LAPACK  3.7.0
LAPACK: Linear Algebra PACKage
zgesvj.f
Go to the documentation of this file.
1 *> \brief <b> ZGESVJ </b>
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download ZGESVJ + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgesvj.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgesvj.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgesvj.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE ZGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V,
22 * LDV, CWORK, LWORK, RWORK, LRWORK, INFO )
23 *
24 * .. Scalar Arguments ..
25 * INTEGER INFO, LDA, LDV, LWORK, LRWORK, M, MV, N
26 * CHARACTER*1 JOBA, JOBU, JOBV
27 * ..
28 * .. Array Arguments ..
29 * COMPLEX*16 A( LDA, * ), V( LDV, * ), CWORK( LWORK )
30 * DOUBLE PRECISION RWORK( LRWORK ), SVA( N )
31 * ..
32 *
33 *
34 *> \par Purpose:
35 * =============
36 *>
37 *> \verbatim
38 *>
39 *> ZGESVJ computes the singular value decomposition (SVD) of a complex
40 *> M-by-N matrix A, where M >= N. The SVD of A is written as
41 *> [++] [xx] [x0] [xx]
42 *> A = U * SIGMA * V^*, [++] = [xx] * [ox] * [xx]
43 *> [++] [xx]
44 *> where SIGMA is an N-by-N diagonal matrix, U is an M-by-N orthonormal
45 *> matrix, and V is an N-by-N unitary matrix. The diagonal elements
46 *> of SIGMA are the singular values of A. The columns of U and V are the
47 *> left and the right singular vectors of A, respectively.
48 *> \endverbatim
49 *
50 * Arguments:
51 * ==========
52 *
53 *> \param[in] JOBA
54 *> \verbatim
55 *> JOBA is CHARACTER* 1
56 *> Specifies the structure of A.
57 *> = 'L': The input matrix A is lower triangular;
58 *> = 'U': The input matrix A is upper triangular;
59 *> = 'G': The input matrix A is general M-by-N matrix, M >= N.
60 *> \endverbatim
61 *>
62 *> \param[in] JOBU
63 *> \verbatim
64 *> JOBU is CHARACTER*1
65 *> Specifies whether to compute the left singular vectors
66 *> (columns of U):
67 *> = 'U' or 'F': The left singular vectors corresponding to the nonzero
68 *> singular values are computed and returned in the leading
69 *> columns of A. See more details in the description of A.
70 *> The default numerical orthogonality threshold is set to
71 *> approximately TOL=CTOL*EPS, CTOL=SQRT(M), EPS=DLAMCH('E').
72 *> = 'C': Analogous to JOBU='U', except that user can control the
73 *> level of numerical orthogonality of the computed left
74 *> singular vectors. TOL can be set to TOL = CTOL*EPS, where
75 *> CTOL is given on input in the array WORK.
76 *> No CTOL smaller than ONE is allowed. CTOL greater
77 *> than 1 / EPS is meaningless. The option 'C'
78 *> can be used if M*EPS is satisfactory orthogonality
79 *> of the computed left singular vectors, so CTOL=M could
80 *> save few sweeps of Jacobi rotations.
81 *> See the descriptions of A and WORK(1).
82 *> = 'N': The matrix U is not computed. However, see the
83 *> description of A.
84 *> \endverbatim
85 *>
86 *> \param[in] JOBV
87 *> \verbatim
88 *> JOBV is CHARACTER*1
89 *> Specifies whether to compute the right singular vectors, that
90 *> is, the matrix V:
91 *> = 'V' or 'J': the matrix V is computed and returned in the array V
92 *> = 'A' : the Jacobi rotations are applied to the MV-by-N
93 *> array V. In other words, the right singular vector
94 *> matrix V is not computed explicitly; instead it is
95 *> applied to an MV-by-N matrix initially stored in the
96 *> first MV rows of V.
97 *> = 'N' : the matrix V is not computed and the array V is not
98 *> referenced
99 *> \endverbatim
100 *>
101 *> \param[in] M
102 *> \verbatim
103 *> M is INTEGER
104 *> The number of rows of the input matrix A. 1/DLAMCH('E') > M >= 0.
105 *> \endverbatim
106 *>
107 *> \param[in] N
108 *> \verbatim
109 *> N is INTEGER
110 *> The number of columns of the input matrix A.
111 *> M >= N >= 0.
112 *> \endverbatim
113 *>
114 *> \param[in,out] A
115 *> \verbatim
116 *> A is COMPLEX*16 array, dimension (LDA,N)
117 *> On entry, the M-by-N matrix A.
118 *> On exit,
119 *> If JOBU .EQ. 'U' .OR. JOBU .EQ. 'C':
120 *> If INFO .EQ. 0 :
121 *> RANKA orthonormal columns of U are returned in the
122 *> leading RANKA columns of the array A. Here RANKA <= N
123 *> is the number of computed singular values of A that are
124 *> above the underflow threshold DLAMCH('S'). The singular
125 *> vectors corresponding to underflowed or zero singular
126 *> values are not computed. The value of RANKA is returned
127 *> in the array RWORK as RANKA=NINT(RWORK(2)). Also see the
128 *> descriptions of SVA and RWORK. The computed columns of U
129 *> are mutually numerically orthogonal up to approximately
130 *> TOL=SQRT(M)*EPS (default); or TOL=CTOL*EPS (JOBU.EQ.'C'),
131 *> see the description of JOBU.
132 *> If INFO .GT. 0,
133 *> the procedure ZGESVJ did not converge in the given number
134 *> of iterations (sweeps). In that case, the computed
135 *> columns of U may not be orthogonal up to TOL. The output
136 *> U (stored in A), SIGMA (given by the computed singular
137 *> values in SVA(1:N)) and V is still a decomposition of the
138 *> input matrix A in the sense that the residual
139 *> || A - SCALE * U * SIGMA * V^* ||_2 / ||A||_2 is small.
140 *> If JOBU .EQ. 'N':
141 *> If INFO .EQ. 0 :
142 *> Note that the left singular vectors are 'for free' in the
143 *> one-sided Jacobi SVD algorithm. However, if only the
144 *> singular values are needed, the level of numerical
145 *> orthogonality of U is not an issue and iterations are
146 *> stopped when the columns of the iterated matrix are
147 *> numerically orthogonal up to approximately M*EPS. Thus,
148 *> on exit, A contains the columns of U scaled with the
149 *> corresponding singular values.
150 *> If INFO .GT. 0 :
151 *> the procedure ZGESVJ did not converge in the given number
152 *> of iterations (sweeps).
153 *> \endverbatim
154 *>
155 *> \param[in] LDA
156 *> \verbatim
157 *> LDA is INTEGER
158 *> The leading dimension of the array A. LDA >= max(1,M).
159 *> \endverbatim
160 *>
161 *> \param[out] SVA
162 *> \verbatim
163 *> SVA is DOUBLE PRECISION array, dimension (N)
164 *> On exit,
165 *> If INFO .EQ. 0 :
166 *> depending on the value SCALE = RWORK(1), we have:
167 *> If SCALE .EQ. ONE:
168 *> SVA(1:N) contains the computed singular values of A.
169 *> During the computation SVA contains the Euclidean column
170 *> norms of the iterated matrices in the array A.
171 *> If SCALE .NE. ONE:
172 *> The singular values of A are SCALE*SVA(1:N), and this
173 *> factored representation is due to the fact that some of the
174 *> singular values of A might underflow or overflow.
175 *>
176 *> If INFO .GT. 0 :
177 *> the procedure ZGESVJ did not converge in the given number of
178 *> iterations (sweeps) and SCALE*SVA(1:N) may not be accurate.
179 *> \endverbatim
180 *>
181 *> \param[in] MV
182 *> \verbatim
183 *> MV is INTEGER
184 *> If JOBV .EQ. 'A', then the product of Jacobi rotations in ZGESVJ
185 *> is applied to the first MV rows of V. See the description of JOBV.
186 *> \endverbatim
187 *>
188 *> \param[in,out] V
189 *> \verbatim
190 *> V is COMPLEX*16 array, dimension (LDV,N)
191 *> If JOBV = 'V', then V contains on exit the N-by-N matrix of
192 *> the right singular vectors;
193 *> If JOBV = 'A', then V contains the product of the computed right
194 *> singular vector matrix and the initial matrix in
195 *> the array V.
196 *> If JOBV = 'N', then V is not referenced.
197 *> \endverbatim
198 *>
199 *> \param[in] LDV
200 *> \verbatim
201 *> LDV is INTEGER
202 *> The leading dimension of the array V, LDV .GE. 1.
203 *> If JOBV .EQ. 'V', then LDV .GE. max(1,N).
204 *> If JOBV .EQ. 'A', then LDV .GE. max(1,MV) .
205 *> \endverbatim
206 *>
207 *> \param[in,out] CWORK
208 *> \verbatim
209 *> CWORK is COMPLEX*16 array, dimension max(1,LWORK).
210 *> Used as workspace.
211 *> If on entry LWORK .EQ. -1, then a workspace query is assumed and
212 *> no computation is done; CWORK(1) is set to the minial (and optimal)
213 *> length of CWORK.
214 *> \endverbatim
215 *>
216 *> \param[in] LWORK
217 *> \verbatim
218 *> LWORK is INTEGER.
219 *> Length of CWORK, LWORK >= M+N.
220 *> \endverbatim
221 *>
222 *> \param[in,out] RWORK
223 *> \verbatim
224 *> RWORK is DOUBLE PRECISION array, dimension max(6,LRWORK).
225 *> On entry,
226 *> If JOBU .EQ. 'C' :
227 *> RWORK(1) = CTOL, where CTOL defines the threshold for convergence.
228 *> The process stops if all columns of A are mutually
229 *> orthogonal up to CTOL*EPS, EPS=DLAMCH('E').
230 *> It is required that CTOL >= ONE, i.e. it is not
231 *> allowed to force the routine to obtain orthogonality
232 *> below EPSILON.
233 *> On exit,
234 *> RWORK(1) = SCALE is the scaling factor such that SCALE*SVA(1:N)
235 *> are the computed singular values of A.
236 *> (See description of SVA().)
237 *> RWORK(2) = NINT(RWORK(2)) is the number of the computed nonzero
238 *> singular values.
239 *> RWORK(3) = NINT(RWORK(3)) is the number of the computed singular
240 *> values that are larger than the underflow threshold.
241 *> RWORK(4) = NINT(RWORK(4)) is the number of sweeps of Jacobi
242 *> rotations needed for numerical convergence.
243 *> RWORK(5) = max_{i.NE.j} |COS(A(:,i),A(:,j))| in the last sweep.
244 *> This is useful information in cases when ZGESVJ did
245 *> not converge, as it can be used to estimate whether
246 *> the output is stil useful and for post festum analysis.
247 *> RWORK(6) = the largest absolute value over all sines of the
248 *> Jacobi rotation angles in the last sweep. It can be
249 *> useful for a post festum analysis.
250 *> If on entry LRWORK .EQ. -1, then a workspace query is assumed and
251 *> no computation is done; RWORK(1) is set to the minial (and optimal)
252 *> length of RWORK.
253 *> \endverbatim
254 *>
255 *> \param[in] LRWORK
256 *> \verbatim
257 *> LRWORK is INTEGER
258 *> Length of RWORK, LRWORK >= MAX(6,N).
259 *> \endverbatim
260 *>
261 *> \param[out] INFO
262 *> \verbatim
263 *> INFO is INTEGER
264 *> = 0 : successful exit.
265 *> < 0 : if INFO = -i, then the i-th argument had an illegal value
266 *> > 0 : ZGESVJ did not converge in the maximal allowed number
267 *> (NSWEEP=30) of sweeps. The output may still be useful.
268 *> See the description of RWORK.
269 *> \endverbatim
270 *>
271 * Authors:
272 * ========
273 *
274 *> \author Univ. of Tennessee
275 *> \author Univ. of California Berkeley
276 *> \author Univ. of Colorado Denver
277 *> \author NAG Ltd.
278 *
279 *> \date June 2016
280 *
281 *> \ingroup complex16GEcomputational
282 *
283 *> \par Further Details:
284 * =====================
285 *>
286 *> \verbatim
287 *>
288 *> The orthogonal N-by-N matrix V is obtained as a product of Jacobi plane
289 *> rotations. In the case of underflow of the tangent of the Jacobi angle, a
290 *> modified Jacobi transformation of Drmac [3] is used. Pivot strategy uses
291 *> column interchanges of de Rijk [1]. The relative accuracy of the computed
292 *> singular values and the accuracy of the computed singular vectors (in
293 *> angle metric) is as guaranteed by the theory of Demmel and Veselic [2].
294 *> The condition number that determines the accuracy in the full rank case
295 *> is essentially min_{D=diag} kappa(A*D), where kappa(.) is the
296 *> spectral condition number. The best performance of this Jacobi SVD
297 *> procedure is achieved if used in an accelerated version of Drmac and
298 *> Veselic [4,5], and it is the kernel routine in the SIGMA library [6].
299 *> Some tunning parameters (marked with [TP]) are available for the
300 *> implementer.
301 *> The computational range for the nonzero singular values is the machine
302 *> number interval ( UNDERFLOW , OVERFLOW ). In extreme cases, even
303 *> denormalized singular values can be computed with the corresponding
304 *> gradual loss of accurate digits.
305 *> \endverbatim
306 *
307 *> \par Contributor:
308 * ==================
309 *>
310 *> \verbatim
311 *>
312 *> ============
313 *>
314 *> Zlatko Drmac (Zagreb, Croatia)
315 *>
316 *> \endverbatim
317 *
318 *> \par References:
319 * ================
320 *>
321 *> [1] P. P. M. De Rijk: A one-sided Jacobi algorithm for computing the
322 *> singular value decomposition on a vector computer.
323 *> SIAM J. Sci. Stat. Comp., Vol. 10 (1998), pp. 359-371.
324 *> [2] J. Demmel and K. Veselic: Jacobi method is more accurate than QR.
325 *> [3] Z. Drmac: Implementation of Jacobi rotations for accurate singular
326 *> value computation in floating point arithmetic.
327 *> SIAM J. Sci. Comp., Vol. 18 (1997), pp. 1200-1222.
328 *> [4] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.
329 *> SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.
330 *> LAPACK Working note 169.
331 *> [5] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.
332 *> SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.
333 *> LAPACK Working note 170.
334 *> [6] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,
335 *> QSVD, (H,K)-SVD computations.
336 *> Department of Mathematics, University of Zagreb, 2008, 2015.
337 *> \endverbatim
338 *
339 *> \par Bugs, examples and comments:
340 * =================================
341 *>
342 *> \verbatim
343 *> ===========================
344 *> Please report all bugs and send interesting test examples and comments to
345 *> [email protected]. Thank you.
346 *> \endverbatim
347 *>
348 * =====================================================================
349  SUBROUTINE zgesvj( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V,
350  $ ldv, cwork, lwork, rwork, lrwork, info )
351 *
352 * -- LAPACK computational routine (version 3.7.0) --
353 * -- LAPACK is a software package provided by Univ. of Tennessee, --
354 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
355 * June 2016
356 *
357  IMPLICIT NONE
358 * .. Scalar Arguments ..
359  INTEGER INFO, LDA, LDV, LWORK, LRWORK, M, MV, N
360  CHARACTER*1 JOBA, JOBU, JOBV
361 * ..
362 * .. Array Arguments ..
363  COMPLEX*16 A( lda, * ), V( ldv, * ), CWORK( lwork )
364  DOUBLE PRECISION RWORK( lrwork ), SVA( n )
365 * ..
366 *
367 * =====================================================================
368 *
369 * .. Local Parameters ..
370  DOUBLE PRECISION ZERO, HALF, ONE
371  parameter( zero = 0.0d0, half = 0.5d0, one = 1.0d0)
372  COMPLEX*16 CZERO, CONE
373  parameter( czero = (0.0d0, 0.0d0), cone = (1.0d0, 0.0d0) )
374  INTEGER NSWEEP
375  parameter( nsweep = 30 )
376 * ..
377 * .. Local Scalars ..
378  COMPLEX*16 AAPQ, OMPQ
379  DOUBLE PRECISION AAPP, AAPP0, AAPQ1, AAQQ, APOAQ, AQOAP, BIG,
380  $ bigtheta, cs, ctol, epsln, mxaapq,
381  $ mxsinj, rootbig, rooteps, rootsfmin, roottol,
382  $ skl, sfmin, small, sn, t, temp1, theta, thsign, tol
383  INTEGER BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1,
384  $ iswrot, jbc, jgl, kbl, lkahead, mvl, n2, n34,
385  $ n4, nbl, notrot, p, pskipped, q, rowskip, swband
386  LOGICAL APPLV, GOSCALE, LOWER, LQUERY, LSVEC, NOSCALE, ROTOK,
387  $ rsvec, uctol, upper
388 * ..
389 * ..
390 * .. Intrinsic Functions ..
391  INTRINSIC abs, max, min, conjg, dble, sign, sqrt
392 * ..
393 * .. External Functions ..
394 * ..
395 * from BLAS
396  DOUBLE PRECISION DZNRM2
397  COMPLEX*16 ZDOTC
398  EXTERNAL zdotc, dznrm2
399  INTEGER IDAMAX
400  EXTERNAL idamax
401 * from LAPACK
402  DOUBLE PRECISION DLAMCH
403  EXTERNAL dlamch
404  LOGICAL LSAME
405  EXTERNAL lsame
406 * ..
407 * .. External Subroutines ..
408 * ..
409 * from BLAS
410  EXTERNAL zcopy, zrot, zdscal, zswap
411 * from LAPACK
412  EXTERNAL dlascl, zlascl, zlaset, zlassq, xerbla
413  EXTERNAL zgsvj0, zgsvj1
414 * ..
415 * .. Executable Statements ..
416 *
417 * Test the input arguments
418 *
419  lsvec = lsame( jobu, 'U' ) .OR. lsame( jobu, 'F' )
420  uctol = lsame( jobu, 'C' )
421  rsvec = lsame( jobv, 'V' ) .OR. lsame( jobv, 'J' )
422  applv = lsame( jobv, 'A' )
423  upper = lsame( joba, 'U' )
424  lower = lsame( joba, 'L' )
425 *
426  lquery = ( lwork .EQ. -1 ) .OR. ( lrwork .EQ. -1 )
427  IF( .NOT.( upper .OR. lower .OR. lsame( joba, 'G' ) ) ) THEN
428  info = -1
429  ELSE IF( .NOT.( lsvec .OR. uctol .OR. lsame( jobu, 'N' ) ) ) THEN
430  info = -2
431  ELSE IF( .NOT.( rsvec .OR. applv .OR. lsame( jobv, 'N' ) ) ) THEN
432  info = -3
433  ELSE IF( m.LT.0 ) THEN
434  info = -4
435  ELSE IF( ( n.LT.0 ) .OR. ( n.GT.m ) ) THEN
436  info = -5
437  ELSE IF( lda.LT.m ) THEN
438  info = -7
439  ELSE IF( mv.LT.0 ) THEN
440  info = -9
441  ELSE IF( ( rsvec .AND. ( ldv.LT.n ) ) .OR.
442  $ ( applv .AND. ( ldv.LT.mv ) ) ) THEN
443  info = -11
444  ELSE IF( uctol .AND. ( rwork( 1 ).LE.one ) ) THEN
445  info = -12
446  ELSE IF( ( lwork.LT.( m+n ) ) .AND. ( .NOT.lquery ) ) THEN
447  info = -13
448  ELSE IF( ( lrwork.LT.max( n, 6 ) ) .AND. ( .NOT.lquery ) ) THEN
449  info = -15
450  ELSE
451  info = 0
452  END IF
453 *
454 * #:(
455  IF( info.NE.0 ) THEN
456  CALL xerbla( 'ZGESVJ', -info )
457  RETURN
458  ELSE IF ( lquery ) THEN
459  cwork(1) = m + n
460  rwork(1) = max( n, 6 )
461  RETURN
462  END IF
463 *
464 * #:) Quick return for void matrix
465 *
466  IF( ( m.EQ.0 ) .OR. ( n.EQ.0 ) )RETURN
467 *
468 * Set numerical parameters
469 * The stopping criterion for Jacobi rotations is
470 *
471 * max_{i<>j}|A(:,i)^* * A(:,j)| / (||A(:,i)||*||A(:,j)||) < CTOL*EPS
472 *
473 * where EPS is the round-off and CTOL is defined as follows:
474 *
475  IF( uctol ) THEN
476 * ... user controlled
477  ctol = rwork( 1 )
478  ELSE
479 * ... default
480  IF( lsvec .OR. rsvec .OR. applv ) THEN
481  ctol = sqrt( dble( m ) )
482  ELSE
483  ctol = dble( m )
484  END IF
485  END IF
486 * ... and the machine dependent parameters are
487 *[!] (Make sure that SLAMCH() works properly on the target machine.)
488 *
489  epsln = dlamch( 'Epsilon' )
490  rooteps = sqrt( epsln )
491  sfmin = dlamch( 'SafeMinimum' )
492  rootsfmin = sqrt( sfmin )
493  small = sfmin / epsln
494  big = dlamch( 'Overflow' )
495 * BIG = ONE / SFMIN
496  rootbig = one / rootsfmin
497 * LARGE = BIG / SQRT( DBLE( M*N ) )
498  bigtheta = one / rooteps
499 *
500  tol = ctol*epsln
501  roottol = sqrt( tol )
502 *
503  IF( dble( m )*epsln.GE.one ) THEN
504  info = -4
505  CALL xerbla( 'ZGESVJ', -info )
506  RETURN
507  END IF
508 *
509 * Initialize the right singular vector matrix.
510 *
511  IF( rsvec ) THEN
512  mvl = n
513  CALL zlaset( 'A', mvl, n, czero, cone, v, ldv )
514  ELSE IF( applv ) THEN
515  mvl = mv
516  END IF
517  rsvec = rsvec .OR. applv
518 *
519 * Initialize SVA( 1:N ) = ( ||A e_i||_2, i = 1:N )
520 *(!) If necessary, scale A to protect the largest singular value
521 * from overflow. It is possible that saving the largest singular
522 * value destroys the information about the small ones.
523 * This initial scaling is almost minimal in the sense that the
524 * goal is to make sure that no column norm overflows, and that
525 * SQRT(N)*max_i SVA(i) does not overflow. If INFinite entries
526 * in A are detected, the procedure returns with INFO=-6.
527 *
528  skl = one / sqrt( dble( m )*dble( n ) )
529  noscale = .true.
530  goscale = .true.
531 *
532  IF( lower ) THEN
533 * the input matrix is M-by-N lower triangular (trapezoidal)
534  DO 1874 p = 1, n
535  aapp = zero
536  aaqq = one
537  CALL zlassq( m-p+1, a( p, p ), 1, aapp, aaqq )
538  IF( aapp.GT.big ) THEN
539  info = -6
540  CALL xerbla( 'ZGESVJ', -info )
541  RETURN
542  END IF
543  aaqq = sqrt( aaqq )
544  IF( ( aapp.LT.( big / aaqq ) ) .AND. noscale ) THEN
545  sva( p ) = aapp*aaqq
546  ELSE
547  noscale = .false.
548  sva( p ) = aapp*( aaqq*skl )
549  IF( goscale ) THEN
550  goscale = .false.
551  DO 1873 q = 1, p - 1
552  sva( q ) = sva( q )*skl
553  1873 CONTINUE
554  END IF
555  END IF
556  1874 CONTINUE
557  ELSE IF( upper ) THEN
558 * the input matrix is M-by-N upper triangular (trapezoidal)
559  DO 2874 p = 1, n
560  aapp = zero
561  aaqq = one
562  CALL zlassq( p, a( 1, p ), 1, aapp, aaqq )
563  IF( aapp.GT.big ) THEN
564  info = -6
565  CALL xerbla( 'ZGESVJ', -info )
566  RETURN
567  END IF
568  aaqq = sqrt( aaqq )
569  IF( ( aapp.LT.( big / aaqq ) ) .AND. noscale ) THEN
570  sva( p ) = aapp*aaqq
571  ELSE
572  noscale = .false.
573  sva( p ) = aapp*( aaqq*skl )
574  IF( goscale ) THEN
575  goscale = .false.
576  DO 2873 q = 1, p - 1
577  sva( q ) = sva( q )*skl
578  2873 CONTINUE
579  END IF
580  END IF
581  2874 CONTINUE
582  ELSE
583 * the input matrix is M-by-N general dense
584  DO 3874 p = 1, n
585  aapp = zero
586  aaqq = one
587  CALL zlassq( m, a( 1, p ), 1, aapp, aaqq )
588  IF( aapp.GT.big ) THEN
589  info = -6
590  CALL xerbla( 'ZGESVJ', -info )
591  RETURN
592  END IF
593  aaqq = sqrt( aaqq )
594  IF( ( aapp.LT.( big / aaqq ) ) .AND. noscale ) THEN
595  sva( p ) = aapp*aaqq
596  ELSE
597  noscale = .false.
598  sva( p ) = aapp*( aaqq*skl )
599  IF( goscale ) THEN
600  goscale = .false.
601  DO 3873 q = 1, p - 1
602  sva( q ) = sva( q )*skl
603  3873 CONTINUE
604  END IF
605  END IF
606  3874 CONTINUE
607  END IF
608 *
609  IF( noscale )skl = one
610 *
611 * Move the smaller part of the spectrum from the underflow threshold
612 *(!) Start by determining the position of the nonzero entries of the
613 * array SVA() relative to ( SFMIN, BIG ).
614 *
615  aapp = zero
616  aaqq = big
617  DO 4781 p = 1, n
618  IF( sva( p ).NE.zero )aaqq = min( aaqq, sva( p ) )
619  aapp = max( aapp, sva( p ) )
620  4781 CONTINUE
621 *
622 * #:) Quick return for zero matrix
623 *
624  IF( aapp.EQ.zero ) THEN
625  IF( lsvec )CALL zlaset( 'G', m, n, czero, cone, a, lda )
626  rwork( 1 ) = one
627  rwork( 2 ) = zero
628  rwork( 3 ) = zero
629  rwork( 4 ) = zero
630  rwork( 5 ) = zero
631  rwork( 6 ) = zero
632  RETURN
633  END IF
634 *
635 * #:) Quick return for one-column matrix
636 *
637  IF( n.EQ.1 ) THEN
638  IF( lsvec )CALL zlascl( 'G', 0, 0, sva( 1 ), skl, m, 1,
639  $ a( 1, 1 ), lda, ierr )
640  rwork( 1 ) = one / skl
641  IF( sva( 1 ).GE.sfmin ) THEN
642  rwork( 2 ) = one
643  ELSE
644  rwork( 2 ) = zero
645  END IF
646  rwork( 3 ) = zero
647  rwork( 4 ) = zero
648  rwork( 5 ) = zero
649  rwork( 6 ) = zero
650  RETURN
651  END IF
652 *
653 * Protect small singular values from underflow, and try to
654 * avoid underflows/overflows in computing Jacobi rotations.
655 *
656  sn = sqrt( sfmin / epsln )
657  temp1 = sqrt( big / dble( n ) )
658  IF( ( aapp.LE.sn ) .OR. ( aaqq.GE.temp1 ) .OR.
659  $ ( ( sn.LE.aaqq ) .AND. ( aapp.LE.temp1 ) ) ) THEN
660  temp1 = min( big, temp1 / aapp )
661 * AAQQ = AAQQ*TEMP1
662 * AAPP = AAPP*TEMP1
663  ELSE IF( ( aaqq.LE.sn ) .AND. ( aapp.LE.temp1 ) ) THEN
664  temp1 = min( sn / aaqq, big / (aapp*sqrt( dble(n)) ) )
665 * AAQQ = AAQQ*TEMP1
666 * AAPP = AAPP*TEMP1
667  ELSE IF( ( aaqq.GE.sn ) .AND. ( aapp.GE.temp1 ) ) THEN
668  temp1 = max( sn / aaqq, temp1 / aapp )
669 * AAQQ = AAQQ*TEMP1
670 * AAPP = AAPP*TEMP1
671  ELSE IF( ( aaqq.LE.sn ) .AND. ( aapp.GE.temp1 ) ) THEN
672  temp1 = min( sn / aaqq, big / ( sqrt( dble( n ) )*aapp ) )
673 * AAQQ = AAQQ*TEMP1
674 * AAPP = AAPP*TEMP1
675  ELSE
676  temp1 = one
677  END IF
678 *
679 * Scale, if necessary
680 *
681  IF( temp1.NE.one ) THEN
682  CALL dlascl( 'G', 0, 0, one, temp1, n, 1, sva, n, ierr )
683  END IF
684  skl = temp1*skl
685  IF( skl.NE.one ) THEN
686  CALL zlascl( joba, 0, 0, one, skl, m, n, a, lda, ierr )
687  skl = one / skl
688  END IF
689 *
690 * Row-cyclic Jacobi SVD algorithm with column pivoting
691 *
692  emptsw = ( n*( n-1 ) ) / 2
693  notrot = 0
694 
695  DO 1868 q = 1, n
696  cwork( q ) = cone
697  1868 CONTINUE
698 *
699 *
700 *
701  swband = 3
702 *[TP] SWBAND is a tuning parameter [TP]. It is meaningful and effective
703 * if ZGESVJ is used as a computational routine in the preconditioned
704 * Jacobi SVD algorithm ZGEJSV. For sweeps i=1:SWBAND the procedure
705 * works on pivots inside a band-like region around the diagonal.
706 * The boundaries are determined dynamically, based on the number of
707 * pivots above a threshold.
708 *
709  kbl = min( 8, n )
710 *[TP] KBL is a tuning parameter that defines the tile size in the
711 * tiling of the p-q loops of pivot pairs. In general, an optimal
712 * value of KBL depends on the matrix dimensions and on the
713 * parameters of the computer's memory.
714 *
715  nbl = n / kbl
716  IF( ( nbl*kbl ).NE.n )nbl = nbl + 1
717 *
718  blskip = kbl**2
719 *[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL.
720 *
721  rowskip = min( 5, kbl )
722 *[TP] ROWSKIP is a tuning parameter.
723 *
724  lkahead = 1
725 *[TP] LKAHEAD is a tuning parameter.
726 *
727 * Quasi block transformations, using the lower (upper) triangular
728 * structure of the input matrix. The quasi-block-cycling usually
729 * invokes cubic convergence. Big part of this cycle is done inside
730 * canonical subspaces of dimensions less than M.
731 *
732  IF( ( lower .OR. upper ) .AND. ( n.GT.max( 64, 4*kbl ) ) ) THEN
733 *[TP] The number of partition levels and the actual partition are
734 * tuning parameters.
735  n4 = n / 4
736  n2 = n / 2
737  n34 = 3*n4
738  IF( applv ) THEN
739  q = 0
740  ELSE
741  q = 1
742  END IF
743 *
744  IF( lower ) THEN
745 *
746 * This works very well on lower triangular matrices, in particular
747 * in the framework of the preconditioned Jacobi SVD (xGEJSV).
748 * The idea is simple:
749 * [+ 0 0 0] Note that Jacobi transformations of [0 0]
750 * [+ + 0 0] [0 0]
751 * [+ + x 0] actually work on [x 0] [x 0]
752 * [+ + x x] [x x]. [x x]
753 *
754  CALL zgsvj0( jobv, m-n34, n-n34, a( n34+1, n34+1 ), lda,
755  $ cwork( n34+1 ), sva( n34+1 ), mvl,
756  $ v( n34*q+1, n34+1 ), ldv, epsln, sfmin, tol,
757  $ 2, cwork( n+1 ), lwork-n, ierr )
758 
759  CALL zgsvj0( jobv, m-n2, n34-n2, a( n2+1, n2+1 ), lda,
760  $ cwork( n2+1 ), sva( n2+1 ), mvl,
761  $ v( n2*q+1, n2+1 ), ldv, epsln, sfmin, tol, 2,
762  $ cwork( n+1 ), lwork-n, ierr )
763 
764  CALL zgsvj1( jobv, m-n2, n-n2, n4, a( n2+1, n2+1 ), lda,
765  $ cwork( n2+1 ), sva( n2+1 ), mvl,
766  $ v( n2*q+1, n2+1 ), ldv, epsln, sfmin, tol, 1,
767  $ cwork( n+1 ), lwork-n, ierr )
768 
769  CALL zgsvj0( jobv, m-n4, n2-n4, a( n4+1, n4+1 ), lda,
770  $ cwork( n4+1 ), sva( n4+1 ), mvl,
771  $ v( n4*q+1, n4+1 ), ldv, epsln, sfmin, tol, 1,
772  $ cwork( n+1 ), lwork-n, ierr )
773 *
774  CALL zgsvj0( jobv, m, n4, a, lda, cwork, sva, mvl, v, ldv,
775  $ epsln, sfmin, tol, 1, cwork( n+1 ), lwork-n,
776  $ ierr )
777 *
778  CALL zgsvj1( jobv, m, n2, n4, a, lda, cwork, sva, mvl, v,
779  $ ldv, epsln, sfmin, tol, 1, cwork( n+1 ),
780  $ lwork-n, ierr )
781 *
782 *
783  ELSE IF( upper ) THEN
784 *
785 *
786  CALL zgsvj0( jobv, n4, n4, a, lda, cwork, sva, mvl, v, ldv,
787  $ epsln, sfmin, tol, 2, cwork( n+1 ), lwork-n,
788  $ ierr )
789 *
790  CALL zgsvj0( jobv, n2, n4, a( 1, n4+1 ), lda, cwork( n4+1 ),
791  $ sva( n4+1 ), mvl, v( n4*q+1, n4+1 ), ldv,
792  $ epsln, sfmin, tol, 1, cwork( n+1 ), lwork-n,
793  $ ierr )
794 *
795  CALL zgsvj1( jobv, n2, n2, n4, a, lda, cwork, sva, mvl, v,
796  $ ldv, epsln, sfmin, tol, 1, cwork( n+1 ),
797  $ lwork-n, ierr )
798 *
799  CALL zgsvj0( jobv, n2+n4, n4, a( 1, n2+1 ), lda,
800  $ cwork( n2+1 ), sva( n2+1 ), mvl,
801  $ v( n2*q+1, n2+1 ), ldv, epsln, sfmin, tol, 1,
802  $ cwork( n+1 ), lwork-n, ierr )
803 
804  END IF
805 *
806  END IF
807 *
808 * .. Row-cyclic pivot strategy with de Rijk's pivoting ..
809 *
810  DO 1993 i = 1, nsweep
811 *
812 * .. go go go ...
813 *
814  mxaapq = zero
815  mxsinj = zero
816  iswrot = 0
817 *
818  notrot = 0
819  pskipped = 0
820 *
821 * Each sweep is unrolled using KBL-by-KBL tiles over the pivot pairs
822 * 1 <= p < q <= N. This is the first step toward a blocked implementation
823 * of the rotations. New implementation, based on block transformations,
824 * is under development.
825 *
826  DO 2000 ibr = 1, nbl
827 *
828  igl = ( ibr-1 )*kbl + 1
829 *
830  DO 1002 ir1 = 0, min( lkahead, nbl-ibr )
831 *
832  igl = igl + ir1*kbl
833 *
834  DO 2001 p = igl, min( igl+kbl-1, n-1 )
835 *
836 * .. de Rijk's pivoting
837 *
838  q = idamax( n-p+1, sva( p ), 1 ) + p - 1
839  IF( p.NE.q ) THEN
840  CALL zswap( m, a( 1, p ), 1, a( 1, q ), 1 )
841  IF( rsvec )CALL zswap( mvl, v( 1, p ), 1,
842  $ v( 1, q ), 1 )
843  temp1 = sva( p )
844  sva( p ) = sva( q )
845  sva( q ) = temp1
846  aapq = cwork(p)
847  cwork(p) = cwork(q)
848  cwork(q) = aapq
849  END IF
850 *
851  IF( ir1.EQ.0 ) THEN
852 *
853 * Column norms are periodically updated by explicit
854 * norm computation.
855 *[!] Caveat:
856 * Unfortunately, some BLAS implementations compute DZNRM2(M,A(1,p),1)
857 * as SQRT(S=CDOTC(M,A(1,p),1,A(1,p),1)), which may cause the result to
858 * overflow for ||A(:,p)||_2 > SQRT(overflow_threshold), and to
859 * underflow for ||A(:,p)||_2 < SQRT(underflow_threshold).
860 * Hence, DZNRM2 cannot be trusted, not even in the case when
861 * the true norm is far from the under(over)flow boundaries.
862 * If properly implemented SCNRM2 is available, the IF-THEN-ELSE-END IF
863 * below should be replaced with "AAPP = DZNRM2( M, A(1,p), 1 )".
864 *
865  IF( ( sva( p ).LT.rootbig ) .AND.
866  $ ( sva( p ).GT.rootsfmin ) ) THEN
867  sva( p ) = dznrm2( m, a( 1, p ), 1 )
868  ELSE
869  temp1 = zero
870  aapp = one
871  CALL zlassq( m, a( 1, p ), 1, temp1, aapp )
872  sva( p ) = temp1*sqrt( aapp )
873  END IF
874  aapp = sva( p )
875  ELSE
876  aapp = sva( p )
877  END IF
878 *
879  IF( aapp.GT.zero ) THEN
880 *
881  pskipped = 0
882 *
883  DO 2002 q = p + 1, min( igl+kbl-1, n )
884 *
885  aaqq = sva( q )
886 *
887  IF( aaqq.GT.zero ) THEN
888 *
889  aapp0 = aapp
890  IF( aaqq.GE.one ) THEN
891  rotok = ( small*aapp ).LE.aaqq
892  IF( aapp.LT.( big / aaqq ) ) THEN
893  aapq = ( zdotc( m, a( 1, p ), 1,
894  $ a( 1, q ), 1 ) / aaqq ) / aapp
895  ELSE
896  CALL zcopy( m, a( 1, p ), 1,
897  $ cwork(n+1), 1 )
898  CALL zlascl( 'G', 0, 0, aapp, one,
899  $ m, 1, cwork(n+1), lda, ierr )
900  aapq = zdotc( m, cwork(n+1), 1,
901  $ a( 1, q ), 1 ) / aaqq
902  END IF
903  ELSE
904  rotok = aapp.LE.( aaqq / small )
905  IF( aapp.GT.( small / aaqq ) ) THEN
906  aapq = ( zdotc( m, a( 1, p ), 1,
907  $ a( 1, q ), 1 ) / aapp ) / aaqq
908  ELSE
909  CALL zcopy( m, a( 1, q ), 1,
910  $ cwork(n+1), 1 )
911  CALL zlascl( 'G', 0, 0, aaqq,
912  $ one, m, 1,
913  $ cwork(n+1), lda, ierr )
914  aapq = zdotc( m, a(1, p ), 1,
915  $ cwork(n+1), 1 ) / aapp
916  END IF
917  END IF
918 *
919 
920 * AAPQ = AAPQ * CONJG( CWORK(p) ) * CWORK(q)
921  aapq1 = -abs(aapq)
922  mxaapq = max( mxaapq, -aapq1 )
923 *
924 * TO rotate or NOT to rotate, THAT is the question ...
925 *
926  IF( abs( aapq1 ).GT.tol ) THEN
927  ompq = aapq / abs(aapq)
928 *
929 * .. rotate
930 *[RTD] ROTATED = ROTATED + ONE
931 *
932  IF( ir1.EQ.0 ) THEN
933  notrot = 0
934  pskipped = 0
935  iswrot = iswrot + 1
936  END IF
937 *
938  IF( rotok ) THEN
939 *
940  aqoap = aaqq / aapp
941  apoaq = aapp / aaqq
942  theta = -half*abs( aqoap-apoaq )/aapq1
943 *
944  IF( abs( theta ).GT.bigtheta ) THEN
945 *
946  t = half / theta
947  cs = one
948 
949  CALL zrot( m, a(1,p), 1, a(1,q), 1,
950  $ cs, conjg(ompq)*t )
951  IF ( rsvec ) THEN
952  CALL zrot( mvl, v(1,p), 1,
953  $ v(1,q), 1, cs, conjg(ompq)*t )
954  END IF
955 
956  sva( q ) = aaqq*sqrt( max( zero,
957  $ one+t*apoaq*aapq1 ) )
958  aapp = aapp*sqrt( max( zero,
959  $ one-t*aqoap*aapq1 ) )
960  mxsinj = max( mxsinj, abs( t ) )
961 *
962  ELSE
963 *
964 * .. choose correct signum for THETA and rotate
965 *
966  thsign = -sign( one, aapq1 )
967  t = one / ( theta+thsign*
968  $ sqrt( one+theta*theta ) )
969  cs = sqrt( one / ( one+t*t ) )
970  sn = t*cs
971 *
972  mxsinj = max( mxsinj, abs( sn ) )
973  sva( q ) = aaqq*sqrt( max( zero,
974  $ one+t*apoaq*aapq1 ) )
975  aapp = aapp*sqrt( max( zero,
976  $ one-t*aqoap*aapq1 ) )
977 *
978  CALL zrot( m, a(1,p), 1, a(1,q), 1,
979  $ cs, conjg(ompq)*sn )
980  IF ( rsvec ) THEN
981  CALL zrot( mvl, v(1,p), 1,
982  $ v(1,q), 1, cs, conjg(ompq)*sn )
983  END IF
984  END IF
985  cwork(p) = -cwork(q) * ompq
986 *
987  ELSE
988 * .. have to use modified Gram-Schmidt like transformation
989  CALL zcopy( m, a( 1, p ), 1,
990  $ cwork(n+1), 1 )
991  CALL zlascl( 'G', 0, 0, aapp, one, m,
992  $ 1, cwork(n+1), lda,
993  $ ierr )
994  CALL zlascl( 'G', 0, 0, aaqq, one, m,
995  $ 1, a( 1, q ), lda, ierr )
996  CALL zaxpy( m, -aapq, cwork(n+1), 1,
997  $ a( 1, q ), 1 )
998  CALL zlascl( 'G', 0, 0, one, aaqq, m,
999  $ 1, a( 1, q ), lda, ierr )
1000  sva( q ) = aaqq*sqrt( max( zero,
1001  $ one-aapq1*aapq1 ) )
1002  mxsinj = max( mxsinj, sfmin )
1003  END IF
1004 * END IF ROTOK THEN ... ELSE
1005 *
1006 * In the case of cancellation in updating SVA(q), SVA(p)
1007 * recompute SVA(q), SVA(p).
1008 *
1009  IF( ( sva( q ) / aaqq )**2.LE.rooteps )
1010  $ THEN
1011  IF( ( aaqq.LT.rootbig ) .AND.
1012  $ ( aaqq.GT.rootsfmin ) ) THEN
1013  sva( q ) = dznrm2( m, a( 1, q ), 1 )
1014  ELSE
1015  t = zero
1016  aaqq = one
1017  CALL zlassq( m, a( 1, q ), 1, t,
1018  $ aaqq )
1019  sva( q ) = t*sqrt( aaqq )
1020  END IF
1021  END IF
1022  IF( ( aapp / aapp0 ).LE.rooteps ) THEN
1023  IF( ( aapp.LT.rootbig ) .AND.
1024  $ ( aapp.GT.rootsfmin ) ) THEN
1025  aapp = dznrm2( m, a( 1, p ), 1 )
1026  ELSE
1027  t = zero
1028  aapp = one
1029  CALL zlassq( m, a( 1, p ), 1, t,
1030  $ aapp )
1031  aapp = t*sqrt( aapp )
1032  END IF
1033  sva( p ) = aapp
1034  END IF
1035 *
1036  ELSE
1037 * A(:,p) and A(:,q) already numerically orthogonal
1038  IF( ir1.EQ.0 )notrot = notrot + 1
1039 *[RTD] SKIPPED = SKIPPED + 1
1040  pskipped = pskipped + 1
1041  END IF
1042  ELSE
1043 * A(:,q) is zero column
1044  IF( ir1.EQ.0 )notrot = notrot + 1
1045  pskipped = pskipped + 1
1046  END IF
1047 *
1048  IF( ( i.LE.swband ) .AND.
1049  $ ( pskipped.GT.rowskip ) ) THEN
1050  IF( ir1.EQ.0 )aapp = -aapp
1051  notrot = 0
1052  GO TO 2103
1053  END IF
1054 *
1055  2002 CONTINUE
1056 * END q-LOOP
1057 *
1058  2103 CONTINUE
1059 * bailed out of q-loop
1060 *
1061  sva( p ) = aapp
1062 *
1063  ELSE
1064  sva( p ) = aapp
1065  IF( ( ir1.EQ.0 ) .AND. ( aapp.EQ.zero ) )
1066  $ notrot = notrot + min( igl+kbl-1, n ) - p
1067  END IF
1068 *
1069  2001 CONTINUE
1070 * end of the p-loop
1071 * end of doing the block ( ibr, ibr )
1072  1002 CONTINUE
1073 * end of ir1-loop
1074 *
1075 * ... go to the off diagonal blocks
1076 *
1077  igl = ( ibr-1 )*kbl + 1
1078 *
1079  DO 2010 jbc = ibr + 1, nbl
1080 *
1081  jgl = ( jbc-1 )*kbl + 1
1082 *
1083 * doing the block at ( ibr, jbc )
1084 *
1085  ijblsk = 0
1086  DO 2100 p = igl, min( igl+kbl-1, n )
1087 *
1088  aapp = sva( p )
1089  IF( aapp.GT.zero ) THEN
1090 *
1091  pskipped = 0
1092 *
1093  DO 2200 q = jgl, min( jgl+kbl-1, n )
1094 *
1095  aaqq = sva( q )
1096  IF( aaqq.GT.zero ) THEN
1097  aapp0 = aapp
1098 *
1099 * .. M x 2 Jacobi SVD ..
1100 *
1101 * Safe Gram matrix computation
1102 *
1103  IF( aaqq.GE.one ) THEN
1104  IF( aapp.GE.aaqq ) THEN
1105  rotok = ( small*aapp ).LE.aaqq
1106  ELSE
1107  rotok = ( small*aaqq ).LE.aapp
1108  END IF
1109  IF( aapp.LT.( big / aaqq ) ) THEN
1110  aapq = ( zdotc( m, a( 1, p ), 1,
1111  $ a( 1, q ), 1 ) / aaqq ) / aapp
1112  ELSE
1113  CALL zcopy( m, a( 1, p ), 1,
1114  $ cwork(n+1), 1 )
1115  CALL zlascl( 'G', 0, 0, aapp,
1116  $ one, m, 1,
1117  $ cwork(n+1), lda, ierr )
1118  aapq = zdotc( m, cwork(n+1), 1,
1119  $ a( 1, q ), 1 ) / aaqq
1120  END IF
1121  ELSE
1122  IF( aapp.GE.aaqq ) THEN
1123  rotok = aapp.LE.( aaqq / small )
1124  ELSE
1125  rotok = aaqq.LE.( aapp / small )
1126  END IF
1127  IF( aapp.GT.( small / aaqq ) ) THEN
1128  aapq = ( zdotc( m, a( 1, p ), 1,
1129  $ a( 1, q ), 1 ) / max(aaqq,aapp) )
1130  $ / min(aaqq,aapp)
1131  ELSE
1132  CALL zcopy( m, a( 1, q ), 1,
1133  $ cwork(n+1), 1 )
1134  CALL zlascl( 'G', 0, 0, aaqq,
1135  $ one, m, 1,
1136  $ cwork(n+1), lda, ierr )
1137  aapq = zdotc( m, a( 1, p ), 1,
1138  $ cwork(n+1), 1 ) / aapp
1139  END IF
1140  END IF
1141 *
1142 
1143 * AAPQ = AAPQ * CONJG(CWORK(p))*CWORK(q)
1144  aapq1 = -abs(aapq)
1145  mxaapq = max( mxaapq, -aapq1 )
1146 *
1147 * TO rotate or NOT to rotate, THAT is the question ...
1148 *
1149  IF( abs( aapq1 ).GT.tol ) THEN
1150  ompq = aapq / abs(aapq)
1151  notrot = 0
1152 *[RTD] ROTATED = ROTATED + 1
1153  pskipped = 0
1154  iswrot = iswrot + 1
1155 *
1156  IF( rotok ) THEN
1157 *
1158  aqoap = aaqq / aapp
1159  apoaq = aapp / aaqq
1160  theta = -half*abs( aqoap-apoaq )/ aapq1
1161  IF( aaqq.GT.aapp0 )theta = -theta
1162 *
1163  IF( abs( theta ).GT.bigtheta ) THEN
1164  t = half / theta
1165  cs = one
1166  CALL zrot( m, a(1,p), 1, a(1,q), 1,
1167  $ cs, conjg(ompq)*t )
1168  IF( rsvec ) THEN
1169  CALL zrot( mvl, v(1,p), 1,
1170  $ v(1,q), 1, cs, conjg(ompq)*t )
1171  END IF
1172  sva( q ) = aaqq*sqrt( max( zero,
1173  $ one+t*apoaq*aapq1 ) )
1174  aapp = aapp*sqrt( max( zero,
1175  $ one-t*aqoap*aapq1 ) )
1176  mxsinj = max( mxsinj, abs( t ) )
1177  ELSE
1178 *
1179 * .. choose correct signum for THETA and rotate
1180 *
1181  thsign = -sign( one, aapq1 )
1182  IF( aaqq.GT.aapp0 )thsign = -thsign
1183  t = one / ( theta+thsign*
1184  $ sqrt( one+theta*theta ) )
1185  cs = sqrt( one / ( one+t*t ) )
1186  sn = t*cs
1187  mxsinj = max( mxsinj, abs( sn ) )
1188  sva( q ) = aaqq*sqrt( max( zero,
1189  $ one+t*apoaq*aapq1 ) )
1190  aapp = aapp*sqrt( max( zero,
1191  $ one-t*aqoap*aapq1 ) )
1192 *
1193  CALL zrot( m, a(1,p), 1, a(1,q), 1,
1194  $ cs, conjg(ompq)*sn )
1195  IF( rsvec ) THEN
1196  CALL zrot( mvl, v(1,p), 1,
1197  $ v(1,q), 1, cs, conjg(ompq)*sn )
1198  END IF
1199  END IF
1200  cwork(p) = -cwork(q) * ompq
1201 *
1202  ELSE
1203 * .. have to use modified Gram-Schmidt like transformation
1204  IF( aapp.GT.aaqq ) THEN
1205  CALL zcopy( m, a( 1, p ), 1,
1206  $ cwork(n+1), 1 )
1207  CALL zlascl( 'G', 0, 0, aapp, one,
1208  $ m, 1, cwork(n+1),lda,
1209  $ ierr )
1210  CALL zlascl( 'G', 0, 0, aaqq, one,
1211  $ m, 1, a( 1, q ), lda,
1212  $ ierr )
1213  CALL zaxpy( m, -aapq, cwork(n+1),
1214  $ 1, a( 1, q ), 1 )
1215  CALL zlascl( 'G', 0, 0, one, aaqq,
1216  $ m, 1, a( 1, q ), lda,
1217  $ ierr )
1218  sva( q ) = aaqq*sqrt( max( zero,
1219  $ one-aapq1*aapq1 ) )
1220  mxsinj = max( mxsinj, sfmin )
1221  ELSE
1222  CALL zcopy( m, a( 1, q ), 1,
1223  $ cwork(n+1), 1 )
1224  CALL zlascl( 'G', 0, 0, aaqq, one,
1225  $ m, 1, cwork(n+1),lda,
1226  $ ierr )
1227  CALL zlascl( 'G', 0, 0, aapp, one,
1228  $ m, 1, a( 1, p ), lda,
1229  $ ierr )
1230  CALL zaxpy( m, -conjg(aapq),
1231  $ cwork(n+1), 1, a( 1, p ), 1 )
1232  CALL zlascl( 'G', 0, 0, one, aapp,
1233  $ m, 1, a( 1, p ), lda,
1234  $ ierr )
1235  sva( p ) = aapp*sqrt( max( zero,
1236  $ one-aapq1*aapq1 ) )
1237  mxsinj = max( mxsinj, sfmin )
1238  END IF
1239  END IF
1240 * END IF ROTOK THEN ... ELSE
1241 *
1242 * In the case of cancellation in updating SVA(q), SVA(p)
1243 * .. recompute SVA(q), SVA(p)
1244  IF( ( sva( q ) / aaqq )**2.LE.rooteps )
1245  $ THEN
1246  IF( ( aaqq.LT.rootbig ) .AND.
1247  $ ( aaqq.GT.rootsfmin ) ) THEN
1248  sva( q ) = dznrm2( m, a( 1, q ), 1)
1249  ELSE
1250  t = zero
1251  aaqq = one
1252  CALL zlassq( m, a( 1, q ), 1, t,
1253  $ aaqq )
1254  sva( q ) = t*sqrt( aaqq )
1255  END IF
1256  END IF
1257  IF( ( aapp / aapp0 )**2.LE.rooteps ) THEN
1258  IF( ( aapp.LT.rootbig ) .AND.
1259  $ ( aapp.GT.rootsfmin ) ) THEN
1260  aapp = dznrm2( m, a( 1, p ), 1 )
1261  ELSE
1262  t = zero
1263  aapp = one
1264  CALL zlassq( m, a( 1, p ), 1, t,
1265  $ aapp )
1266  aapp = t*sqrt( aapp )
1267  END IF
1268  sva( p ) = aapp
1269  END IF
1270 * end of OK rotation
1271  ELSE
1272  notrot = notrot + 1
1273 *[RTD] SKIPPED = SKIPPED + 1
1274  pskipped = pskipped + 1
1275  ijblsk = ijblsk + 1
1276  END IF
1277  ELSE
1278  notrot = notrot + 1
1279  pskipped = pskipped + 1
1280  ijblsk = ijblsk + 1
1281  END IF
1282 *
1283  IF( ( i.LE.swband ) .AND. ( ijblsk.GE.blskip ) )
1284  $ THEN
1285  sva( p ) = aapp
1286  notrot = 0
1287  GO TO 2011
1288  END IF
1289  IF( ( i.LE.swband ) .AND.
1290  $ ( pskipped.GT.rowskip ) ) THEN
1291  aapp = -aapp
1292  notrot = 0
1293  GO TO 2203
1294  END IF
1295 *
1296  2200 CONTINUE
1297 * end of the q-loop
1298  2203 CONTINUE
1299 *
1300  sva( p ) = aapp
1301 *
1302  ELSE
1303 *
1304  IF( aapp.EQ.zero )notrot = notrot +
1305  $ min( jgl+kbl-1, n ) - jgl + 1
1306  IF( aapp.LT.zero )notrot = 0
1307 *
1308  END IF
1309 *
1310  2100 CONTINUE
1311 * end of the p-loop
1312  2010 CONTINUE
1313 * end of the jbc-loop
1314  2011 CONTINUE
1315 *2011 bailed out of the jbc-loop
1316  DO 2012 p = igl, min( igl+kbl-1, n )
1317  sva( p ) = abs( sva( p ) )
1318  2012 CONTINUE
1319 ***
1320  2000 CONTINUE
1321 *2000 :: end of the ibr-loop
1322 *
1323 * .. update SVA(N)
1324  IF( ( sva( n ).LT.rootbig ) .AND. ( sva( n ).GT.rootsfmin ) )
1325  $ THEN
1326  sva( n ) = dznrm2( m, a( 1, n ), 1 )
1327  ELSE
1328  t = zero
1329  aapp = one
1330  CALL zlassq( m, a( 1, n ), 1, t, aapp )
1331  sva( n ) = t*sqrt( aapp )
1332  END IF
1333 *
1334 * Additional steering devices
1335 *
1336  IF( ( i.LT.swband ) .AND. ( ( mxaapq.LE.roottol ) .OR.
1337  $ ( iswrot.LE.n ) ) )swband = i
1338 *
1339  IF( ( i.GT.swband+1 ) .AND. ( mxaapq.LT.sqrt( dble( n ) )*
1340  $ tol ) .AND. ( dble( n )*mxaapq*mxsinj.LT.tol ) ) THEN
1341  GO TO 1994
1342  END IF
1343 *
1344  IF( notrot.GE.emptsw )GO TO 1994
1345 *
1346  1993 CONTINUE
1347 * end i=1:NSWEEP loop
1348 *
1349 * #:( Reaching this point means that the procedure has not converged.
1350  info = nsweep - 1
1351  GO TO 1995
1352 *
1353  1994 CONTINUE
1354 * #:) Reaching this point means numerical convergence after the i-th
1355 * sweep.
1356 *
1357  info = 0
1358 * #:) INFO = 0 confirms successful iterations.
1359  1995 CONTINUE
1360 *
1361 * Sort the singular values and find how many are above
1362 * the underflow threshold.
1363 *
1364  n2 = 0
1365  n4 = 0
1366  DO 5991 p = 1, n - 1
1367  q = idamax( n-p+1, sva( p ), 1 ) + p - 1
1368  IF( p.NE.q ) THEN
1369  temp1 = sva( p )
1370  sva( p ) = sva( q )
1371  sva( q ) = temp1
1372  CALL zswap( m, a( 1, p ), 1, a( 1, q ), 1 )
1373  IF( rsvec )CALL zswap( mvl, v( 1, p ), 1, v( 1, q ), 1 )
1374  END IF
1375  IF( sva( p ).NE.zero ) THEN
1376  n4 = n4 + 1
1377  IF( sva( p )*skl.GT.sfmin )n2 = n2 + 1
1378  END IF
1379  5991 CONTINUE
1380  IF( sva( n ).NE.zero ) THEN
1381  n4 = n4 + 1
1382  IF( sva( n )*skl.GT.sfmin )n2 = n2 + 1
1383  END IF
1384 *
1385 * Normalize the left singular vectors.
1386 *
1387  IF( lsvec .OR. uctol ) THEN
1388  DO 1998 p = 1, n4
1389 * CALL ZDSCAL( M, ONE / SVA( p ), A( 1, p ), 1 )
1390  CALL zlascl( 'G',0,0, sva(p), one, m, 1, a(1,p), m, ierr )
1391  1998 CONTINUE
1392  END IF
1393 *
1394 * Scale the product of Jacobi rotations.
1395 *
1396  IF( rsvec ) THEN
1397  DO 2399 p = 1, n
1398  temp1 = one / dznrm2( mvl, v( 1, p ), 1 )
1399  CALL zdscal( mvl, temp1, v( 1, p ), 1 )
1400  2399 CONTINUE
1401  END IF
1402 *
1403 * Undo scaling, if necessary (and possible).
1404  IF( ( ( skl.GT.one ) .AND. ( sva( 1 ).LT.( big / skl ) ) )
1405  $ .OR. ( ( skl.LT.one ) .AND. ( sva( max( n2, 1 ) ) .GT.
1406  $ ( sfmin / skl ) ) ) ) THEN
1407  DO 2400 p = 1, n
1408  sva( p ) = skl*sva( p )
1409  2400 CONTINUE
1410  skl = one
1411  END IF
1412 *
1413  rwork( 1 ) = skl
1414 * The singular values of A are SKL*SVA(1:N). If SKL.NE.ONE
1415 * then some of the singular values may overflow or underflow and
1416 * the spectrum is given in this factored representation.
1417 *
1418  rwork( 2 ) = dble( n4 )
1419 * N4 is the number of computed nonzero singular values of A.
1420 *
1421  rwork( 3 ) = dble( n2 )
1422 * N2 is the number of singular values of A greater than SFMIN.
1423 * If N2<N, SVA(N2:N) contains ZEROS and/or denormalized numbers
1424 * that may carry some information.
1425 *
1426  rwork( 4 ) = dble( i )
1427 * i is the index of the last sweep before declaring convergence.
1428 *
1429  rwork( 5 ) = mxaapq
1430 * MXAAPQ is the largest absolute value of scaled pivots in the
1431 * last sweep
1432 *
1433  rwork( 6 ) = mxsinj
1434 * MXSINJ is the largest absolute value of the sines of Jacobi angles
1435 * in the last sweep
1436 *
1437  RETURN
1438 * ..
1439 * .. END OF ZGESVJ
1440 * ..
1441  END
subroutine zcopy(N, ZX, INCX, ZY, INCY)
ZCOPY
Definition: zcopy.f:52
subroutine dlascl(TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO)
DLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition: dlascl.f:145
subroutine zswap(N, ZX, INCX, ZY, INCY)
ZSWAP
Definition: zswap.f:52
subroutine zlascl(TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO)
ZLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition: zlascl.f:145
subroutine zrot(N, CX, INCX, CY, INCY, C, S)
ZROT applies a plane rotation with real cosine and complex sine to a pair of complex vectors...
Definition: zrot.f:105
subroutine zgsvj0(JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO)
ZGSVJ0 pre-processor for the routine zgesvj.
Definition: zgsvj0.f:220
subroutine zlassq(N, X, INCX, SCALE, SUMSQ)
ZLASSQ updates a sum of squares represented in scaled form.
Definition: zlassq.f:108
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine zlaset(UPLO, M, N, ALPHA, BETA, A, LDA)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values...
Definition: zlaset.f:108
subroutine zdscal(N, DA, ZX, INCX)
ZDSCAL
Definition: zdscal.f:54
subroutine zgesvj(JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, LDV, CWORK, LWORK, RWORK, LRWORK, INFO)
ZGESVJ
Definition: zgesvj.f:351
subroutine zgsvj1(JOBV, M, N, N1, A, LDA, D, SVA, MV, V, LDV, EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO)
ZGSVJ1 pre-processor for the routine zgesvj, applies Jacobi rotations targeting only particular pivot...
Definition: zgsvj1.f:238
subroutine zaxpy(N, ZA, ZX, INCX, ZY, INCY)
ZAXPY
Definition: zaxpy.f:53