LAPACK  3.7.0
LAPACK: Linear Algebra PACKage
cgelqt.f
Go to the documentation of this file.
1 *
2 * Definition:
3 * ===========
4 *
5 * SUBROUTINE CGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO )
6 *
7 * .. Scalar Arguments ..
8 * INTEGER INFO, LDA, LDT, M, N, MB
9 * ..
10 * .. Array Arguments ..
11 * COMPLEX A( LDA, * ), T( LDT, * ), WORK( * )
12 * ..
13 *
14 *
15 *> \par Purpose:
16 * =============
17 *>
18 *> \verbatim
19 *>
20 *> CGELQT computes a blocked LQ factorization of a complex M-by-N matrix A
21 *> using the compact WY representation of Q.
22 *> \endverbatim
23 *
24 * Arguments:
25 * ==========
26 *
27 *> \param[in] M
28 *> \verbatim
29 *> M is INTEGER
30 *> The number of rows of the matrix A. M >= 0.
31 *> \endverbatim
32 *>
33 *> \param[in] N
34 *> \verbatim
35 *> N is INTEGER
36 *> The number of columns of the matrix A. N >= 0.
37 *> \endverbatim
38 *>
39 *> \param[in] MB
40 *> \verbatim
41 *> MB is INTEGER
42 *> The block size to be used in the blocked QR. MIN(M,N) >= MB >= 1.
43 *> \endverbatim
44 *>
45 *> \param[in,out] A
46 *> \verbatim
47 *> A is COMPLEX array, dimension (LDA,N)
48 *> On entry, the M-by-N matrix A.
49 *> On exit, the elements on and below the diagonal of the array
50 *> contain the M-by-MIN(M,N) lower trapezoidal matrix L (L is
51 *> lower triangular if M <= N); the elements above the diagonal
52 *> are the rows of V.
53 *> \endverbatim
54 *>
55 *> \param[in] LDA
56 *> \verbatim
57 *> LDA is INTEGER
58 *> The leading dimension of the array A. LDA >= max(1,M).
59 *> \endverbatim
60 *>
61 *> \param[out] T
62 *> \verbatim
63 *> T is COMPLEX array, dimension (LDT,MIN(M,N))
64 *> The upper triangular block reflectors stored in compact form
65 *> as a sequence of upper triangular blocks. See below
66 *> for further details.
67 *> \endverbatim
68 *>
69 *> \param[in] LDT
70 *> \verbatim
71 *> LDT is INTEGER
72 *> The leading dimension of the array T. LDT >= MB.
73 *> \endverbatim
74 *>
75 *> \param[out] WORK
76 *> \verbatim
77 *> WORK is COMPLEX array, dimension (MB*N)
78 *> \endverbatim
79 *>
80 *> \param[out] INFO
81 *> \verbatim
82 *> INFO is INTEGER
83 *> = 0: successful exit
84 *> < 0: if INFO = -i, the i-th argument had an illegal value
85 *> \endverbatim
86 *
87 * Authors:
88 * ========
89 *
90 *> \author Univ. of Tennessee
91 *> \author Univ. of California Berkeley
92 *> \author Univ. of Colorado Denver
93 *> \author NAG Ltd.
94 *
95 *> \date December 2016
96 *
97 *> \ingroup doubleGEcomputational
98 *
99 *> \par Further Details:
100 * =====================
101 *>
102 *> \verbatim
103 *>
104 *> The matrix V stores the elementary reflectors H(i) in the i-th column
105 *> below the diagonal. For example, if M=5 and N=3, the matrix V is
106 *>
107 *> V = ( 1 v1 v1 v1 v1 )
108 *> ( 1 v2 v2 v2 )
109 *> ( 1 v3 v3 )
110 *>
111 *>
112 *> where the vi's represent the vectors which define H(i), which are returned
113 *> in the matrix A. The 1's along the diagonal of V are not stored in A.
114 *> Let K=MIN(M,N). The number of blocks is B = ceiling(K/NB), where each
115 *> block is of order NB except for the last block, which is of order
116 *> IB = K - (B-1)*NB. For each of the B blocks, a upper triangular block
117 *> reflector factor is computed: T1, T2, ..., TB. The NB-by-NB (and IB-by-IB
118 *> for the last block) T's are stored in the NB-by-N matrix T as
119 *>
120 *> T = (T1 T2 ... TB).
121 *> \endverbatim
122 *>
123 * =====================================================================
124  SUBROUTINE cgelqt( M, N, MB, A, LDA, T, LDT, WORK, INFO )
125 *
126 * -- LAPACK computational routine (version 3.7.0) --
127 * -- LAPACK is a software package provided by Univ. of Tennessee, --
128 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
129 * December 2016
130 *
131 * .. Scalar Arguments ..
132  INTEGER INFO, LDA, LDT, M, N, MB
133 * ..
134 * .. Array Arguments ..
135  COMPLEX A( lda, * ), T( ldt, * ), WORK( * )
136 * ..
137 *
138 * =====================================================================
139 *
140 * ..
141 * .. Local Scalars ..
142  INTEGER I, IB, IINFO, K
143 * ..
144 * .. External Subroutines ..
145  EXTERNAL cgelqt3, clarfb, xerbla
146 * ..
147 * .. Executable Statements ..
148 *
149 * Test the input arguments
150 *
151  info = 0
152  IF( m.LT.0 ) THEN
153  info = -1
154  ELSE IF( n.LT.0 ) THEN
155  info = -2
156  ELSE IF( mb.LT.1 .OR. (mb.GT.min(m,n) .AND. min(m,n).GT.0 ))THEN
157  info = -3
158  ELSE IF( lda.LT.max( 1, m ) ) THEN
159  info = -5
160  ELSE IF( ldt.LT.mb ) THEN
161  info = -7
162  END IF
163  IF( info.NE.0 ) THEN
164  CALL xerbla( 'CGELQT', -info )
165  RETURN
166  END IF
167 *
168 * Quick return if possible
169 *
170  k = min( m, n )
171  IF( k.EQ.0 ) RETURN
172 *
173 * Blocked loop of length K
174 *
175  DO i = 1, k, mb
176  ib = min( k-i+1, mb )
177 *
178 * Compute the LQ factorization of the current block A(I:M,I:I+IB-1)
179 *
180  CALL cgelqt3( ib, n-i+1, a(i,i), lda, t(1,i), ldt, iinfo )
181  IF( i+ib.LE.m ) THEN
182 *
183 * Update by applying H**T to A(I:M,I+IB:N) from the right
184 *
185  CALL clarfb( 'R', 'N', 'F', 'R', m-i-ib+1, n-i+1, ib,
186  $ a( i, i ), lda, t( 1, i ), ldt,
187  $ a( i+ib, i ), lda, work , m-i-ib+1 )
188  END IF
189  END DO
190  RETURN
191 *
192 * End of CGELQT
193 *
194  END
recursive subroutine cgelqt3(M, N, A, LDA, T, LDT, INFO)
Definition: cgelqt3.f:116
subroutine cgelqt(M, N, MB, A, LDA, T, LDT, WORK, INFO)
Definition: cgelqt.f:125
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine clarfb(SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, T, LDT, C, LDC, WORK, LDWORK)
CLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix...
Definition: clarfb.f:197