fixed.h

00001 /*
00002 ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
00003 ** Copyright (C) 2003-2005 M. Bakker, Ahead Software AG, http://www.nero.com
00004 **  
00005 ** This program is free software; you can redistribute it and/or modify
00006 ** it under the terms of the GNU General Public License as published by
00007 ** the Free Software Foundation; either version 2 of the License, or
00008 ** (at your option) any later version.
00009 ** 
00010 ** This program is distributed in the hope that it will be useful,
00011 ** but WITHOUT ANY WARRANTY; without even the implied warranty of
00012 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00013 ** GNU General Public License for more details.
00014 ** 
00015 ** You should have received a copy of the GNU General Public License
00016 ** along with this program; if not, write to the Free Software 
00017 ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
00018 **
00019 ** Any non-GPL usage of this software or parts of this software is strictly
00020 ** forbidden.
00021 **
00022 ** Software using this code must display the following message visibly in the
00023 ** software:
00024 ** "FAAD2 AAC/HE-AAC/HE-AACv2/DRM decoder (c) Ahead Software, www.nero.com"
00025 ** in, for example, the about-box or help/startup screen.
00026 **
00027 ** Commercial non-GPL licensing of this software is possible.
00028 ** For more info contact Ahead Software through [email protected].
00029 **
00030 ** $Id: fixed.h,v 1.2 2005/11/01 21:41:43 gabest Exp $
00031 **/
00032 
00033 #ifndef __FIXED_H__
00034 #define __FIXED_H__
00035 
00036 #ifdef __cplusplus
00037 extern "C" {
00038 #endif
00039 
00040 #if defined(_WIN32_WCE) && defined(_ARM_)
00041 #include <cmnintrin.h>
00042 #endif
00043 
00044 
00045 #define COEF_BITS 28
00046 #define COEF_PRECISION (1 << COEF_BITS)
00047 #define REAL_BITS 14 // MAXIMUM OF 14 FOR FIXED POINT SBR
00048 #define REAL_PRECISION (1 << REAL_BITS)
00049 
00050 /* FRAC is the fractional only part of the fixed point number [0.0..1.0) */
00051 #define FRAC_SIZE 32 /* frac is a 32 bit integer */
00052 #define FRAC_BITS 31
00053 #define FRAC_PRECISION ((uint32_t)(1 << FRAC_BITS))
00054 #define FRAC_MAX 0x7FFFFFFF
00055 
00056 typedef int32_t real_t;
00057 
00058 
00059 #define REAL_CONST(A) (((A) >= 0) ? ((real_t)((A)*(REAL_PRECISION)+0.5)) : ((real_t)((A)*(REAL_PRECISION)-0.5)))
00060 #define COEF_CONST(A) (((A) >= 0) ? ((real_t)((A)*(COEF_PRECISION)+0.5)) : ((real_t)((A)*(COEF_PRECISION)-0.5)))
00061 #define FRAC_CONST(A) (((A) == 1.00) ? ((real_t)FRAC_MAX) : (((A) >= 0) ? ((real_t)((A)*(FRAC_PRECISION)+0.5)) : ((real_t)((A)*(FRAC_PRECISION)-0.5))))
00062 //#define FRAC_CONST(A) (((A) >= 0) ? ((real_t)((A)*(FRAC_PRECISION)+0.5)) : ((real_t)((A)*(FRAC_PRECISION)-0.5)))
00063 
00064 #define Q2_BITS 22
00065 #define Q2_PRECISION (1 << Q2_BITS)
00066 #define Q2_CONST(A) (((A) >= 0) ? ((real_t)((A)*(Q2_PRECISION)+0.5)) : ((real_t)((A)*(Q2_PRECISION)-0.5)))
00067 
00068 #if defined(_WIN32) && !defined(_WIN32_WCE)
00069 
00070 /* multiply with real shift */
00071 static INLINE real_t MUL_R(real_t A, real_t B)
00072 {
00073     _asm {
00074         mov eax,A
00075         imul B
00076         shrd eax,edx,REAL_BITS
00077     }
00078 }
00079 
00080 /* multiply with coef shift */
00081 static INLINE real_t MUL_C(real_t A, real_t B)
00082 {
00083     _asm {
00084         mov eax,A
00085         imul B
00086         shrd eax,edx,COEF_BITS
00087     }
00088 }
00089 
00090 static INLINE real_t MUL_Q2(real_t A, real_t B)
00091 {
00092     _asm {
00093         mov eax,A
00094         imul B
00095         shrd eax,edx,Q2_BITS
00096     }
00097 }
00098 
00099 static INLINE real_t MUL_SHIFT6(real_t A, real_t B)
00100 {
00101     _asm {
00102         mov eax,A
00103         imul B
00104         shrd eax,edx,6
00105     }
00106 }
00107 
00108 static INLINE real_t MUL_SHIFT23(real_t A, real_t B)
00109 {
00110     _asm {
00111         mov eax,A
00112         imul B
00113         shrd eax,edx,23
00114     }
00115 }
00116 
00117 #if 1
00118 static INLINE real_t _MulHigh(real_t A, real_t B)
00119 {
00120     _asm {
00121         mov eax,A
00122         imul B
00123         mov eax,edx
00124     }
00125 }
00126 
00127 /* multiply with fractional shift */
00128 static INLINE real_t MUL_F(real_t A, real_t B)
00129 {
00130     return _MulHigh(A,B) << (FRAC_SIZE-FRAC_BITS);
00131 }
00132 
00133 /* Complex multiplication */
00134 static INLINE void ComplexMult(real_t *y1, real_t *y2,
00135     real_t x1, real_t x2, real_t c1, real_t c2)
00136 {
00137     *y1 = (_MulHigh(x1, c1) + _MulHigh(x2, c2))<<(FRAC_SIZE-FRAC_BITS);
00138     *y2 = (_MulHigh(x2, c1) - _MulHigh(x1, c2))<<(FRAC_SIZE-FRAC_BITS);
00139 }
00140 #else
00141 static INLINE real_t MUL_F(real_t A, real_t B)
00142 {
00143     _asm {
00144         mov eax,A
00145         imul B
00146         shrd eax,edx,FRAC_BITS
00147     }
00148 }
00149 
00150 /* Complex multiplication */
00151 static INLINE void ComplexMult(real_t *y1, real_t *y2,
00152     real_t x1, real_t x2, real_t c1, real_t c2)
00153 {
00154     *y1 = MUL_F(x1, c1) + MUL_F(x2, c2);
00155     *y2 = MUL_F(x2, c1) - MUL_F(x1, c2);
00156 }
00157 #endif
00158 
00159 #elif defined(__GNUC__) && defined (__arm__)
00160 
00161 /* taken from MAD */
00162 #define arm_mul(x, y, SCALEBITS) \
00163 ({ \
00164     uint32_t __hi; \
00165     uint32_t __lo; \
00166     uint32_t __result; \
00167     asm("smull  %0, %1, %3, %4\n\t" \
00168         "movs   %0, %0, lsr %5\n\t" \
00169         "adc    %2, %0, %1, lsl %6" \
00170         : "=&r" (__lo), "=&r" (__hi), "=r" (__result) \
00171         : "%r" (x), "r" (y), \
00172         "M" (SCALEBITS), "M" (32 - (SCALEBITS)) \
00173         : "cc"); \
00174         __result; \
00175 })
00176 
00177 static INLINE real_t MUL_R(real_t A, real_t B)
00178 {
00179     return arm_mul(A, B, REAL_BITS);
00180 }
00181 
00182 static INLINE real_t MUL_C(real_t A, real_t B)
00183 {
00184     return arm_mul(A, B, COEF_BITS);
00185 }
00186 
00187 static INLINE real_t MUL_Q2(real_t A, real_t B)
00188 {
00189     return arm_mul(A, B, Q2_BITS);
00190 }
00191 
00192 static INLINE real_t MUL_SHIFT6(real_t A, real_t B)
00193 {
00194     return arm_mul(A, B, 6);
00195 }
00196 
00197 static INLINE real_t MUL_SHIFT23(real_t A, real_t B)
00198 {
00199     return arm_mul(A, B, 23);
00200 }
00201 
00202 static INLINE real_t _MulHigh(real_t x, real_t y)
00203 {
00204     uint32_t __lo;
00205     uint32_t __hi;
00206     asm("smull\t%0, %1, %2, %3"
00207         : "=&r"(__lo),"=&r"(__hi)
00208         : "%r"(x),"r"(y)
00209         : "cc");
00210     return __hi;
00211 }
00212 
00213 static INLINE real_t MUL_F(real_t A, real_t B)
00214 {
00215     return _MulHigh(A, B) << (FRAC_SIZE-FRAC_BITS);
00216 }
00217 
00218 /* Complex multiplication */
00219 static INLINE void ComplexMult(real_t *y1, real_t *y2,
00220     real_t x1, real_t x2, real_t c1, real_t c2)
00221 {
00222     int32_t tmp, yt1, yt2;
00223     asm("smull %0, %1, %4, %6\n\t"
00224         "smlal %0, %1, %5, %7\n\t"
00225         "rsb   %3, %4, #0\n\t"
00226         "smull %0, %2, %5, %6\n\t"
00227         "smlal %0, %2, %3, %7"
00228         : "=&r" (tmp), "=&r" (yt1), "=&r" (yt2), "=r" (x1)
00229         : "3" (x1), "r" (x2), "r" (c1), "r" (c2)
00230         : "cc" );
00231     *y1 = yt1 << (FRAC_SIZE-FRAC_BITS);
00232     *y2 = yt2 << (FRAC_SIZE-FRAC_BITS);
00233 }
00234 
00235 #else
00236 
00237   /* multiply with real shift */
00238   #define MUL_R(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (REAL_BITS-1))) >> REAL_BITS)
00239   /* multiply with coef shift */
00240   #define MUL_C(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (COEF_BITS-1))) >> COEF_BITS)
00241   /* multiply with fractional shift */
00242 #if defined(_WIN32_WCE) && defined(_ARM_)
00243   /* eVC for PocketPC has an intrinsic function that returns only the high 32 bits of a 32x32 bit multiply */
00244   static INLINE real_t MUL_F(real_t A, real_t B)
00245   {
00246       return _MulHigh(A,B) << (32-FRAC_BITS);
00247   }
00248 #else
00249   #define _MulHigh(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (FRAC_SIZE-1))) >> FRAC_SIZE)
00250   #define MUL_F(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (FRAC_BITS-1))) >> FRAC_BITS)
00251 #endif
00252   #define MUL_Q2(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (Q2_BITS-1))) >> Q2_BITS)
00253   #define MUL_SHIFT6(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (6-1))) >> 6)
00254   #define MUL_SHIFT23(A,B) (real_t)(((int64_t)(A)*(int64_t)(B)+(1 << (23-1))) >> 23)
00255 
00256 /* Complex multiplication */
00257 static INLINE void ComplexMult(real_t *y1, real_t *y2,
00258     real_t x1, real_t x2, real_t c1, real_t c2)
00259 {
00260     *y1 = (_MulHigh(x1, c1) + _MulHigh(x2, c2))<<(FRAC_SIZE-FRAC_BITS);
00261     *y2 = (_MulHigh(x2, c1) - _MulHigh(x1, c2))<<(FRAC_SIZE-FRAC_BITS);
00262 }
00263 
00264 #endif
00265 
00266 
00267 
00268 #ifdef __cplusplus
00269 }
00270 #endif
00271 #endif

Generated on Tue Dec 13 14:47:31 2005 for guliverkli by  doxygen 1.4.5