKind); 01621 } 01622 01623 // Remove locks. 01624 // FIXME -- should only fully remove if the attribute refers to 'this'. 01625 bool Dtor = isa<CXXDestructorDecl>(D); 01626 for (const auto &M : ExclusiveLocksToRemove) 01627 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind); 01628 for (const auto &M : SharedLocksToRemove) 01629 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind); 01630 for (const auto &M : GenericLocksToRemove) 01631 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind); 01632 } 01633 01634 01635 /// \brief For unary operations which read and write a variable, we need to 01636 /// check whether we hold any required mutexes. Reads are checked in 01637 /// VisitCastExpr. 01638 void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) { 01639 switch (UO->getOpcode()) { 01640 case clang::UO_PostDec: 01641 case clang::UO_PostInc: 01642 case clang::UO_PreDec: 01643 case clang::UO_PreInc: { 01644 checkAccess(UO->getSubExpr(), AK_Written); 01645 break; 01646 } 01647 default: 01648 break; 01649 } 01650 } 01651 01652 /// For binary operations which assign to a variable (writes), we need to check 01653 /// whether we hold any required mutexes. 01654 /// FIXME: Deal with non-primitive types. 01655 void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) { 01656 if (!BO->isAssignmentOp()) 01657 return; 01658 01659 // adjust the context 01660 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx); 01661 01662 checkAccess(BO->getLHS(), AK_Written); 01663 } 01664 01665 01666 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and 01667 /// need to ensure we hold any required mutexes. 01668 /// FIXME: Deal with non-primitive types. 01669 void BuildLockset::VisitCastExpr(CastExpr *CE) { 01670 if (CE->getCastKind() != CK_LValueToRValue) 01671 return; 01672 checkAccess(CE->getSubExpr(), AK_Read); 01673 } 01674 01675 01676 void BuildLockset::VisitCallExpr(CallExpr *Exp) { 01677 bool ExamineArgs = true; 01678 bool OperatorFun = false; 01679 01680 if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp)) { 01681 MemberExpr *ME = dyn_cast<MemberExpr>(CE->getCallee()); 01682 // ME can be null when calling a method pointer 01683 CXXMethodDecl *MD = CE->getMethodDecl(); 01684 01685 if (ME && MD) { 01686 if (ME->isArrow()) { 01687 if (MD->isConst()) { 01688 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); 01689 } else { // FIXME -- should be AK_Written 01690 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); 01691 } 01692 } else { 01693 if (MD->isConst()) 01694 checkAccess(CE->getImplicitObjectArgument(), AK_Read); 01695 else // FIXME -- should be AK_Written 01696 checkAccess(CE->getImplicitObjectArgument(), AK_Read); 01697 } 01698 } 01699 } else if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) { 01700 OperatorFun = true; 01701 01702 auto OEop = OE->getOperator(); 01703 switch (OEop) { 01704 case OO_Equal: { 01705 ExamineArgs = false; 01706 const Expr *Target = OE->getArg(0); 01707 const Expr *Source = OE->getArg(1); 01708 checkAccess(Target, AK_Written); 01709 checkAccess(Source, AK_Read); 01710 break; 01711 } 01712 case OO_Star: 01713 case OO_Arrow: 01714 case OO_Subscript: { 01715 const Expr *Obj = OE->getArg(0); 01716 checkAccess(Obj, AK_Read); 01717 if (!(OEop == OO_Star && OE->getNumArgs() > 1)) { 01718 // Grrr. operator* can be multiplication... 01719 checkPtAccess(Obj, AK_Read); 01720 } 01721 break; 01722 } 01723 default: { 01724 // TODO: get rid of this, and rely on pass-by-ref instead. 01725 const Expr *Obj = OE->getArg(0); 01726 checkAccess(Obj, AK_Read); 01727 break; 01728 } 01729 } 01730 } 01731 01732 01733 if (ExamineArgs) { 01734 if (FunctionDecl *FD = Exp->getDirectCallee()) { 01735 unsigned Fn = FD->getNumParams(); 01736 unsigned Cn = Exp->getNumArgs(); 01737 unsigned Skip = 0; 01738 01739 unsigned i = 0; 01740 if (OperatorFun) { 01741 if (isa<CXXMethodDecl>(FD)) { 01742 // First arg in operator call is implicit self argument, 01743 // and doesn't appear in the FunctionDecl. 01744 Skip = 1; 01745 Cn--; 01746 } else { 01747 // Ignore the first argument of operators; it's been checked above. 01748 i = 1; 01749 } 01750 } 01751 // Ignore default arguments 01752 unsigned n = (Fn < Cn) ? Fn : Cn; 01753 01754 for (; i < n; ++i) { 01755 ParmVarDecl* Pvd = FD->getParamDecl(i); 01756 Expr* Arg = Exp->getArg(i+Skip); 01757 QualType Qt = Pvd->getType(); 01758 if (Qt->isReferenceType()) 01759 checkAccess(Arg, AK_Read, POK_PassByRef); 01760 } 01761 } 01762 } 01763 01764 NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 01765 if(!D || !D->hasAttrs()) 01766 return; 01767 handleCall(Exp, D); 01768 } 01769 01770 void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) { 01771 const CXXConstructorDecl *D = Exp->getConstructor(); 01772 if (D && D->isCopyConstructor()) { 01773 const Expr* Source = Exp->getArg(0); 01774 checkAccess(Source, AK_Read); 01775 } 01776 // FIXME -- only handles constructors in DeclStmt below. 01777 } 01778 01779 void BuildLockset::VisitDeclStmt(DeclStmt *S) { 01780 // adjust the context 01781 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx); 01782 01783 for (auto *D : S->getDeclGroup()) { 01784 if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) { 01785 Expr *E = VD->getInit(); 01786 // handle constructors that involve temporaries 01787 if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E)) 01788 E = EWC->getSubExpr(); 01789 01790 if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) { 01791 NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor()); 01792 if (!CtorD || !CtorD->hasAttrs()) 01793 return; 01794 handleCall(CE, CtorD, VD); 01795 } 01796 } 01797 } 01798 } 01799 01800 01801 01802 /// \brief Compute the intersection of two locksets and issue warnings for any 01803 /// locks in the symmetric difference. 01804 /// 01805 /// This function is used at a merge point in the CFG when comparing the lockset 01806 /// of each branch being merged. For example, given the following sequence: 01807 /// A; if () then B; else C; D; we need to check that the lockset after B and C 01808 /// are the same. In the event of a difference, we use the intersection of these 01809 /// two locksets at the start of D. 01810 /// 01811 /// \param FSet1 The first lockset. 01812 /// \param FSet2 The second lockset. 01813 /// \param JoinLoc The location of the join point for error reporting 01814 /// \param LEK1 The error message to report if a mutex is missing from LSet1 01815 /// \param LEK2 The error message to report if a mutex is missing from Lset2 01816 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1, 01817 const FactSet &FSet2, 01818 SourceLocation JoinLoc, 01819 LockErrorKind LEK1, 01820 LockErrorKind LEK2, 01821 bool Modify) { 01822 FactSet FSet1Orig = FSet1; 01823 01824 // Find locks in FSet2 that conflict or are not in FSet1, and warn. 01825 for (const auto &Fact : FSet2) { 01826 const FactEntry *LDat1 = nullptr; 01827 const FactEntry *LDat2 = &FactMan[Fact]; 01828 FactSet::iterator Iter1 = FSet1.findLockIter(FactMan, *LDat2); 01829 if (Iter1 != FSet1.end()) LDat1 = &FactMan[*Iter1]; 01830 01831 if (LDat1) { 01832 if (LDat1->kind() != LDat2->kind()) { 01833 Handler.handleExclusiveAndShared("mutex", LDat2->toString(), 01834 LDat2->loc(), LDat1->loc()); 01835 if (Modify && LDat1->kind() != LK_Exclusive) { 01836 // Take the exclusive lock, which is the one in FSet2. 01837 *Iter1 = Fact; 01838 } 01839 } 01840 else if (Modify && LDat1->asserted() && !LDat2->asserted()) { 01841 // The non-asserted lock in FSet2 is the one we want to track. 01842 *Iter1 = Fact; 01843 } 01844 } else { 01845 LDat2->handleRemovalFromIntersection(FSet2, FactMan, JoinLoc, LEK1, 01846 Handler); 01847 } 01848 } 01849 01850 // Find locks in FSet1 that are not in FSet2, and remove them. 01851 for (const auto &Fact : FSet1Orig) { 01852 const FactEntry *LDat1 = &FactMan[Fact]; 01853 const FactEntry *LDat2 = FSet2.findLock(FactMan, *LDat1); 01854 01855 if (!LDat2) { 01856 LDat1->handleRemovalFromIntersection(FSet1Orig, FactMan, JoinLoc, LEK2, 01857 Handler); 01858 if (Modify) 01859 FSet1.removeLock(FactMan, *LDat1); 01860 } 01861 } 01862 } 01863 01864 01865 // Return true if block B never continues to its successors. 01866 inline bool neverReturns(const CFGBlock* B) { 01867 if (B->hasNoReturnElement()) 01868 return true; 01869 if (B->empty()) 01870 return false; 01871 01872 CFGElement Last = B->back(); 01873 if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) { 01874 if (isa<CXXThrowExpr>(S->getStmt())) 01875 return true; 01876 } 01877 return false; 01878 } 01879 01880 01881 /// \brief Check a function's CFG for thread-safety violations. 01882 /// 01883 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 01884 /// at the end of each block, and issue warnings for thread safety violations. 01885 /// Each block in the CFG is traversed exactly once. 01886 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) { 01887 // TODO: this whole function needs be rewritten as a visitor for CFGWalker. 01888 // For now, we just use the walker to set things up. 01889 threadSafety::CFGWalker walker; 01890 if (!walker.init(AC)) 01891 return; 01892 01893 // AC.dumpCFG(true); 01894 // threadSafety::printSCFG(walker); 01895 01896 CFG *CFGraph = walker.getGraph(); 01897 const NamedDecl *D = walker.getDecl(); 01898 const FunctionDecl *CurrentFunction = dyn_cast<FunctionDecl>(D); 01899 CurrentMethod = dyn_cast<CXXMethodDecl>(D); 01900 01901 if (D->hasAttr<NoThreadSafetyAnalysisAttr>()) 01902 return; 01903 01904 // FIXME: Do something a bit more intelligent inside constructor and 01905 // destructor code. Constructors and destructors must assume unique access 01906 // to 'this', so checks on member variable access is disabled, but we should 01907 // still enable checks on other objects. 01908 if (isa<CXXConstructorDecl>(D)) 01909 return; // Don't check inside constructors. 01910 if (isa<CXXDestructorDecl>(D)) 01911 return; // Don't check inside destructors. 01912 01913 Handler.enterFunction(CurrentFunction); 01914 01915 BlockInfo.resize(CFGraph->getNumBlockIDs(), 01916 CFGBlockInfo::getEmptyBlockInfo(LocalVarMap)); 01917 01918 // We need to explore the CFG via a "topological" ordering. 01919 // That way, we will be guaranteed to have information about required 01920 // predecessor locksets when exploring a new block. 01921 const PostOrderCFGView *SortedGraph = walker.getSortedGraph(); 01922 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 01923 01924 // Mark entry block as reachable 01925 BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true; 01926 01927 // Compute SSA names for local variables 01928 LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo); 01929 01930 // Fill in source locations for all CFGBlocks. 01931 findBlockLocations(CFGraph, SortedGraph, BlockInfo); 01932 01933 CapExprSet ExclusiveLocksAcquired; 01934 CapExprSet SharedLocksAcquired; 01935 CapExprSet LocksReleased; 01936 01937 // Add locks from exclusive_locks_required and shared_locks_required 01938 // to initial lockset. Also turn off checking for lock and unlock functions. 01939 // FIXME: is there a more intelligent way to check lock/unlock functions? 01940 if (!SortedGraph->empty() && D->hasAttrs()) { 01941 const CFGBlock *FirstBlock = *SortedGraph->begin(); 01942 FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet; 01943 const AttrVec &ArgAttrs = D->getAttrs(); 01944 01945 CapExprSet ExclusiveLocksToAdd; 01946 CapExprSet SharedLocksToAdd; 01947 StringRef CapDiagKind = "mutex"; 01948 01949 SourceLocation Loc = D->getLocation(); 01950 for (const auto *Attr : ArgAttrs) { 01951 Loc = Attr->getLocation(); 01952 if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) { 01953 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 01954 nullptr, D); 01955 CapDiagKind = ClassifyDiagnostic(A); 01956 } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) { 01957 // UNLOCK_FUNCTION() is used to hide the underlying lock implementation. 01958 // We must ignore such methods. 01959 if (A->args_size() == 0) 01960 return; 01961 // FIXME -- deal with exclusive vs. shared unlock functions? 01962 getMutexIDs(ExclusiveLocksToAdd, A, nullptr, D); 01963 getMutexIDs(LocksReleased, A, nullptr, D); 01964 CapDiagKind = ClassifyDiagnostic(A); 01965 } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) { 01966 if (A->args_size() == 0) 01967 return; 01968 getMutexIDs(A->isShared() ? SharedLocksAcquired 01969 : ExclusiveLocksAcquired, 01970 A, nullptr, D); 01971 CapDiagKind = ClassifyDiagnostic(A); 01972 } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) { 01973 // Don't try to check trylock functions for now 01974 return; 01975 } else if (isa<SharedTrylockFunctionAttr>(Attr)) { 01976 // Don't try to check trylock functions for now 01977 return; 01978 } 01979 } 01980 01981 // FIXME -- Loc can be wrong here. 01982 for (const auto &Mu : ExclusiveLocksToAdd) 01983 addLock(InitialLockset, 01984 llvm::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc), 01985 CapDiagKind, true); 01986 for (const auto &Mu : SharedLocksToAdd) 01987 addLock(InitialLockset, 01988 llvm::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc), 01989 CapDiagKind, true); 01990 } 01991 01992 for (const auto *CurrBlock : *SortedGraph) { 01993 int CurrBlockID = CurrBlock->getBlockID(); 01994 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 01995 01996 // Use the default initial lockset in case there are no predecessors. 01997 VisitedBlocks.insert(CurrBlock); 01998 01999 // Iterate through the predecessor blocks and warn if the lockset for all 02000 // predecessors is not the same. We take the entry lockset of the current 02001 // block to be the intersection of all previous locksets. 02002 // FIXME: By keeping the intersection, we may output more errors in future 02003 // for a lock which is not in the intersection, but was in the union. We 02004 // may want to also keep the union in future. As an example, let's say 02005 // the intersection contains Mutex L, and the union contains L and M. 02006 // Later we unlock M. At this point, we would output an error because we 02007 // never locked M; although the real error is probably that we forgot to 02008 // lock M on all code paths. Conversely, let's say that later we lock M. 02009 // In this case, we should compare against the intersection instead of the 02010 // union because the real error is probably that we forgot to unlock M on 02011 // all code paths. 02012 bool LocksetInitialized = false; 02013 SmallVector<CFGBlock *, 8> SpecialBlocks; 02014 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 02015 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 02016 02017 // if *PI -> CurrBlock is a back edge 02018 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) 02019 continue; 02020 02021 int PrevBlockID = (*PI)->getBlockID(); 02022 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 02023 02024 // Ignore edges from blocks that can't return. 02025 if (neverReturns(*PI) || !PrevBlockInfo->Reachable) 02026 continue; 02027 02028 // Okay, we can reach this block from the entry. 02029 CurrBlockInfo->Reachable = true; 02030 02031 // If the previous block ended in a 'continue' or 'break' statement, then 02032 // a difference in locksets is probably due to a bug in that block, rather 02033 // than in some other predecessor. In that case, keep the other 02034 // predecessor's lockset. 02035 if (const Stmt *Terminator = (*PI)->getTerminator()) { 02036 if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) { 02037 SpecialBlocks.push_back(*PI); 02038 continue; 02039 } 02040 } 02041 02042 FactSet PrevLockset; 02043 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock); 02044 02045 if (!LocksetInitialized) { 02046 CurrBlockInfo->EntrySet = PrevLockset; 02047 LocksetInitialized = true; 02048 } else { 02049 intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, 02050 CurrBlockInfo->EntryLoc, 02051 LEK_LockedSomePredecessors); 02052 } 02053 } 02054 02055 // Skip rest of block if it's not reachable. 02056 if (!CurrBlockInfo->Reachable) 02057 continue; 02058 02059 // Process continue and break blocks. Assume that the lockset for the 02060 // resulting block is unaffected by any discrepancies in them. 02061 for (const auto *PrevBlock : SpecialBlocks) { 02062 int PrevBlockID = PrevBlock->getBlockID(); 02063 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 02064 02065 if (!LocksetInitialized) { 02066 CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet; 02067 LocksetInitialized = true; 02068 } else { 02069 // Determine whether this edge is a loop terminator for diagnostic 02070 // purposes. FIXME: A 'break' statement might be a loop terminator, but 02071 // it might also be part of a switch. Also, a subsequent destructor 02072 // might add to the lockset, in which case the real issue might be a 02073 // double lock on the other path. 02074 const Stmt *Terminator = PrevBlock->getTerminator(); 02075 bool IsLoop = Terminator && isa<ContinueStmt>(Terminator); 02076 02077 FactSet PrevLockset; 02078 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, 02079 PrevBlock, CurrBlock); 02080 02081 // Do not update EntrySet. 02082 intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, 02083 PrevBlockInfo->ExitLoc, 02084 IsLoop ? LEK_LockedSomeLoopIterations 02085 : LEK_LockedSomePredecessors, 02086 false); 02087 } 02088 } 02089 02090 BuildLockset LocksetBuilder(this, *CurrBlockInfo); 02091 02092 // Visit all the statements in the basic block. 02093 for (CFGBlock::const_iterator BI = CurrBlock->begin(), 02094 BE = CurrBlock->end(); BI != BE; ++BI) { 02095 switch (BI->getKind()) { 02096 case CFGElement::Statement: { 02097 CFGStmt CS = BI->castAs<CFGStmt>(); 02098 LocksetBuilder.Visit(const_cast<Stmt*>(CS.getStmt())); 02099 break; 02100 } 02101 // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now. 02102 case CFGElement::AutomaticObjectDtor: { 02103 CFGAutomaticObjDtor AD = BI->castAs<CFGAutomaticObjDtor>(); 02104 CXXDestructorDecl *DD = const_cast<CXXDestructorDecl *>( 02105 AD.getDestructorDecl(AC.getASTContext())); 02106 if (!DD->hasAttrs()) 02107 break; 02108 02109 // Create a dummy expression, 02110 VarDecl *VD = const_cast<VarDecl*>(AD.getVarDecl()); 02111 DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, 02112 AD.getTriggerStmt()->getLocEnd()); 02113 LocksetBuilder.handleCall(&DRE, DD); 02114 break; 02115 } 02116 default: 02117 break; 02118 } 02119 } 02120 CurrBlockInfo->ExitSet = LocksetBuilder.FSet; 02121 02122 // For every back edge from CurrBlock (the end of the loop) to another block 02123 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to 02124 // the one held at the beginning of FirstLoopBlock. We can look up the 02125 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map. 02126 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 02127 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 02128 02129 // if CurrBlock -> *SI is *not* a back edge 02130 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 02131 continue; 02132 02133 CFGBlock *FirstLoopBlock = *SI; 02134 CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()]; 02135 CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID]; 02136 intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet, 02137 PreLoop->EntryLoc, 02138 LEK_LockedSomeLoopIterations, 02139 false); 02140 } 02141 } 02142 02143 CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()]; 02144 CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()]; 02145 02146 // Skip the final check if the exit block is unreachable. 02147 if (!Final->Reachable) 02148 return; 02149 02150 // By default, we expect all locks held on entry to be held on exit. 02151 FactSet ExpectedExitSet = Initial->EntrySet; 02152 02153 // Adjust the expected exit set by adding or removing locks, as declared 02154 // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then 02155 // issue the appropriate warning. 02156 // FIXME: the location here is not quite right. 02157 for (const auto &Lock : ExclusiveLocksAcquired) 02158 ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>( 02159 Lock, LK_Exclusive, D->getLocation())); 02160 for (const auto &Lock : SharedLocksAcquired) 02161 ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>( 02162 Lock, LK_Shared, D->getLocation())); 02163 for (const auto &Lock : LocksReleased) 02164 ExpectedExitSet.removeLock(FactMan, Lock); 02165 02166 // FIXME: Should we call this function for all blocks which exit the function? 02167 intersectAndWarn(ExpectedExitSet, Final->ExitSet, 02168 Final->ExitLoc, 02169 LEK_LockedAtEndOfFunction, 02170 LEK_NotLockedAtEndOfFunction, 02171 false); 02172 02173 Handler.leaveFunction(CurrentFunction); 02174 } 02175 02176 02177 /// \brief Check a function's CFG for thread-safety violations. 02178 /// 02179 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 02180 /// at the end of each block, and issue warnings for thread safety violations. 02181 /// Each block in the CFG is traversed exactly once. 02182 void runThreadSafetyAnalysis(AnalysisDeclContext &AC, 02183 ThreadSafetyHandler &Handler) { 02184 ThreadSafetyAnalyzer Analyzer(Handler); 02185 Analyzer.runAnalysis(AC); 02186 } 02187 02188 /// \brief Helper function that returns a LockKind required for the given level 02189 /// of access. 02190 LockKind getLockKindFromAccessKind(AccessKind AK) { 02191 switch (AK) { 02192 case AK_Read : 02193 return LK_Shared; 02194 case AK_Written : 02195 return LK_Exclusive; 02196 } 02197 llvm_unreachable("Unknown AccessKind"); 02198 } 02199 02200 }} // end namespace clang::threadSafety