clang API Documentation

UninitializedValues.cpp
Go to the documentation of this file.
00001 //==- UninitializedValues.cpp - Find Uninitialized Values -------*- C++ --*-==//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file implements uninitialized values analysis for source-level CFGs.
00011 //
00012 //===----------------------------------------------------------------------===//
00013 
00014 #include "clang/AST/ASTContext.h"
00015 #include "clang/AST/Attr.h"
00016 #include "clang/AST/Decl.h"
00017 #include "clang/AST/StmtVisitor.h"
00018 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
00019 #include "clang/Analysis/Analyses/UninitializedValues.h"
00020 #include "clang/Analysis/AnalysisContext.h"
00021 #include "clang/Analysis/CFG.h"
00022 #include "clang/Analysis/DomainSpecific/ObjCNoReturn.h"
00023 #include "llvm/ADT/DenseMap.h"
00024 #include "llvm/ADT/Optional.h"
00025 #include "llvm/ADT/PackedVector.h"
00026 #include "llvm/ADT/SmallBitVector.h"
00027 #include "llvm/ADT/SmallVector.h"
00028 #include "llvm/Support/SaveAndRestore.h"
00029 #include <utility>
00030 
00031 using namespace clang;
00032 
00033 #define DEBUG_LOGGING 0
00034 
00035 static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) {
00036   if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() &&
00037       !vd->isExceptionVariable() && !vd->isInitCapture() &&
00038       vd->getDeclContext() == dc) {
00039     QualType ty = vd->getType();
00040     return ty->isScalarType() || ty->isVectorType();
00041   }
00042   return false;
00043 }
00044 
00045 //------------------------------------------------------------------------====//
00046 // DeclToIndex: a mapping from Decls we track to value indices.
00047 //====------------------------------------------------------------------------//
00048 
00049 namespace {
00050 class DeclToIndex {
00051   llvm::DenseMap<const VarDecl *, unsigned> map;
00052 public:
00053   DeclToIndex() {}
00054   
00055   /// Compute the actual mapping from declarations to bits.
00056   void computeMap(const DeclContext &dc);
00057   
00058   /// Return the number of declarations in the map.
00059   unsigned size() const { return map.size(); }
00060   
00061   /// Returns the bit vector index for a given declaration.
00062   Optional<unsigned> getValueIndex(const VarDecl *d) const;
00063 };
00064 }
00065 
00066 void DeclToIndex::computeMap(const DeclContext &dc) {
00067   unsigned count = 0;
00068   DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()),
00069                                                E(dc.decls_end());
00070   for ( ; I != E; ++I) {
00071     const VarDecl *vd = *I;
00072     if (isTrackedVar(vd, &dc))
00073       map[vd] = count++;
00074   }
00075 }
00076 
00077 Optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const {
00078   llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d);
00079   if (I == map.end())
00080     return None;
00081   return I->second;
00082 }
00083 
00084 //------------------------------------------------------------------------====//
00085 // CFGBlockValues: dataflow values for CFG blocks.
00086 //====------------------------------------------------------------------------//
00087 
00088 // These values are defined in such a way that a merge can be done using
00089 // a bitwise OR.
00090 enum Value { Unknown = 0x0,         /* 00 */
00091              Initialized = 0x1,     /* 01 */
00092              Uninitialized = 0x2,   /* 10 */
00093              MayUninitialized = 0x3 /* 11 */ };
00094 
00095 static bool isUninitialized(const Value v) {
00096   return v >= Uninitialized;
00097 }
00098 static bool isAlwaysUninit(const Value v) {
00099   return v == Uninitialized;
00100 }
00101 
00102 namespace {
00103 
00104 typedef llvm::PackedVector<Value, 2, llvm::SmallBitVector> ValueVector;
00105 
00106 class CFGBlockValues {
00107   const CFG &cfg;
00108   SmallVector<ValueVector, 8> vals;
00109   ValueVector scratch;
00110   DeclToIndex declToIndex;
00111 public:
00112   CFGBlockValues(const CFG &cfg);
00113 
00114   unsigned getNumEntries() const { return declToIndex.size(); }
00115   
00116   void computeSetOfDeclarations(const DeclContext &dc);  
00117   ValueVector &getValueVector(const CFGBlock *block) {
00118     return vals[block->getBlockID()];
00119   }
00120 
00121   void setAllScratchValues(Value V);
00122   void mergeIntoScratch(ValueVector const &source, bool isFirst);
00123   bool updateValueVectorWithScratch(const CFGBlock *block);
00124   
00125   bool hasNoDeclarations() const {
00126     return declToIndex.size() == 0;
00127   }
00128 
00129   void resetScratch();
00130   
00131   ValueVector::reference operator[](const VarDecl *vd);
00132 
00133   Value getValue(const CFGBlock *block, const CFGBlock *dstBlock,
00134                  const VarDecl *vd) {
00135     const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
00136     assert(idx.hasValue());
00137     return getValueVector(block)[idx.getValue()];
00138   }
00139 };  
00140 } // end anonymous namespace
00141 
00142 CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {}
00143 
00144 void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) {
00145   declToIndex.computeMap(dc);
00146   unsigned decls = declToIndex.size();
00147   scratch.resize(decls);
00148   unsigned n = cfg.getNumBlockIDs();
00149   if (!n)
00150     return;
00151   vals.resize(n);
00152   for (unsigned i = 0; i < n; ++i)
00153     vals[i].resize(decls);
00154 }
00155 
00156 #if DEBUG_LOGGING
00157 static void printVector(const CFGBlock *block, ValueVector &bv,
00158                         unsigned num) {
00159   llvm::errs() << block->getBlockID() << " :";
00160   for (unsigned i = 0; i < bv.size(); ++i) {
00161     llvm::errs() << ' ' << bv[i];
00162   }
00163   llvm::errs() << " : " << num << '\n';
00164 }
00165 #endif
00166 
00167 void CFGBlockValues::setAllScratchValues(Value V) {
00168   for (unsigned I = 0, E = scratch.size(); I != E; ++I)
00169     scratch[I] = V;
00170 }
00171 
00172 void CFGBlockValues::mergeIntoScratch(ValueVector const &source,
00173                                       bool isFirst) {
00174   if (isFirst)
00175     scratch = source;
00176   else
00177     scratch |= source;
00178 }
00179 
00180 bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) {
00181   ValueVector &dst = getValueVector(block);
00182   bool changed = (dst != scratch);
00183   if (changed)
00184     dst = scratch;
00185 #if DEBUG_LOGGING
00186   printVector(block, scratch, 0);
00187 #endif
00188   return changed;
00189 }
00190 
00191 void CFGBlockValues::resetScratch() {
00192   scratch.reset();
00193 }
00194 
00195 ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) {
00196   const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
00197   assert(idx.hasValue());
00198   return scratch[idx.getValue()];
00199 }
00200 
00201 //------------------------------------------------------------------------====//
00202 // Worklist: worklist for dataflow analysis.
00203 //====------------------------------------------------------------------------//
00204 
00205 namespace {
00206 class DataflowWorklist {
00207   PostOrderCFGView::iterator PO_I, PO_E;
00208   SmallVector<const CFGBlock *, 20> worklist;
00209   llvm::BitVector enqueuedBlocks;
00210 public:
00211   DataflowWorklist(const CFG &cfg, PostOrderCFGView &view)
00212     : PO_I(view.begin()), PO_E(view.end()),
00213       enqueuedBlocks(cfg.getNumBlockIDs(), true) {
00214         // Treat the first block as already analyzed.
00215         if (PO_I != PO_E) {
00216           assert(*PO_I == &cfg.getEntry());
00217           enqueuedBlocks[(*PO_I)->getBlockID()] = false;
00218           ++PO_I;
00219         }
00220       }
00221   
00222   void enqueueSuccessors(const CFGBlock *block);
00223   const CFGBlock *dequeue();
00224 };
00225 }
00226 
00227 void DataflowWorklist::enqueueSuccessors(const clang::CFGBlock *block) {
00228   for (CFGBlock::const_succ_iterator I = block->succ_begin(),
00229        E = block->succ_end(); I != E; ++I) {
00230     const CFGBlock *Successor = *I;
00231     if (!Successor || enqueuedBlocks[Successor->getBlockID()])
00232       continue;
00233     worklist.push_back(Successor);
00234     enqueuedBlocks[Successor->getBlockID()] = true;
00235   }
00236 }
00237 
00238 const CFGBlock *DataflowWorklist::dequeue() {
00239   const CFGBlock *B = nullptr;
00240 
00241   // First dequeue from the worklist.  This can represent
00242   // updates along backedges that we want propagated as quickly as possible.
00243   if (!worklist.empty())
00244     B = worklist.pop_back_val();
00245 
00246   // Next dequeue from the initial reverse post order.  This is the
00247   // theoretical ideal in the presence of no back edges.
00248   else if (PO_I != PO_E) {
00249     B = *PO_I;
00250     ++PO_I;
00251   }
00252   else {
00253     return nullptr;
00254   }
00255 
00256   assert(enqueuedBlocks[B->getBlockID()] == true);
00257   enqueuedBlocks[B->getBlockID()] = false;
00258   return B;
00259 }
00260 
00261 //------------------------------------------------------------------------====//
00262 // Classification of DeclRefExprs as use or initialization.
00263 //====------------------------------------------------------------------------//
00264 
00265 namespace {
00266 class FindVarResult {
00267   const VarDecl *vd;
00268   const DeclRefExpr *dr;
00269 public:
00270   FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {}
00271 
00272   const DeclRefExpr *getDeclRefExpr() const { return dr; }
00273   const VarDecl *getDecl() const { return vd; }
00274 };
00275 
00276 static const Expr *stripCasts(ASTContext &C, const Expr *Ex) {
00277   while (Ex) {
00278     Ex = Ex->IgnoreParenNoopCasts(C);
00279     if (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) {
00280       if (CE->getCastKind() == CK_LValueBitCast) {
00281         Ex = CE->getSubExpr();
00282         continue;
00283       }
00284     }
00285     break;
00286   }
00287   return Ex;
00288 }
00289 
00290 /// If E is an expression comprising a reference to a single variable, find that
00291 /// variable.
00292 static FindVarResult findVar(const Expr *E, const DeclContext *DC) {
00293   if (const DeclRefExpr *DRE =
00294         dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E)))
00295     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
00296       if (isTrackedVar(VD, DC))
00297         return FindVarResult(VD, DRE);
00298   return FindVarResult(nullptr, nullptr);
00299 }
00300 
00301 /// \brief Classify each DeclRefExpr as an initialization or a use. Any
00302 /// DeclRefExpr which isn't explicitly classified will be assumed to have
00303 /// escaped the analysis and will be treated as an initialization.
00304 class ClassifyRefs : public StmtVisitor<ClassifyRefs> {
00305 public:
00306   enum Class {
00307     Init,
00308     Use,
00309     SelfInit,
00310     Ignore
00311   };
00312 
00313 private:
00314   const DeclContext *DC;
00315   llvm::DenseMap<const DeclRefExpr*, Class> Classification;
00316 
00317   bool isTrackedVar(const VarDecl *VD) const {
00318     return ::isTrackedVar(VD, DC);
00319   }
00320 
00321   void classify(const Expr *E, Class C);
00322 
00323 public:
00324   ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {}
00325 
00326   void VisitDeclStmt(DeclStmt *DS);
00327   void VisitUnaryOperator(UnaryOperator *UO);
00328   void VisitBinaryOperator(BinaryOperator *BO);
00329   void VisitCallExpr(CallExpr *CE);
00330   void VisitCastExpr(CastExpr *CE);
00331 
00332   void operator()(Stmt *S) { Visit(S); }
00333 
00334   Class get(const DeclRefExpr *DRE) const {
00335     llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I
00336         = Classification.find(DRE);
00337     if (I != Classification.end())
00338       return I->second;
00339 
00340     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
00341     if (!VD || !isTrackedVar(VD))
00342       return Ignore;
00343 
00344     return Init;
00345   }
00346 };
00347 }
00348 
00349 static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) {
00350   if (Expr *Init = VD->getInit()) {
00351     const DeclRefExpr *DRE
00352       = dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init));
00353     if (DRE && DRE->getDecl() == VD)
00354       return DRE;
00355   }
00356   return nullptr;
00357 }
00358 
00359 void ClassifyRefs::classify(const Expr *E, Class C) {
00360   // The result of a ?: could also be an lvalue.
00361   E = E->IgnoreParens();
00362   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
00363     classify(CO->getTrueExpr(), C);
00364     classify(CO->getFalseExpr(), C);
00365     return;
00366   }
00367 
00368   if (const BinaryConditionalOperator *BCO =
00369           dyn_cast<BinaryConditionalOperator>(E)) {
00370     classify(BCO->getFalseExpr(), C);
00371     return;
00372   }
00373 
00374   if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
00375     classify(OVE->getSourceExpr(), C);
00376     return;
00377   }
00378 
00379   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
00380     if (BO->getOpcode() == BO_Comma)
00381       classify(BO->getRHS(), C);
00382     return;
00383   }
00384 
00385   FindVarResult Var = findVar(E, DC);
00386   if (const DeclRefExpr *DRE = Var.getDeclRefExpr())
00387     Classification[DRE] = std::max(Classification[DRE], C);
00388 }
00389 
00390 void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) {
00391   for (auto *DI : DS->decls()) {
00392     VarDecl *VD = dyn_cast<VarDecl>(DI);
00393     if (VD && isTrackedVar(VD))
00394       if (const DeclRefExpr *DRE = getSelfInitExpr(VD))
00395         Classification[DRE] = SelfInit;
00396   }
00397 }
00398 
00399 void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) {
00400   // Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this
00401   // is not a compound-assignment, we will treat it as initializing the variable
00402   // when TransferFunctions visits it. A compound-assignment does not affect
00403   // whether a variable is uninitialized, and there's no point counting it as a
00404   // use.
00405   if (BO->isCompoundAssignmentOp())
00406     classify(BO->getLHS(), Use);
00407   else if (BO->getOpcode() == BO_Assign)
00408     classify(BO->getLHS(), Ignore);
00409 }
00410 
00411 void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) {
00412   // Increment and decrement are uses despite there being no lvalue-to-rvalue
00413   // conversion.
00414   if (UO->isIncrementDecrementOp())
00415     classify(UO->getSubExpr(), Use);
00416 }
00417 
00418 void ClassifyRefs::VisitCallExpr(CallExpr *CE) {
00419   // Classify arguments to std::move as used.
00420   if (CE->getNumArgs() == 1) {
00421     if (FunctionDecl *FD = CE->getDirectCallee()) {
00422       if (FD->getIdentifier() && FD->getIdentifier()->isStr("move")) {
00423         classify(CE->getArg(0), Use);
00424         return;
00425       }
00426     }
00427   }
00428 
00429   // If a value is passed by const reference to a function, we should not assume
00430   // that it is initialized by the call, and we conservatively do not assume
00431   // that it is used.
00432   for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
00433        I != E; ++I)
00434     if ((*I)->getType().isConstQualified() && (*I)->isGLValue())
00435       classify(*I, Ignore);
00436 }
00437 
00438 void ClassifyRefs::VisitCastExpr(CastExpr *CE) {
00439   if (CE->getCastKind() == CK_LValueToRValue)
00440     classify(CE->getSubExpr(), Use);
00441   else if (CStyleCastExpr *CSE = dyn_cast<CStyleCastExpr>(CE)) {
00442     if (CSE->getType()->isVoidType()) {
00443       // Squelch any detected load of an uninitialized value if
00444       // we cast it to void.
00445       // e.g. (void) x;
00446       classify(CSE->getSubExpr(), Ignore);
00447     }
00448   }
00449 }
00450 
00451 //------------------------------------------------------------------------====//
00452 // Transfer function for uninitialized values analysis.
00453 //====------------------------------------------------------------------------//
00454 
00455 namespace {
00456 class TransferFunctions : public StmtVisitor<TransferFunctions> {
00457   CFGBlockValues &vals;
00458   const CFG &cfg;
00459   const CFGBlock *block;
00460   AnalysisDeclContext &ac;
00461   const ClassifyRefs &classification;
00462   ObjCNoReturn objCNoRet;
00463   UninitVariablesHandler &handler;
00464 
00465 public:
00466   TransferFunctions(CFGBlockValues &vals, const CFG &cfg,
00467                     const CFGBlock *block, AnalysisDeclContext &ac,
00468                     const ClassifyRefs &classification,
00469                     UninitVariablesHandler &handler)
00470     : vals(vals), cfg(cfg), block(block), ac(ac),
00471       classification(classification), objCNoRet(ac.getASTContext()),
00472       handler(handler) {}
00473 
00474   void reportUse(const Expr *ex, const VarDecl *vd);
00475 
00476   void VisitBinaryOperator(BinaryOperator *bo);
00477   void VisitBlockExpr(BlockExpr *be);
00478   void VisitCallExpr(CallExpr *ce);
00479   void VisitDeclRefExpr(DeclRefExpr *dr);
00480   void VisitDeclStmt(DeclStmt *ds);
00481   void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS);
00482   void VisitObjCMessageExpr(ObjCMessageExpr *ME);
00483 
00484   bool isTrackedVar(const VarDecl *vd) {
00485     return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl()));
00486   }
00487 
00488   FindVarResult findVar(const Expr *ex) {
00489     return ::findVar(ex, cast<DeclContext>(ac.getDecl()));
00490   }
00491 
00492   UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) {
00493     UninitUse Use(ex, isAlwaysUninit(v));
00494 
00495     assert(isUninitialized(v));
00496     if (Use.getKind() == UninitUse::Always)
00497       return Use;
00498 
00499     // If an edge which leads unconditionally to this use did not initialize
00500     // the variable, we can say something stronger than 'may be uninitialized':
00501     // we can say 'either it's used uninitialized or you have dead code'.
00502     //
00503     // We track the number of successors of a node which have been visited, and
00504     // visit a node once we have visited all of its successors. Only edges where
00505     // the variable might still be uninitialized are followed. Since a variable
00506     // can't transfer from being initialized to being uninitialized, this will
00507     // trace out the subgraph which inevitably leads to the use and does not
00508     // initialize the variable. We do not want to skip past loops, since their
00509     // non-termination might be correlated with the initialization condition.
00510     //
00511     // For example:
00512     //
00513     //         void f(bool a, bool b) {
00514     // block1:   int n;
00515     //           if (a) {
00516     // block2:     if (b)
00517     // block3:       n = 1;
00518     // block4:   } else if (b) {
00519     // block5:     while (!a) {
00520     // block6:       do_work(&a);
00521     //               n = 2;
00522     //             }
00523     //           }
00524     // block7:   if (a)
00525     // block8:     g();
00526     // block9:   return n;
00527     //         }
00528     //
00529     // Starting from the maybe-uninitialized use in block 9:
00530     //  * Block 7 is not visited because we have only visited one of its two
00531     //    successors.
00532     //  * Block 8 is visited because we've visited its only successor.
00533     // From block 8:
00534     //  * Block 7 is visited because we've now visited both of its successors.
00535     // From block 7:
00536     //  * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all
00537     //    of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively).
00538     //  * Block 3 is not visited because it initializes 'n'.
00539     // Now the algorithm terminates, having visited blocks 7 and 8, and having
00540     // found the frontier is blocks 2, 4, and 5.
00541     //
00542     // 'n' is definitely uninitialized for two edges into block 7 (from blocks 2
00543     // and 4), so we report that any time either of those edges is taken (in
00544     // each case when 'b == false'), 'n' is used uninitialized.
00545     SmallVector<const CFGBlock*, 32> Queue;
00546     SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0);
00547     Queue.push_back(block);
00548     // Specify that we've already visited all successors of the starting block.
00549     // This has the dual purpose of ensuring we never add it to the queue, and
00550     // of marking it as not being a candidate element of the frontier.
00551     SuccsVisited[block->getBlockID()] = block->succ_size();
00552     while (!Queue.empty()) {
00553       const CFGBlock *B = Queue.pop_back_val();
00554 
00555       // If the use is always reached from the entry block, make a note of that.
00556       if (B == &cfg.getEntry())
00557         Use.setUninitAfterCall();
00558 
00559       for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end();
00560            I != E; ++I) {
00561         const CFGBlock *Pred = *I;
00562         if (!Pred)
00563           continue;
00564         
00565         Value AtPredExit = vals.getValue(Pred, B, vd);
00566         if (AtPredExit == Initialized)
00567           // This block initializes the variable.
00568           continue;
00569         if (AtPredExit == MayUninitialized &&
00570             vals.getValue(B, nullptr, vd) == Uninitialized) {
00571           // This block declares the variable (uninitialized), and is reachable
00572           // from a block that initializes the variable. We can't guarantee to
00573           // give an earlier location for the diagnostic (and it appears that
00574           // this code is intended to be reachable) so give a diagnostic here
00575           // and go no further down this path.
00576           Use.setUninitAfterDecl();
00577           continue;
00578         }
00579 
00580         unsigned &SV = SuccsVisited[Pred->getBlockID()];
00581         if (!SV) {
00582           // When visiting the first successor of a block, mark all NULL
00583           // successors as having been visited.
00584           for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(),
00585                                              SE = Pred->succ_end();
00586                SI != SE; ++SI)
00587             if (!*SI)
00588               ++SV;
00589         }
00590 
00591         if (++SV == Pred->succ_size())
00592           // All paths from this block lead to the use and don't initialize the
00593           // variable.
00594           Queue.push_back(Pred);
00595       }
00596     }
00597 
00598     // Scan the frontier, looking for blocks where the variable was
00599     // uninitialized.
00600     for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
00601       const CFGBlock *Block = *BI;
00602       unsigned BlockID = Block->getBlockID();
00603       const Stmt *Term = Block->getTerminator();
00604       if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() &&
00605           Term) {
00606         // This block inevitably leads to the use. If we have an edge from here
00607         // to a post-dominator block, and the variable is uninitialized on that
00608         // edge, we have found a bug.
00609         for (CFGBlock::const_succ_iterator I = Block->succ_begin(),
00610              E = Block->succ_end(); I != E; ++I) {
00611           const CFGBlock *Succ = *I;
00612           if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() &&
00613               vals.getValue(Block, Succ, vd) == Uninitialized) {
00614             // Switch cases are a special case: report the label to the caller
00615             // as the 'terminator', not the switch statement itself. Suppress
00616             // situations where no label matched: we can't be sure that's
00617             // possible.
00618             if (isa<SwitchStmt>(Term)) {
00619               const Stmt *Label = Succ->getLabel();
00620               if (!Label || !isa<SwitchCase>(Label))
00621                 // Might not be possible.
00622                 continue;
00623               UninitUse::Branch Branch;
00624               Branch.Terminator = Label;
00625               Branch.Output = 0; // Ignored.
00626               Use.addUninitBranch(Branch);
00627             } else {
00628               UninitUse::Branch Branch;
00629               Branch.Terminator = Term;
00630               Branch.Output = I - Block->succ_begin();
00631               Use.addUninitBranch(Branch);
00632             }
00633           }
00634         }
00635       }
00636     }
00637 
00638     return Use;
00639   }
00640 };
00641 }
00642 
00643 void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) {
00644   Value v = vals[vd];
00645   if (isUninitialized(v))
00646     handler.handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
00647 }
00648 
00649 void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) {
00650   // This represents an initialization of the 'element' value.
00651   if (DeclStmt *DS = dyn_cast<DeclStmt>(FS->getElement())) {
00652     const VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
00653     if (isTrackedVar(VD))
00654       vals[VD] = Initialized;
00655   }
00656 }
00657 
00658 void TransferFunctions::VisitBlockExpr(BlockExpr *be) {
00659   const BlockDecl *bd = be->getBlockDecl();
00660   for (const auto &I : bd->captures()) {
00661     const VarDecl *vd = I.getVariable();
00662     if (!isTrackedVar(vd))
00663       continue;
00664     if (I.isByRef()) {
00665       vals[vd] = Initialized;
00666       continue;
00667     }
00668     reportUse(be, vd);
00669   }
00670 }
00671 
00672 void TransferFunctions::VisitCallExpr(CallExpr *ce) {
00673   if (Decl *Callee = ce->getCalleeDecl()) {
00674     if (Callee->hasAttr<ReturnsTwiceAttr>()) {
00675       // After a call to a function like setjmp or vfork, any variable which is
00676       // initialized anywhere within this function may now be initialized. For
00677       // now, just assume such a call initializes all variables.  FIXME: Only
00678       // mark variables as initialized if they have an initializer which is
00679       // reachable from here.
00680       vals.setAllScratchValues(Initialized);
00681     }
00682     else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) {
00683       // Functions labeled like "analyzer_noreturn" are often used to denote
00684       // "panic" functions that in special debug situations can still return,
00685       // but for the most part should not be treated as returning.  This is a
00686       // useful annotation borrowed from the static analyzer that is useful for
00687       // suppressing branch-specific false positives when we call one of these
00688       // functions but keep pretending the path continues (when in reality the
00689       // user doesn't care).
00690       vals.setAllScratchValues(Unknown);
00691     }
00692   }
00693 }
00694 
00695 void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) {
00696   switch (classification.get(dr)) {
00697   case ClassifyRefs::Ignore:
00698     break;
00699   case ClassifyRefs::Use:
00700     reportUse(dr, cast<VarDecl>(dr->getDecl()));
00701     break;
00702   case ClassifyRefs::Init:
00703     vals[cast<VarDecl>(dr->getDecl())] = Initialized;
00704     break;
00705   case ClassifyRefs::SelfInit:
00706       handler.handleSelfInit(cast<VarDecl>(dr->getDecl()));
00707     break;
00708   }
00709 }
00710 
00711 void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) {
00712   if (BO->getOpcode() == BO_Assign) {
00713     FindVarResult Var = findVar(BO->getLHS());
00714     if (const VarDecl *VD = Var.getDecl())
00715       vals[VD] = Initialized;
00716   }
00717 }
00718 
00719 void TransferFunctions::VisitDeclStmt(DeclStmt *DS) {
00720   for (auto *DI : DS->decls()) {
00721     VarDecl *VD = dyn_cast<VarDecl>(DI);
00722     if (VD && isTrackedVar(VD)) {
00723       if (getSelfInitExpr(VD)) {
00724         // If the initializer consists solely of a reference to itself, we
00725         // explicitly mark the variable as uninitialized. This allows code
00726         // like the following:
00727         //
00728         //   int x = x;
00729         //
00730         // to deliberately leave a variable uninitialized. Different analysis
00731         // clients can detect this pattern and adjust their reporting
00732         // appropriately, but we need to continue to analyze subsequent uses
00733         // of the variable.
00734         vals[VD] = Uninitialized;
00735       } else if (VD->getInit()) {
00736         // Treat the new variable as initialized.
00737         vals[VD] = Initialized;
00738       } else {
00739         // No initializer: the variable is now uninitialized. This matters
00740         // for cases like:
00741         //   while (...) {
00742         //     int n;
00743         //     use(n);
00744         //     n = 0;
00745         //   }
00746         // FIXME: Mark the variable as uninitialized whenever its scope is
00747         // left, since its scope could be re-entered by a jump over the
00748         // declaration.
00749         vals[VD] = Uninitialized;
00750       }
00751     }
00752   }
00753 }
00754 
00755 void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) {
00756   // If the Objective-C message expression is an implicit no-return that
00757   // is not modeled in the CFG, set the tracked dataflow values to Unknown.
00758   if (objCNoRet.isImplicitNoReturn(ME)) {
00759     vals.setAllScratchValues(Unknown);
00760   }
00761 }
00762 
00763 //------------------------------------------------------------------------====//
00764 // High-level "driver" logic for uninitialized values analysis.
00765 //====------------------------------------------------------------------------//
00766 
00767 static bool runOnBlock(const CFGBlock *block, const CFG &cfg,
00768                        AnalysisDeclContext &ac, CFGBlockValues &vals,
00769                        const ClassifyRefs &classification,
00770                        llvm::BitVector &wasAnalyzed,
00771                        UninitVariablesHandler &handler) {
00772   wasAnalyzed[block->getBlockID()] = true;
00773   vals.resetScratch();
00774   // Merge in values of predecessor blocks.
00775   bool isFirst = true;
00776   for (CFGBlock::const_pred_iterator I = block->pred_begin(),
00777        E = block->pred_end(); I != E; ++I) {
00778     const CFGBlock *pred = *I;
00779     if (!pred)
00780       continue;
00781     if (wasAnalyzed[pred->getBlockID()]) {
00782       vals.mergeIntoScratch(vals.getValueVector(pred), isFirst);
00783       isFirst = false;
00784     }
00785   }
00786   // Apply the transfer function.
00787   TransferFunctions tf(vals, cfg, block, ac, classification, handler);
00788   for (CFGBlock::const_iterator I = block->begin(), E = block->end(); 
00789        I != E; ++I) {
00790     if (Optional<CFGStmt> cs = I->getAs<CFGStmt>())
00791       tf.Visit(const_cast<Stmt*>(cs->getStmt()));
00792   }
00793   return vals.updateValueVectorWithScratch(block);
00794 }
00795 
00796 /// PruneBlocksHandler is a special UninitVariablesHandler that is used
00797 /// to detect when a CFGBlock has any *potential* use of an uninitialized
00798 /// variable.  It is mainly used to prune out work during the final
00799 /// reporting pass.
00800 namespace {
00801 struct PruneBlocksHandler : public UninitVariablesHandler {
00802   PruneBlocksHandler(unsigned numBlocks)
00803     : hadUse(numBlocks, false), hadAnyUse(false),
00804       currentBlock(0) {}
00805 
00806   virtual ~PruneBlocksHandler() {}
00807 
00808   /// Records if a CFGBlock had a potential use of an uninitialized variable.
00809   llvm::BitVector hadUse;
00810 
00811   /// Records if any CFGBlock had a potential use of an uninitialized variable.
00812   bool hadAnyUse;
00813 
00814   /// The current block to scribble use information.
00815   unsigned currentBlock;
00816 
00817   void handleUseOfUninitVariable(const VarDecl *vd,
00818                                  const UninitUse &use) override {
00819     hadUse[currentBlock] = true;
00820     hadAnyUse = true;
00821   }
00822 
00823   /// Called when the uninitialized variable analysis detects the
00824   /// idiom 'int x = x'.  All other uses of 'x' within the initializer
00825   /// are handled by handleUseOfUninitVariable.
00826   void handleSelfInit(const VarDecl *vd) override {
00827     hadUse[currentBlock] = true;
00828     hadAnyUse = true;
00829   }
00830 };
00831 }
00832 
00833 void clang::runUninitializedVariablesAnalysis(
00834     const DeclContext &dc,
00835     const CFG &cfg,
00836     AnalysisDeclContext &ac,
00837     UninitVariablesHandler &handler,
00838     UninitVariablesAnalysisStats &stats) {
00839   CFGBlockValues vals(cfg);
00840   vals.computeSetOfDeclarations(dc);
00841   if (vals.hasNoDeclarations())
00842     return;
00843 
00844   stats.NumVariablesAnalyzed = vals.getNumEntries();
00845 
00846   // Precompute which expressions are uses and which are initializations.
00847   ClassifyRefs classification(ac);
00848   cfg.VisitBlockStmts(classification);
00849 
00850   // Mark all variables uninitialized at the entry.
00851   const CFGBlock &entry = cfg.getEntry();
00852   ValueVector &vec = vals.getValueVector(&entry);
00853   const unsigned n = vals.getNumEntries();
00854   for (unsigned j = 0; j < n ; ++j) {
00855     vec[j] = Uninitialized;
00856   }
00857 
00858   // Proceed with the workist.
00859   DataflowWorklist worklist(cfg, *ac.getAnalysis<PostOrderCFGView>());
00860   llvm::BitVector previouslyVisited(cfg.getNumBlockIDs());
00861   worklist.enqueueSuccessors(&cfg.getEntry());
00862   llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false);
00863   wasAnalyzed[cfg.getEntry().getBlockID()] = true;
00864   PruneBlocksHandler PBH(cfg.getNumBlockIDs());
00865 
00866   while (const CFGBlock *block = worklist.dequeue()) {
00867     PBH.currentBlock = block->getBlockID();
00868 
00869     // Did the block change?
00870     bool changed = runOnBlock(block, cfg, ac, vals,
00871                               classification, wasAnalyzed, PBH);
00872     ++stats.NumBlockVisits;
00873     if (changed || !previouslyVisited[block->getBlockID()])
00874       worklist.enqueueSuccessors(block);    
00875     previouslyVisited[block->getBlockID()] = true;
00876   }
00877 
00878   if (!PBH.hadAnyUse)
00879     return;
00880 
00881   // Run through the blocks one more time, and report uninitialized variables.
00882   for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
00883     const CFGBlock *block = *BI;
00884     if (PBH.hadUse[block->getBlockID()]) {
00885       runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, handler);
00886       ++stats.NumBlockVisits;
00887     }
00888   }
00889 }
00890 
00891 UninitVariablesHandler::~UninitVariablesHandler() {}