LAPACK  3.7.0
LAPACK: Linear Algebra PACKage
dstevr.f
Go to the documentation of this file.
1 *> \brief <b> DSTEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download DSTEVR + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstevr.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstevr.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstevr.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE DSTEVR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
22 * M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
23 * LIWORK, INFO )
24 *
25 * .. Scalar Arguments ..
26 * CHARACTER JOBZ, RANGE
27 * INTEGER IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
28 * DOUBLE PRECISION ABSTOL, VL, VU
29 * ..
30 * .. Array Arguments ..
31 * INTEGER ISUPPZ( * ), IWORK( * )
32 * DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
33 * ..
34 *
35 *
36 *> \par Purpose:
37 * =============
38 *>
39 *> \verbatim
40 *>
41 *> DSTEVR computes selected eigenvalues and, optionally, eigenvectors
42 *> of a real symmetric tridiagonal matrix T. Eigenvalues and
43 *> eigenvectors can be selected by specifying either a range of values
44 *> or a range of indices for the desired eigenvalues.
45 *>
46 *> Whenever possible, DSTEVR calls DSTEMR to compute the
47 *> eigenspectrum using Relatively Robust Representations. DSTEMR
48 *> computes eigenvalues by the dqds algorithm, while orthogonal
49 *> eigenvectors are computed from various "good" L D L^T representations
50 *> (also known as Relatively Robust Representations). Gram-Schmidt
51 *> orthogonalization is avoided as far as possible. More specifically,
52 *> the various steps of the algorithm are as follows. For the i-th
53 *> unreduced block of T,
54 *> (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
55 *> is a relatively robust representation,
56 *> (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
57 *> relative accuracy by the dqds algorithm,
58 *> (c) If there is a cluster of close eigenvalues, "choose" sigma_i
59 *> close to the cluster, and go to step (a),
60 *> (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
61 *> compute the corresponding eigenvector by forming a
62 *> rank-revealing twisted factorization.
63 *> The desired accuracy of the output can be specified by the input
64 *> parameter ABSTOL.
65 *>
66 *> For more details, see "A new O(n^2) algorithm for the symmetric
67 *> tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon,
68 *> Computer Science Division Technical Report No. UCB//CSD-97-971,
69 *> UC Berkeley, May 1997.
70 *>
71 *>
72 *> Note 1 : DSTEVR calls DSTEMR when the full spectrum is requested
73 *> on machines which conform to the ieee-754 floating point standard.
74 *> DSTEVR calls DSTEBZ and DSTEIN on non-ieee machines and
75 *> when partial spectrum requests are made.
76 *>
77 *> Normal execution of DSTEMR may create NaNs and infinities and
78 *> hence may abort due to a floating point exception in environments
79 *> which do not handle NaNs and infinities in the ieee standard default
80 *> manner.
81 *> \endverbatim
82 *
83 * Arguments:
84 * ==========
85 *
86 *> \param[in] JOBZ
87 *> \verbatim
88 *> JOBZ is CHARACTER*1
89 *> = 'N': Compute eigenvalues only;
90 *> = 'V': Compute eigenvalues and eigenvectors.
91 *> \endverbatim
92 *>
93 *> \param[in] RANGE
94 *> \verbatim
95 *> RANGE is CHARACTER*1
96 *> = 'A': all eigenvalues will be found.
97 *> = 'V': all eigenvalues in the half-open interval (VL,VU]
98 *> will be found.
99 *> = 'I': the IL-th through IU-th eigenvalues will be found.
100 *> For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
101 *> DSTEIN are called
102 *> \endverbatim
103 *>
104 *> \param[in] N
105 *> \verbatim
106 *> N is INTEGER
107 *> The order of the matrix. N >= 0.
108 *> \endverbatim
109 *>
110 *> \param[in,out] D
111 *> \verbatim
112 *> D is DOUBLE PRECISION array, dimension (N)
113 *> On entry, the n diagonal elements of the tridiagonal matrix
114 *> A.
115 *> On exit, D may be multiplied by a constant factor chosen
116 *> to avoid over/underflow in computing the eigenvalues.
117 *> \endverbatim
118 *>
119 *> \param[in,out] E
120 *> \verbatim
121 *> E is DOUBLE PRECISION array, dimension (max(1,N-1))
122 *> On entry, the (n-1) subdiagonal elements of the tridiagonal
123 *> matrix A in elements 1 to N-1 of E.
124 *> On exit, E may be multiplied by a constant factor chosen
125 *> to avoid over/underflow in computing the eigenvalues.
126 *> \endverbatim
127 *>
128 *> \param[in] VL
129 *> \verbatim
130 *> VL is DOUBLE PRECISION
131 *> If RANGE='V', the lower bound of the interval to
132 *> be searched for eigenvalues. VL < VU.
133 *> Not referenced if RANGE = 'A' or 'I'.
134 *> \endverbatim
135 *>
136 *> \param[in] VU
137 *> \verbatim
138 *> VU is DOUBLE PRECISION
139 *> If RANGE='V', the upper bound of the interval to
140 *> be searched for eigenvalues. VL < VU.
141 *> Not referenced if RANGE = 'A' or 'I'.
142 *> \endverbatim
143 *>
144 *> \param[in] IL
145 *> \verbatim
146 *> IL is INTEGER
147 *> If RANGE='I', the index of the
148 *> smallest eigenvalue to be returned.
149 *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
150 *> Not referenced if RANGE = 'A' or 'V'.
151 *> \endverbatim
152 *>
153 *> \param[in] IU
154 *> \verbatim
155 *> IU is INTEGER
156 *> If RANGE='I', the index of the
157 *> largest eigenvalue to be returned.
158 *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
159 *> Not referenced if RANGE = 'A' or 'V'.
160 *> \endverbatim
161 *>
162 *> \param[in] ABSTOL
163 *> \verbatim
164 *> ABSTOL is DOUBLE PRECISION
165 *> The absolute error tolerance for the eigenvalues.
166 *> An approximate eigenvalue is accepted as converged
167 *> when it is determined to lie in an interval [a,b]
168 *> of width less than or equal to
169 *>
170 *> ABSTOL + EPS * max( |a|,|b| ) ,
171 *>
172 *> where EPS is the machine precision. If ABSTOL is less than
173 *> or equal to zero, then EPS*|T| will be used in its place,
174 *> where |T| is the 1-norm of the tridiagonal matrix obtained
175 *> by reducing A to tridiagonal form.
176 *>
177 *> See "Computing Small Singular Values of Bidiagonal Matrices
178 *> with Guaranteed High Relative Accuracy," by Demmel and
179 *> Kahan, LAPACK Working Note #3.
180 *>
181 *> If high relative accuracy is important, set ABSTOL to
182 *> DLAMCH( 'Safe minimum' ). Doing so will guarantee that
183 *> eigenvalues are computed to high relative accuracy when
184 *> possible in future releases. The current code does not
185 *> make any guarantees about high relative accuracy, but
186 *> future releases will. See J. Barlow and J. Demmel,
187 *> "Computing Accurate Eigensystems of Scaled Diagonally
188 *> Dominant Matrices", LAPACK Working Note #7, for a discussion
189 *> of which matrices define their eigenvalues to high relative
190 *> accuracy.
191 *> \endverbatim
192 *>
193 *> \param[out] M
194 *> \verbatim
195 *> M is INTEGER
196 *> The total number of eigenvalues found. 0 <= M <= N.
197 *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
198 *> \endverbatim
199 *>
200 *> \param[out] W
201 *> \verbatim
202 *> W is DOUBLE PRECISION array, dimension (N)
203 *> The first M elements contain the selected eigenvalues in
204 *> ascending order.
205 *> \endverbatim
206 *>
207 *> \param[out] Z
208 *> \verbatim
209 *> Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
210 *> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
211 *> contain the orthonormal eigenvectors of the matrix A
212 *> corresponding to the selected eigenvalues, with the i-th
213 *> column of Z holding the eigenvector associated with W(i).
214 *> Note: the user must ensure that at least max(1,M) columns are
215 *> supplied in the array Z; if RANGE = 'V', the exact value of M
216 *> is not known in advance and an upper bound must be used.
217 *> \endverbatim
218 *>
219 *> \param[in] LDZ
220 *> \verbatim
221 *> LDZ is INTEGER
222 *> The leading dimension of the array Z. LDZ >= 1, and if
223 *> JOBZ = 'V', LDZ >= max(1,N).
224 *> \endverbatim
225 *>
226 *> \param[out] ISUPPZ
227 *> \verbatim
228 *> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
229 *> The support of the eigenvectors in Z, i.e., the indices
230 *> indicating the nonzero elements in Z. The i-th eigenvector
231 *> is nonzero only in elements ISUPPZ( 2*i-1 ) through
232 *> ISUPPZ( 2*i ).
233 *> Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
234 *> \endverbatim
235 *>
236 *> \param[out] WORK
237 *> \verbatim
238 *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
239 *> On exit, if INFO = 0, WORK(1) returns the optimal (and
240 *> minimal) LWORK.
241 *> \endverbatim
242 *>
243 *> \param[in] LWORK
244 *> \verbatim
245 *> LWORK is INTEGER
246 *> The dimension of the array WORK. LWORK >= max(1,20*N).
247 *>
248 *> If LWORK = -1, then a workspace query is assumed; the routine
249 *> only calculates the optimal sizes of the WORK and IWORK
250 *> arrays, returns these values as the first entries of the WORK
251 *> and IWORK arrays, and no error message related to LWORK or
252 *> LIWORK is issued by XERBLA.
253 *> \endverbatim
254 *>
255 *> \param[out] IWORK
256 *> \verbatim
257 *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
258 *> On exit, if INFO = 0, IWORK(1) returns the optimal (and
259 *> minimal) LIWORK.
260 *> \endverbatim
261 *>
262 *> \param[in] LIWORK
263 *> \verbatim
264 *> LIWORK is INTEGER
265 *> The dimension of the array IWORK. LIWORK >= max(1,10*N).
266 *>
267 *> If LIWORK = -1, then a workspace query is assumed; the
268 *> routine only calculates the optimal sizes of the WORK and
269 *> IWORK arrays, returns these values as the first entries of
270 *> the WORK and IWORK arrays, and no error message related to
271 *> LWORK or LIWORK is issued by XERBLA.
272 *> \endverbatim
273 *>
274 *> \param[out] INFO
275 *> \verbatim
276 *> INFO is INTEGER
277 *> = 0: successful exit
278 *> < 0: if INFO = -i, the i-th argument had an illegal value
279 *> > 0: Internal error
280 *> \endverbatim
281 *
282 * Authors:
283 * ========
284 *
285 *> \author Univ. of Tennessee
286 *> \author Univ. of California Berkeley
287 *> \author Univ. of Colorado Denver
288 *> \author NAG Ltd.
289 *
290 *> \date June 2016
291 *
292 *> \ingroup doubleOTHEReigen
293 *
294 *> \par Contributors:
295 * ==================
296 *>
297 *> Inderjit Dhillon, IBM Almaden, USA \n
298 *> Osni Marques, LBNL/NERSC, USA \n
299 *> Ken Stanley, Computer Science Division, University of
300 *> California at Berkeley, USA \n
301 *>
302 * =====================================================================
303  SUBROUTINE dstevr( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
304  $ m, w, z, ldz, isuppz, work, lwork, iwork,
305  $ liwork, info )
306 *
307 * -- LAPACK driver routine (version 3.7.0) --
308 * -- LAPACK is a software package provided by Univ. of Tennessee, --
309 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
310 * June 2016
311 *
312 * .. Scalar Arguments ..
313  CHARACTER JOBZ, RANGE
314  INTEGER IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
315  DOUBLE PRECISION ABSTOL, VL, VU
316 * ..
317 * .. Array Arguments ..
318  INTEGER ISUPPZ( * ), IWORK( * )
319  DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * ), Z( ldz, * )
320 * ..
321 *
322 * =====================================================================
323 *
324 * .. Parameters ..
325  DOUBLE PRECISION ZERO, ONE, TWO
326  parameter ( zero = 0.0d+0, one = 1.0d+0, two = 2.0d+0 )
327 * ..
328 * .. Local Scalars ..
329  LOGICAL ALLEIG, INDEIG, TEST, LQUERY, VALEIG, WANTZ,
330  $ tryrac
331  CHARACTER ORDER
332  INTEGER I, IEEEOK, IMAX, INDIBL, INDIFL, INDISP,
333  $ indiwo, iscale, itmp1, j, jj, liwmin, lwmin,
334  $ nsplit
335  DOUBLE PRECISION BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
336  $ tmp1, tnrm, vll, vuu
337 * ..
338 * .. External Functions ..
339  LOGICAL LSAME
340  INTEGER ILAENV
341  DOUBLE PRECISION DLAMCH, DLANST
342  EXTERNAL lsame, ilaenv, dlamch, dlanst
343 * ..
344 * .. External Subroutines ..
345  EXTERNAL dcopy, dscal, dstebz, dstemr, dstein, dsterf,
346  $ dswap, xerbla
347 * ..
348 * .. Intrinsic Functions ..
349  INTRINSIC max, min, sqrt
350 * ..
351 * .. Executable Statements ..
352 *
353 *
354 * Test the input parameters.
355 *
356  ieeeok = ilaenv( 10, 'DSTEVR', 'N', 1, 2, 3, 4 )
357 *
358  wantz = lsame( jobz, 'V' )
359  alleig = lsame( range, 'A' )
360  valeig = lsame( range, 'V' )
361  indeig = lsame( range, 'I' )
362 *
363  lquery = ( ( lwork.EQ.-1 ) .OR. ( liwork.EQ.-1 ) )
364  lwmin = max( 1, 20*n )
365  liwmin = max( 1, 10*n )
366 *
367 *
368  info = 0
369  IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
370  info = -1
371  ELSE IF( .NOT.( alleig .OR. valeig .OR. indeig ) ) THEN
372  info = -2
373  ELSE IF( n.LT.0 ) THEN
374  info = -3
375  ELSE
376  IF( valeig ) THEN
377  IF( n.GT.0 .AND. vu.LE.vl )
378  $ info = -7
379  ELSE IF( indeig ) THEN
380  IF( il.LT.1 .OR. il.GT.max( 1, n ) ) THEN
381  info = -8
382  ELSE IF( iu.LT.min( n, il ) .OR. iu.GT.n ) THEN
383  info = -9
384  END IF
385  END IF
386  END IF
387  IF( info.EQ.0 ) THEN
388  IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
389  info = -14
390  END IF
391  END IF
392 *
393  IF( info.EQ.0 ) THEN
394  work( 1 ) = lwmin
395  iwork( 1 ) = liwmin
396 *
397  IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
398  info = -17
399  ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
400  info = -19
401  END IF
402  END IF
403 *
404  IF( info.NE.0 ) THEN
405  CALL xerbla( 'DSTEVR', -info )
406  RETURN
407  ELSE IF( lquery ) THEN
408  RETURN
409  END IF
410 *
411 * Quick return if possible
412 *
413  m = 0
414  IF( n.EQ.0 )
415  $ RETURN
416 *
417  IF( n.EQ.1 ) THEN
418  IF( alleig .OR. indeig ) THEN
419  m = 1
420  w( 1 ) = d( 1 )
421  ELSE
422  IF( vl.LT.d( 1 ) .AND. vu.GE.d( 1 ) ) THEN
423  m = 1
424  w( 1 ) = d( 1 )
425  END IF
426  END IF
427  IF( wantz )
428  $ z( 1, 1 ) = one
429  RETURN
430  END IF
431 *
432 * Get machine constants.
433 *
434  safmin = dlamch( 'Safe minimum' )
435  eps = dlamch( 'Precision' )
436  smlnum = safmin / eps
437  bignum = one / smlnum
438  rmin = sqrt( smlnum )
439  rmax = min( sqrt( bignum ), one / sqrt( sqrt( safmin ) ) )
440 *
441 *
442 * Scale matrix to allowable range, if necessary.
443 *
444  iscale = 0
445  IF( valeig ) THEN
446  vll = vl
447  vuu = vu
448  END IF
449 *
450  tnrm = dlanst( 'M', n, d, e )
451  IF( tnrm.GT.zero .AND. tnrm.LT.rmin ) THEN
452  iscale = 1
453  sigma = rmin / tnrm
454  ELSE IF( tnrm.GT.rmax ) THEN
455  iscale = 1
456  sigma = rmax / tnrm
457  END IF
458  IF( iscale.EQ.1 ) THEN
459  CALL dscal( n, sigma, d, 1 )
460  CALL dscal( n-1, sigma, e( 1 ), 1 )
461  IF( valeig ) THEN
462  vll = vl*sigma
463  vuu = vu*sigma
464  END IF
465  END IF
466 
467 * Initialize indices into workspaces. Note: These indices are used only
468 * if DSTERF or DSTEMR fail.
469 
470 * IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
471 * stores the block indices of each of the M<=N eigenvalues.
472  indibl = 1
473 * IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
474 * stores the starting and finishing indices of each block.
475  indisp = indibl + n
476 * IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
477 * that corresponding to eigenvectors that fail to converge in
478 * DSTEIN. This information is discarded; if any fail, the driver
479 * returns INFO > 0.
480  indifl = indisp + n
481 * INDIWO is the offset of the remaining integer workspace.
482  indiwo = indisp + n
483 *
484 * If all eigenvalues are desired, then
485 * call DSTERF or DSTEMR. If this fails for some eigenvalue, then
486 * try DSTEBZ.
487 *
488 *
489  test = .false.
490  IF( indeig ) THEN
491  IF( il.EQ.1 .AND. iu.EQ.n ) THEN
492  test = .true.
493  END IF
494  END IF
495  IF( ( alleig .OR. test ) .AND. ieeeok.EQ.1 ) THEN
496  CALL dcopy( n-1, e( 1 ), 1, work( 1 ), 1 )
497  IF( .NOT.wantz ) THEN
498  CALL dcopy( n, d, 1, w, 1 )
499  CALL dsterf( n, w, work, info )
500  ELSE
501  CALL dcopy( n, d, 1, work( n+1 ), 1 )
502  IF (abstol .LE. two*n*eps) THEN
503  tryrac = .true.
504  ELSE
505  tryrac = .false.
506  END IF
507  CALL dstemr( jobz, 'A', n, work( n+1 ), work, vl, vu, il,
508  $ iu, m, w, z, ldz, n, isuppz, tryrac,
509  $ work( 2*n+1 ), lwork-2*n, iwork, liwork, info )
510 *
511  END IF
512  IF( info.EQ.0 ) THEN
513  m = n
514  GO TO 10
515  END IF
516  info = 0
517  END IF
518 *
519 * Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN.
520 *
521  IF( wantz ) THEN
522  order = 'B'
523  ELSE
524  order = 'E'
525  END IF
526 
527  CALL dstebz( range, order, n, vll, vuu, il, iu, abstol, d, e, m,
528  $ nsplit, w, iwork( indibl ), iwork( indisp ), work,
529  $ iwork( indiwo ), info )
530 *
531  IF( wantz ) THEN
532  CALL dstein( n, d, e, m, w, iwork( indibl ), iwork( indisp ),
533  $ z, ldz, work, iwork( indiwo ), iwork( indifl ),
534  $ info )
535  END IF
536 *
537 * If matrix was scaled, then rescale eigenvalues appropriately.
538 *
539  10 CONTINUE
540  IF( iscale.EQ.1 ) THEN
541  IF( info.EQ.0 ) THEN
542  imax = m
543  ELSE
544  imax = info - 1
545  END IF
546  CALL dscal( imax, one / sigma, w, 1 )
547  END IF
548 *
549 * If eigenvalues are not in order, then sort them, along with
550 * eigenvectors.
551 *
552  IF( wantz ) THEN
553  DO 30 j = 1, m - 1
554  i = 0
555  tmp1 = w( j )
556  DO 20 jj = j + 1, m
557  IF( w( jj ).LT.tmp1 ) THEN
558  i = jj
559  tmp1 = w( jj )
560  END IF
561  20 CONTINUE
562 *
563  IF( i.NE.0 ) THEN
564  itmp1 = iwork( i )
565  w( i ) = w( j )
566  iwork( i ) = iwork( j )
567  w( j ) = tmp1
568  iwork( j ) = itmp1
569  CALL dswap( n, z( 1, i ), 1, z( 1, j ), 1 )
570  END IF
571  30 CONTINUE
572  END IF
573 *
574 * Causes problems with tests 19 & 20:
575 * IF (wantz .and. INDEIG ) Z( 1,1) = Z(1,1) / 1.002 + .002
576 *
577 *
578  work( 1 ) = lwmin
579  iwork( 1 ) = liwmin
580  RETURN
581 *
582 * End of DSTEVR
583 *
584  END
subroutine dstevr(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)
DSTEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matric...
Definition: dstevr.f:306
subroutine dcopy(N, DX, INCX, DY, INCY)
DCOPY
Definition: dcopy.f:53
subroutine dstein(N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, IWORK, IFAIL, INFO)
DSTEIN
Definition: dstein.f:176
subroutine dsterf(N, D, E, INFO)
DSTERF
Definition: dsterf.f:88
subroutine dswap(N, DX, INCX, DY, INCY)
DSWAP
Definition: dswap.f:53
subroutine dstebz(RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E, M, NSPLIT, W, IBLOCK, ISPLIT, WORK, IWORK, INFO)
DSTEBZ
Definition: dstebz.f:275
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine dscal(N, DA, DX, INCX)
DSCAL
Definition: dscal.f:55
subroutine dstemr(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK, IWORK, LIWORK, INFO)
DSTEMR
Definition: dstemr.f:323