LAPACK  3.7.0
LAPACK: Linear Algebra PACKage
zgebal.f
Go to the documentation of this file.
1 *> \brief \b ZGEBAL
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download ZGEBAL + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgebal.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgebal.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgebal.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE ZGEBAL( JOB, N, A, LDA, ILO, IHI, SCALE, INFO )
22 *
23 * .. Scalar Arguments ..
24 * CHARACTER JOB
25 * INTEGER IHI, ILO, INFO, LDA, N
26 * ..
27 * .. Array Arguments ..
28 * DOUBLE PRECISION SCALE( * )
29 * COMPLEX*16 A( LDA, * )
30 * ..
31 *
32 *
33 *> \par Purpose:
34 * =============
35 *>
36 *> \verbatim
37 *>
38 *> ZGEBAL balances a general complex matrix A. This involves, first,
39 *> permuting A by a similarity transformation to isolate eigenvalues
40 *> in the first 1 to ILO-1 and last IHI+1 to N elements on the
41 *> diagonal; and second, applying a diagonal similarity transformation
42 *> to rows and columns ILO to IHI to make the rows and columns as
43 *> close in norm as possible. Both steps are optional.
44 *>
45 *> Balancing may reduce the 1-norm of the matrix, and improve the
46 *> accuracy of the computed eigenvalues and/or eigenvectors.
47 *> \endverbatim
48 *
49 * Arguments:
50 * ==========
51 *
52 *> \param[in] JOB
53 *> \verbatim
54 *> JOB is CHARACTER*1
55 *> Specifies the operations to be performed on A:
56 *> = 'N': none: simply set ILO = 1, IHI = N, SCALE(I) = 1.0
57 *> for i = 1,...,N;
58 *> = 'P': permute only;
59 *> = 'S': scale only;
60 *> = 'B': both permute and scale.
61 *> \endverbatim
62 *>
63 *> \param[in] N
64 *> \verbatim
65 *> N is INTEGER
66 *> The order of the matrix A. N >= 0.
67 *> \endverbatim
68 *>
69 *> \param[in,out] A
70 *> \verbatim
71 *> A is COMPLEX*16 array, dimension (LDA,N)
72 *> On entry, the input matrix A.
73 *> On exit, A is overwritten by the balanced matrix.
74 *> If JOB = 'N', A is not referenced.
75 *> See Further Details.
76 *> \endverbatim
77 *>
78 *> \param[in] LDA
79 *> \verbatim
80 *> LDA is INTEGER
81 *> The leading dimension of the array A. LDA >= max(1,N).
82 *> \endverbatim
83 *>
84 *> \param[out] ILO
85 *> \verbatim
86 *> \endverbatim
87 *>
88 *> \param[out] IHI
89 *> \verbatim
90 *> ILO and IHI are set to INTEGER such that on exit
91 *> A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N.
92 *> If JOB = 'N' or 'S', ILO = 1 and IHI = N.
93 *> \endverbatim
94 *>
95 *> \param[out] SCALE
96 *> \verbatim
97 *> SCALE is DOUBLE PRECISION array, dimension (N)
98 *> Details of the permutations and scaling factors applied to
99 *> A. If P(j) is the index of the row and column interchanged
100 *> with row and column j and D(j) is the scaling factor
101 *> applied to row and column j, then
102 *> SCALE(j) = P(j) for j = 1,...,ILO-1
103 *> = D(j) for j = ILO,...,IHI
104 *> = P(j) for j = IHI+1,...,N.
105 *> The order in which the interchanges are made is N to IHI+1,
106 *> then 1 to ILO-1.
107 *> \endverbatim
108 *>
109 *> \param[out] INFO
110 *> \verbatim
111 *> INFO is INTEGER
112 *> = 0: successful exit.
113 *> < 0: if INFO = -i, the i-th argument had an illegal value.
114 *> \endverbatim
115 *
116 * Authors:
117 * ========
118 *
119 *> \author Univ. of Tennessee
120 *> \author Univ. of California Berkeley
121 *> \author Univ. of Colorado Denver
122 *> \author NAG Ltd.
123 *
124 *> \date December 2016
125 *
126 *> \ingroup complex16GEcomputational
127 *
128 *> \par Further Details:
129 * =====================
130 *>
131 *> \verbatim
132 *>
133 *> The permutations consist of row and column interchanges which put
134 *> the matrix in the form
135 *>
136 *> ( T1 X Y )
137 *> P A P = ( 0 B Z )
138 *> ( 0 0 T2 )
139 *>
140 *> where T1 and T2 are upper triangular matrices whose eigenvalues lie
141 *> along the diagonal. The column indices ILO and IHI mark the starting
142 *> and ending columns of the submatrix B. Balancing consists of applying
143 *> a diagonal similarity transformation inv(D) * B * D to make the
144 *> 1-norms of each row of B and its corresponding column nearly equal.
145 *> The output matrix is
146 *>
147 *> ( T1 X*D Y )
148 *> ( 0 inv(D)*B*D inv(D)*Z ).
149 *> ( 0 0 T2 )
150 *>
151 *> Information about the permutations P and the diagonal matrix D is
152 *> returned in the vector SCALE.
153 *>
154 *> This subroutine is based on the EISPACK routine CBAL.
155 *>
156 *> Modified by Tzu-Yi Chen, Computer Science Division, University of
157 *> California at Berkeley, USA
158 *> \endverbatim
159 *>
160 * =====================================================================
161  SUBROUTINE zgebal( JOB, N, A, LDA, ILO, IHI, SCALE, INFO )
162 *
163 * -- LAPACK computational routine (version 3.7.0) --
164 * -- LAPACK is a software package provided by Univ. of Tennessee, --
165 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
166 * December 2016
167 *
168 * .. Scalar Arguments ..
169  CHARACTER JOB
170  INTEGER IHI, ILO, INFO, LDA, N
171 * ..
172 * .. Array Arguments ..
173  DOUBLE PRECISION SCALE( * )
174  COMPLEX*16 A( lda, * )
175 * ..
176 *
177 * =====================================================================
178 *
179 * .. Parameters ..
180  DOUBLE PRECISION ZERO, ONE
181  parameter ( zero = 0.0d+0, one = 1.0d+0 )
182  DOUBLE PRECISION SCLFAC
183  parameter ( sclfac = 2.0d+0 )
184  DOUBLE PRECISION FACTOR
185  parameter ( factor = 0.95d+0 )
186 * ..
187 * .. Local Scalars ..
188  LOGICAL NOCONV
189  INTEGER I, ICA, IEXC, IRA, J, K, L, M
190  DOUBLE PRECISION C, CA, F, G, R, RA, S, SFMAX1, SFMAX2, SFMIN1,
191  $ sfmin2
192 * ..
193 * .. External Functions ..
194  LOGICAL DISNAN, LSAME
195  INTEGER IZAMAX
196  DOUBLE PRECISION DLAMCH, DZNRM2
197  EXTERNAL disnan, lsame, izamax, dlamch, dznrm2
198 * ..
199 * .. External Subroutines ..
200  EXTERNAL xerbla, zdscal, zswap
201 * ..
202 * .. Intrinsic Functions ..
203  INTRINSIC abs, dble, dimag, max, min
204 *
205 * Test the input parameters
206 *
207  info = 0
208  IF( .NOT.lsame( job, 'N' ) .AND. .NOT.lsame( job, 'P' ) .AND.
209  $ .NOT.lsame( job, 'S' ) .AND. .NOT.lsame( job, 'B' ) ) THEN
210  info = -1
211  ELSE IF( n.LT.0 ) THEN
212  info = -2
213  ELSE IF( lda.LT.max( 1, n ) ) THEN
214  info = -4
215  END IF
216  IF( info.NE.0 ) THEN
217  CALL xerbla( 'ZGEBAL', -info )
218  RETURN
219  END IF
220 *
221  k = 1
222  l = n
223 *
224  IF( n.EQ.0 )
225  $ GO TO 210
226 *
227  IF( lsame( job, 'N' ) ) THEN
228  DO 10 i = 1, n
229  scale( i ) = one
230  10 CONTINUE
231  GO TO 210
232  END IF
233 *
234  IF( lsame( job, 'S' ) )
235  $ GO TO 120
236 *
237 * Permutation to isolate eigenvalues if possible
238 *
239  GO TO 50
240 *
241 * Row and column exchange.
242 *
243  20 CONTINUE
244  scale( m ) = j
245  IF( j.EQ.m )
246  $ GO TO 30
247 *
248  CALL zswap( l, a( 1, j ), 1, a( 1, m ), 1 )
249  CALL zswap( n-k+1, a( j, k ), lda, a( m, k ), lda )
250 *
251  30 CONTINUE
252  GO TO ( 40, 80 )iexc
253 *
254 * Search for rows isolating an eigenvalue and push them down.
255 *
256  40 CONTINUE
257  IF( l.EQ.1 )
258  $ GO TO 210
259  l = l - 1
260 *
261  50 CONTINUE
262  DO 70 j = l, 1, -1
263 *
264  DO 60 i = 1, l
265  IF( i.EQ.j )
266  $ GO TO 60
267  IF( dble( a( j, i ) ).NE.zero .OR. dimag( a( j, i ) ).NE.
268  $ zero )GO TO 70
269  60 CONTINUE
270 *
271  m = l
272  iexc = 1
273  GO TO 20
274  70 CONTINUE
275 *
276  GO TO 90
277 *
278 * Search for columns isolating an eigenvalue and push them left.
279 *
280  80 CONTINUE
281  k = k + 1
282 *
283  90 CONTINUE
284  DO 110 j = k, l
285 *
286  DO 100 i = k, l
287  IF( i.EQ.j )
288  $ GO TO 100
289  IF( dble( a( i, j ) ).NE.zero .OR. dimag( a( i, j ) ).NE.
290  $ zero )GO TO 110
291  100 CONTINUE
292 *
293  m = k
294  iexc = 2
295  GO TO 20
296  110 CONTINUE
297 *
298  120 CONTINUE
299  DO 130 i = k, l
300  scale( i ) = one
301  130 CONTINUE
302 *
303  IF( lsame( job, 'P' ) )
304  $ GO TO 210
305 *
306 * Balance the submatrix in rows K to L.
307 *
308 * Iterative loop for norm reduction
309 *
310  sfmin1 = dlamch( 'S' ) / dlamch( 'P' )
311  sfmax1 = one / sfmin1
312  sfmin2 = sfmin1*sclfac
313  sfmax2 = one / sfmin2
314  140 CONTINUE
315  noconv = .false.
316 *
317  DO 200 i = k, l
318 *
319  c = dznrm2( l-k+1, a( k, i ), 1 )
320  r = dznrm2( l-k+1, a( i, k ), lda )
321  ica = izamax( l, a( 1, i ), 1 )
322  ca = abs( a( ica, i ) )
323  ira = izamax( n-k+1, a( i, k ), lda )
324  ra = abs( a( i, ira+k-1 ) )
325 *
326 * Guard against zero C or R due to underflow.
327 *
328  IF( c.EQ.zero .OR. r.EQ.zero )
329  $ GO TO 200
330  g = r / sclfac
331  f = one
332  s = c + r
333  160 CONTINUE
334  IF( c.GE.g .OR. max( f, c, ca ).GE.sfmax2 .OR.
335  $ min( r, g, ra ).LE.sfmin2 )GO TO 170
336  IF( disnan( c+f+ca+r+g+ra ) ) THEN
337 *
338 * Exit if NaN to avoid infinite loop
339 *
340  info = -3
341  CALL xerbla( 'ZGEBAL', -info )
342  RETURN
343  END IF
344  f = f*sclfac
345  c = c*sclfac
346  ca = ca*sclfac
347  r = r / sclfac
348  g = g / sclfac
349  ra = ra / sclfac
350  GO TO 160
351 *
352  170 CONTINUE
353  g = c / sclfac
354  180 CONTINUE
355  IF( g.LT.r .OR. max( r, ra ).GE.sfmax2 .OR.
356  $ min( f, c, g, ca ).LE.sfmin2 )GO TO 190
357  f = f / sclfac
358  c = c / sclfac
359  g = g / sclfac
360  ca = ca / sclfac
361  r = r*sclfac
362  ra = ra*sclfac
363  GO TO 180
364 *
365 * Now balance.
366 *
367  190 CONTINUE
368  IF( ( c+r ).GE.factor*s )
369  $ GO TO 200
370  IF( f.LT.one .AND. scale( i ).LT.one ) THEN
371  IF( f*scale( i ).LE.sfmin1 )
372  $ GO TO 200
373  END IF
374  IF( f.GT.one .AND. scale( i ).GT.one ) THEN
375  IF( scale( i ).GE.sfmax1 / f )
376  $ GO TO 200
377  END IF
378  g = one / f
379  scale( i ) = scale( i )*f
380  noconv = .true.
381 *
382  CALL zdscal( n-k+1, g, a( i, k ), lda )
383  CALL zdscal( l, f, a( 1, i ), 1 )
384 *
385  200 CONTINUE
386 *
387  IF( noconv )
388  $ GO TO 140
389 *
390  210 CONTINUE
391  ilo = k
392  ihi = l
393 *
394  RETURN
395 *
396 * End of ZGEBAL
397 *
398  END
subroutine zswap(N, ZX, INCX, ZY, INCY)
ZSWAP
Definition: zswap.f:52
subroutine zgebal(JOB, N, A, LDA, ILO, IHI, SCALE, INFO)
ZGEBAL
Definition: zgebal.f:162
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine zdscal(N, DA, ZX, INCX)
ZDSCAL
Definition: zdscal.f:54