00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033 #include "common.h"
00034 #include "structs.h"
00035
00036 #ifdef MAIN_DEC
00037
00038 #include "syntax.h"
00039 #include "ic_predict.h"
00040 #include "pns.h"
00041
00042
00043 static void flt_round(float32_t *pf)
00044 {
00045 int32_t flg;
00046 uint32_t tmp, tmp1, tmp2;
00047
00048 tmp = *(uint32_t*)pf;
00049 flg = tmp & (uint32_t)0x00008000;
00050 tmp &= (uint32_t)0xffff0000;
00051 tmp1 = tmp;
00052
00053 if (flg)
00054 {
00055 tmp &= (uint32_t)0xff800000;
00056 tmp |= (uint32_t)0x00010000;
00057 tmp2 = tmp;
00058 tmp &= (uint32_t)0xff800000;
00059
00060 *pf = *(float32_t*)&tmp1 + *(float32_t*)&tmp2 - *(float32_t*)&tmp;
00061 } else {
00062 *pf = *(float32_t*)&tmp;
00063 }
00064 }
00065
00066 static int16_t quant_pred(float32_t x)
00067 {
00068 int16_t q;
00069 uint32_t *tmp = (uint32_t*)&x;
00070
00071 q = (int16_t)(*tmp>>16);
00072
00073 return q;
00074 }
00075
00076 static float32_t inv_quant_pred(int16_t q)
00077 {
00078 float32_t x;
00079 uint32_t *tmp = (uint32_t*)&x;
00080 *tmp = ((uint32_t)q)<<16;
00081
00082 return x;
00083 }
00084
00085 static void ic_predict(pred_state *state, real_t input, real_t *output, uint8_t pred)
00086 {
00087 uint16_t tmp;
00088 int16_t i, j;
00089 real_t dr1, predictedvalue;
00090 real_t e0, e1;
00091 real_t k1, k2;
00092
00093 real_t r[2];
00094 real_t COR[2];
00095 real_t VAR[2];
00096
00097 r[0] = inv_quant_pred(state->r[0]);
00098 r[1] = inv_quant_pred(state->r[1]);
00099 COR[0] = inv_quant_pred(state->COR[0]);
00100 COR[1] = inv_quant_pred(state->COR[1]);
00101 VAR[0] = inv_quant_pred(state->VAR[0]);
00102 VAR[1] = inv_quant_pred(state->VAR[1]);
00103
00104
00105 #if 1
00106 tmp = state->VAR[0];
00107 j = (tmp >> 7);
00108 i = tmp & 0x7f;
00109 if (j >= 128)
00110 {
00111 j -= 128;
00112 k1 = COR[0] * exp_table[j] * mnt_table[i];
00113 } else {
00114 k1 = REAL_CONST(0);
00115 }
00116 #else
00117
00118 {
00119 #define B 0.953125
00120 real_t c = COR[0];
00121 real_t v = VAR[0];
00122 real_t tmp;
00123 if (c == 0 || v <= 1)
00124 {
00125 k1 = 0;
00126 } else {
00127 tmp = B / v;
00128 flt_round(&tmp);
00129 k1 = c * tmp;
00130 }
00131 }
00132 #endif
00133
00134 if (pred)
00135 {
00136 #if 1
00137 tmp = state->VAR[1];
00138 j = (tmp >> 7);
00139 i = tmp & 0x7f;
00140 if (j >= 128)
00141 {
00142 j -= 128;
00143 k2 = COR[1] * exp_table[j] * mnt_table[i];
00144 } else {
00145 k2 = REAL_CONST(0);
00146 }
00147 #else
00148
00149 #define B 0.953125
00150 real_t c = COR[1];
00151 real_t v = VAR[1];
00152 real_t tmp;
00153 if (c == 0 || v <= 1)
00154 {
00155 k2 = 0;
00156 } else {
00157 tmp = B / v;
00158 flt_round(&tmp);
00159 k2 = c * tmp;
00160 }
00161 #endif
00162
00163 predictedvalue = k1*r[0] + k2*r[1];
00164 flt_round(&predictedvalue);
00165 *output = input + predictedvalue;
00166 }
00167
00168
00169 e0 = *output;
00170 e1 = e0 - k1*r[0];
00171 dr1 = k1*e0;
00172
00173 VAR[0] = ALPHA*VAR[0] + 0.5f * (r[0]*r[0] + e0*e0);
00174 COR[0] = ALPHA*COR[0] + r[0]*e0;
00175 VAR[1] = ALPHA*VAR[1] + 0.5f * (r[1]*r[1] + e1*e1);
00176 COR[1] = ALPHA*COR[1] + r[1]*e1;
00177
00178 r[1] = A * (r[0]-dr1);
00179 r[0] = A * e0;
00180
00181 state->r[0] = quant_pred(r[0]);
00182 state->r[1] = quant_pred(r[1]);
00183 state->COR[0] = quant_pred(COR[0]);
00184 state->COR[1] = quant_pred(COR[1]);
00185 state->VAR[0] = quant_pred(VAR[0]);
00186 state->VAR[1] = quant_pred(VAR[1]);
00187 }
00188
00189 static void reset_pred_state(pred_state *state)
00190 {
00191 state->r[0] = 0;
00192 state->r[1] = 0;
00193 state->COR[0] = 0;
00194 state->COR[1] = 0;
00195 state->VAR[0] = 0x3F80;
00196 state->VAR[1] = 0x3F80;
00197 }
00198
00199 void pns_reset_pred_state(ic_stream *ics, pred_state *state)
00200 {
00201 uint8_t sfb, g, b;
00202 uint16_t i, offs, offs2;
00203
00204
00205 if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
00206 return;
00207
00208 for (g = 0; g < ics->num_window_groups; g++)
00209 {
00210 for (b = 0; b < ics->window_group_length[g]; b++)
00211 {
00212 for (sfb = 0; sfb < ics->max_sfb; sfb++)
00213 {
00214 if (is_noise(ics, g, sfb))
00215 {
00216 offs = ics->swb_offset[sfb];
00217 offs2 = ics->swb_offset[sfb+1];
00218
00219 for (i = offs; i < offs2; i++)
00220 reset_pred_state(&state[i]);
00221 }
00222 }
00223 }
00224 }
00225 }
00226
00227 void reset_all_predictors(pred_state *state, uint16_t frame_len)
00228 {
00229 uint16_t i;
00230
00231 for (i = 0; i < frame_len; i++)
00232 reset_pred_state(&state[i]);
00233 }
00234
00235
00236 void ic_prediction(ic_stream *ics, real_t *spec, pred_state *state,
00237 uint16_t frame_len, uint8_t sf_index)
00238 {
00239 uint8_t sfb;
00240 uint16_t bin;
00241
00242 if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
00243 {
00244 reset_all_predictors(state, frame_len);
00245 } else {
00246 for (sfb = 0; sfb < max_pred_sfb(sf_index); sfb++)
00247 {
00248 uint16_t low = ics->swb_offset[sfb];
00249 uint16_t high = ics->swb_offset[sfb+1];
00250
00251 for (bin = low; bin < high; bin++)
00252 {
00253 ic_predict(&state[bin], spec[bin], &spec[bin],
00254 (ics->predictor_data_present && ics->pred.prediction_used[sfb]));
00255 }
00256 }
00257
00258 if (ics->predictor_data_present)
00259 {
00260 if (ics->pred.predictor_reset)
00261 {
00262 for (bin = ics->pred.predictor_reset_group_number - 1;
00263 bin < frame_len; bin += 30)
00264 {
00265 reset_pred_state(&state[bin]);
00266 }
00267 }
00268 }
00269 }
00270 }
00271
00272 #endif