LAPACK  3.7.0
LAPACK: Linear Algebra PACKage
slamswlq.f
Go to the documentation of this file.
1 *
2 * Definition:
3 * ===========
4 *
5 * SUBROUTINE SLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
6 * $ LDT, C, LDC, WORK, LWORK, INFO )
7 *
8 *
9 * .. Scalar Arguments ..
10 * CHARACTER SIDE, TRANS
11 * INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
12 * ..
13 * .. Array Arguments ..
14 * DOUBLE A( LDA, * ), WORK( * ), C(LDC, * ),
15 * $ T( LDT, * )
16 *> \par Purpose:
17 * =============
18 *>
19 *> \verbatim
20 *>
21 *> DLAMQRTS overwrites the general real M-by-N matrix C with
22 *>
23 *>
24 *> SIDE = 'L' SIDE = 'R'
25 *> TRANS = 'N': Q * C C * Q
26 *> TRANS = 'T': Q**T * C C * Q**T
27 *> where Q is a real orthogonal matrix defined as the product of blocked
28 *> elementary reflectors computed by short wide LQ
29 *> factorization (DLASWLQ)
30 *> \endverbatim
31 *
32 * Arguments:
33 * ==========
34 *
35 *> \param[in] SIDE
36 *> \verbatim
37 *> SIDE is CHARACTER*1
38 *> = 'L': apply Q or Q**T from the Left;
39 *> = 'R': apply Q or Q**T from the Right.
40 *> \endverbatim
41 *>
42 *> \param[in] TRANS
43 *> \verbatim
44 *> TRANS is CHARACTER*1
45 *> = 'N': No transpose, apply Q;
46 *> = 'T': Transpose, apply Q**T.
47 *> \endverbatim
48 *>
49 *> \param[in] M
50 *> \verbatim
51 *> M is INTEGER
52 *> The number of rows of the matrix A. M >=0.
53 *> \endverbatim
54 *>
55 *> \param[in] N
56 *> \verbatim
57 *> N is INTEGER
58 *> The number of columns of the matrix C. N >= M.
59 *> \endverbatim
60 *>
61 *> \param[in] K
62 *> \verbatim
63 *> K is INTEGER
64 *> The number of elementary reflectors whose product defines
65 *> the matrix Q.
66 *> M >= K >= 0;
67 *>
68 *> \endverbatim
69 *> \param[in] MB
70 *> \verbatim
71 *> MB is INTEGER
72 *> The row block size to be used in the blocked QR.
73 *> M >= MB >= 1
74 *> \endverbatim
75 *>
76 *> \param[in] NB
77 *> \verbatim
78 *> NB is INTEGER
79 *> The column block size to be used in the blocked QR.
80 *> NB > M.
81 *> \endverbatim
82 *>
83 *> \param[in] NB
84 *> \verbatim
85 *> NB is INTEGER
86 *> The block size to be used in the blocked QR.
87 *> MB > M.
88 *>
89 *> \endverbatim
90 *>
91 *> \param[in,out] A
92 *> \verbatim
93 *> A is REAL array, dimension (LDA,K)
94 *> The i-th row must contain the vector which defines the blocked
95 *> elementary reflector H(i), for i = 1,2,...,k, as returned by
96 *> DLASWLQ in the first k rows of its array argument A.
97 *> \endverbatim
98 *>
99 *> \param[in] LDA
100 *> \verbatim
101 *> LDA is INTEGER
102 *> The leading dimension of the array A.
103 *> If SIDE = 'L', LDA >= max(1,M);
104 *> if SIDE = 'R', LDA >= max(1,N).
105 *> \endverbatim
106 *>
107 *> \param[in] T
108 *> \verbatim
109 *> T is REAL array, dimension
110 *> ( M * Number of blocks(CEIL(N-K/NB-K)),
111 *> The blocked upper triangular block reflectors stored in compact form
112 *> as a sequence of upper triangular blocks. See below
113 *> for further details.
114 *> \endverbatim
115 *>
116 *> \param[in] LDT
117 *> \verbatim
118 *> LDT is INTEGER
119 *> The leading dimension of the array T. LDT >= MB.
120 *> \endverbatim
121 *>
122 *> \param[in,out] C
123 *> \verbatim
124 *> C is REAL array, dimension (LDC,N)
125 *> On entry, the M-by-N matrix C.
126 *> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
127 *> \endverbatim
128 *>
129 *> \param[in] LDC
130 *> \verbatim
131 *> LDC is INTEGER
132 *> The leading dimension of the array C. LDC >= max(1,M).
133 *> \endverbatim
134 *>
135 *> \param[out] WORK
136 *> \verbatim
137 *> (workspace) REAL array, dimension (MAX(1,LWORK))
138 *> \endverbatim
139 *>
140 *> \param[in] LWORK
141 *> \verbatim
142 *> LWORK is INTEGER
143 *> The dimension of the array WORK.
144 *> If SIDE = 'L', LWORK >= max(1,NB) * MB;
145 *> if SIDE = 'R', LWORK >= max(1,M) * MB.
146 *> If LWORK = -1, then a workspace query is assumed; the routine
147 *> only calculates the optimal size of the WORK array, returns
148 *> this value as the first entry of the WORK array, and no error
149 *> message related to LWORK is issued by XERBLA.
150 *> \endverbatim
151 *>
152 *> \param[out] INFO
153 *> \verbatim
154 *> INFO is INTEGER
155 *> = 0: successful exit
156 *> < 0: if INFO = -i, the i-th argument had an illegal value
157 *> \endverbatim
158 *
159 * Authors:
160 * ========
161 *
162 *> \author Univ. of Tennessee
163 *> \author Univ. of California Berkeley
164 *> \author Univ. of Colorado Denver
165 *> \author NAG Ltd.
166 *
167 *> \par Further Details:
168 * =====================
169 *>
170 *> \verbatim
171 *> Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations,
172 *> representing Q as a product of other orthogonal matrices
173 *> Q = Q(1) * Q(2) * . . . * Q(k)
174 *> where each Q(i) zeros out upper diagonal entries of a block of NB rows of A:
175 *> Q(1) zeros out the upper diagonal entries of rows 1:NB of A
176 *> Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A
177 *> Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A
178 *> . . .
179 *>
180 *> Q(1) is computed by GELQT, which represents Q(1) by Householder vectors
181 *> stored under the diagonal of rows 1:MB of A, and by upper triangular
182 *> block reflectors, stored in array T(1:LDT,1:N).
183 *> For more information see Further Details in GELQT.
184 *>
185 *> Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors
186 *> stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular
187 *> block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M).
188 *> The last Q(k) may use fewer rows.
189 *> For more information see Further Details in TPQRT.
190 *>
191 *> For more details of the overall algorithm, see the description of
192 *> Sequential TSQR in Section 2.2 of [1].
193 *>
194 *> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
195 *> J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
196 *> SIAM J. Sci. Comput, vol. 34, no. 1, 2012
197 *> \endverbatim
198 *>
199 * =====================================================================
200  SUBROUTINE slamswlq( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
201  $ ldt, c, ldc, work, lwork, info )
202 *
203 * -- LAPACK computational routine (version 3.7.0) --
204 * -- LAPACK is a software package provided by Univ. of Tennessee, --
205 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
206 * December 2016
207 *
208 * .. Scalar Arguments ..
209  CHARACTER SIDE, TRANS
210  INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
211 * ..
212 * .. Array Arguments ..
213  REAL A( lda, * ), WORK( * ), C(ldc, * ),
214  $ t( ldt, * )
215 * ..
216 *
217 * =====================================================================
218 *
219 * ..
220 * .. Local Scalars ..
221  LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY
222  INTEGER I, II, KK, LW, CTR
223 * ..
224 * .. External Functions ..
225  LOGICAL LSAME
226  EXTERNAL lsame
227 * .. External Subroutines ..
228  EXTERNAL stpmlqt, sgemlqt, xerbla
229 * ..
230 * .. Executable Statements ..
231 *
232 * Test the input arguments
233 *
234  lquery = lwork.LT.0
235  notran = lsame( trans, 'N' )
236  tran = lsame( trans, 'T' )
237  left = lsame( side, 'L' )
238  right = lsame( side, 'R' )
239  IF (left) THEN
240  lw = n * mb
241  ELSE
242  lw = m * mb
243  END IF
244 *
245  info = 0
246  IF( .NOT.left .AND. .NOT.right ) THEN
247  info = -1
248  ELSE IF( .NOT.tran .AND. .NOT.notran ) THEN
249  info = -2
250  ELSE IF( m.LT.0 ) THEN
251  info = -3
252  ELSE IF( n.LT.0 ) THEN
253  info = -4
254  ELSE IF( k.LT.0 ) THEN
255  info = -5
256  ELSE IF( lda.LT.max( 1, k ) ) THEN
257  info = -9
258  ELSE IF( ldt.LT.max( 1, mb) ) THEN
259  info = -11
260  ELSE IF( ldc.LT.max( 1, m ) ) THEN
261  info = -13
262  ELSE IF(( lwork.LT.max(1,lw)).AND.(.NOT.lquery)) THEN
263  info = -15
264  END IF
265 *
266  IF( info.NE.0 ) THEN
267  CALL xerbla( 'SLAMSWLQ', -info )
268  work(1) = lw
269  RETURN
270  ELSE IF (lquery) THEN
271  work(1) = lw
272  RETURN
273  END IF
274 *
275 * Quick return if possible
276 *
277  IF( min(m,n,k).EQ.0 ) THEN
278  RETURN
279  END IF
280 *
281  IF((nb.LE.k).OR.(nb.GE.max(m,n,k))) THEN
282  CALL dgemlqt( side, trans, m, n, k, mb, a, lda,
283  $ t, ldt, c, ldc, work, info)
284  RETURN
285  END IF
286 *
287  IF(left.AND.tran) THEN
288 *
289 * Multiply Q to the last block of C
290 *
291  kk = mod((m-k),(nb-k))
292  ctr = (m-k)/(nb-k)
293 *
294  IF (kk.GT.0) THEN
295  ii=m-kk+1
296  CALL stpmlqt('L','T',kk , n, k, 0, mb, a(1,ii), lda,
297  $ t(1,ctr*k+1), ldt, c(1,1), ldc,
298  $ c(ii,1), ldc, work, info )
299  ELSE
300  ii=m+1
301  END IF
302 *
303  DO i=ii-(nb-k),nb+1,-(nb-k)
304 *
305 * Multiply Q to the current block of C (1:M,I:I+NB)
306 *
307  ctr = ctr - 1
308  CALL stpmlqt('L','T',nb-k , n, k, 0,mb, a(1,i), lda,
309  $ t(1,ctr*k+1),ldt, c(1,1), ldc,
310  $ c(i,1), ldc, work, info )
311  END DO
312 *
313 * Multiply Q to the first block of C (1:M,1:NB)
314 *
315  CALL sgemlqt('L','T',nb , n, k, mb, a(1,1), lda, t
316  $ ,ldt ,c(1,1), ldc, work, info )
317 *
318  ELSE IF (left.AND.notran) THEN
319 *
320 * Multiply Q to the first block of C
321 *
322  kk = mod((m-k),(nb-k))
323  ii=m-kk+1
324  ctr = 1
325  CALL sgemlqt('L','N',nb , n, k, mb, a(1,1), lda, t
326  $ ,ldt ,c(1,1), ldc, work, info )
327 *
328  DO i=nb+1,ii-nb+k,(nb-k)
329 *
330 * Multiply Q to the current block of C (I:I+NB,1:N)
331 *
332  CALL stpmlqt('L','N',nb-k , n, k, 0,mb, a(1,i), lda,
333  $ t(1,ctr * k+1), ldt, c(1,1), ldc,
334  $ c(i,1), ldc, work, info )
335  ctr = ctr + 1
336 *
337  END DO
338  IF(ii.LE.m) THEN
339 *
340 * Multiply Q to the last block of C
341 *
342  CALL stpmlqt('L','N',kk , n, k, 0, mb, a(1,ii), lda,
343  $ t(1,ctr*k+1), ldt, c(1,1), ldc,
344  $ c(ii,1), ldc, work, info )
345 *
346  END IF
347 *
348  ELSE IF(right.AND.notran) THEN
349 *
350 * Multiply Q to the last block of C
351 *
352  kk = mod((n-k),(nb-k))
353  ctr = (n-k)/(nb-k)
354  IF (kk.GT.0) THEN
355  ii=n-kk+1
356  CALL stpmlqt('R','N',m , kk, k, 0, mb, a(1, ii), lda,
357  $ t(1,ctr*k+1), ldt, c(1,1), ldc,
358  $ c(1,ii), ldc, work, info )
359  ELSE
360  ii=n+1
361  END IF
362 *
363  DO i=ii-(nb-k),nb+1,-(nb-k)
364 *
365 * Multiply Q to the current block of C (1:M,I:I+MB)
366 *
367  ctr = ctr - 1
368  CALL stpmlqt('R','N', m, nb-k, k, 0, mb, a(1, i), lda,
369  $ t(1,ctr*k+1), ldt, c(1,1), ldc,
370  $ c(1,i), ldc, work, info )
371 
372  END DO
373 *
374 * Multiply Q to the first block of C (1:M,1:MB)
375 *
376  CALL sgemlqt('R','N',m , nb, k, mb, a(1,1), lda, t
377  $ ,ldt ,c(1,1), ldc, work, info )
378 *
379  ELSE IF (right.AND.tran) THEN
380 *
381 * Multiply Q to the first block of C
382 *
383  kk = mod((n-k),(nb-k))
384  ii=n-kk+1
385  ctr = 1
386  CALL sgemlqt('R','T',m , nb, k, mb, a(1,1), lda, t
387  $ ,ldt ,c(1,1), ldc, work, info )
388 *
389  DO i=nb+1,ii-nb+k,(nb-k)
390 *
391 * Multiply Q to the current block of C (1:M,I:I+MB)
392 *
393  CALL stpmlqt('R','T',m , nb-k, k, 0,mb, a(1,i), lda,
394  $ t(1, ctr*k+1), ldt, c(1,1), ldc,
395  $ c(1,i), ldc, work, info )
396  ctr = ctr + 1
397 *
398  END DO
399  IF(ii.LE.n) THEN
400 *
401 * Multiply Q to the last block of C
402 *
403  CALL stpmlqt('R','T',m , kk, k, 0,mb, a(1,ii), lda,
404  $ t(1,ctr*k+1),ldt, c(1,1), ldc,
405  $ c(1,ii), ldc, work, info )
406 *
407  END IF
408 *
409  END IF
410 *
411  work(1) = lw
412  RETURN
413 *
414 * End of SLAMSWLQ
415 *
416  END
subroutine slamswlq(SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, LDT, C, LDC, WORK, LWORK, INFO)
Definition: slamswlq.f:202
subroutine sgemlqt(SIDE, TRANS, M, N, K, MB, V, LDV, T, LDT, C, LDC, WORK, INFO)
Definition: sgemlqt.f:153
subroutine dgemlqt(SIDE, TRANS, M, N, K, MB, V, LDV, T, LDT, C, LDC, WORK, INFO)
DGEMLQT
Definition: dgemlqt.f:170
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine stpmlqt(SIDE, TRANS, M, N, K, L, MB, V, LDV, T, LDT, A, LDA, B, LDB, WORK, INFO)
DTPMLQT
Definition: stpmlqt.f:218