Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
axisflashmap.c
Go to the documentation of this file.
1 /*
2  * Physical mapping layer for MTD using the Axis partitiontable format
3  *
4  * Copyright (c) 2001, 2002 Axis Communications AB
5  *
6  * This file is under the GPL.
7  *
8  * First partition is always sector 0 regardless of if we find a partitiontable
9  * or not. In the start of the next sector, there can be a partitiontable that
10  * tells us what other partitions to define. If there isn't, we use a default
11  * partition split defined below.
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/slab.h>
20 
21 #include <linux/mtd/concat.h>
22 #include <linux/mtd/map.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/mtdram.h>
25 #include <linux/mtd/partitions.h>
26 
27 #include <asm/axisflashmap.h>
28 #include <asm/mmu.h>
29 #include <arch/sv_addr_ag.h>
30 
31 #ifdef CONFIG_CRIS_LOW_MAP
32 #define FLASH_UNCACHED_ADDR KSEG_8
33 #define FLASH_CACHED_ADDR KSEG_5
34 #else
35 #define FLASH_UNCACHED_ADDR KSEG_E
36 #define FLASH_CACHED_ADDR KSEG_F
37 #endif
38 
39 #if CONFIG_ETRAX_FLASH_BUSWIDTH==1
40 #define flash_data __u8
41 #elif CONFIG_ETRAX_FLASH_BUSWIDTH==2
42 #define flash_data __u16
43 #elif CONFIG_ETRAX_FLASH_BUSWIDTH==4
44 #define flash_data __u32
45 #endif
46 
47 /* From head.S */
48 extern unsigned long romfs_start, romfs_length, romfs_in_flash;
49 
50 /* The master mtd for the entire flash. */
52 
53 /* Map driver functions. */
54 
55 static map_word flash_read(struct map_info *map, unsigned long ofs)
56 {
57  map_word tmp;
58  tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs);
59  return tmp;
60 }
61 
62 static void flash_copy_from(struct map_info *map, void *to,
63  unsigned long from, ssize_t len)
64 {
65  memcpy(to, (void *)(map->map_priv_1 + from), len);
66 }
67 
68 static void flash_write(struct map_info *map, map_word d, unsigned long adr)
69 {
70  *(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0];
71 }
72 
73 /*
74  * The map for chip select e0.
75  *
76  * We run into tricky coherence situations if we mix cached with uncached
77  * accesses to we only use the uncached version here.
78  *
79  * The size field is the total size where the flash chips may be mapped on the
80  * chip select. MTD probes should find all devices there and it does not matter
81  * if there are unmapped gaps or aliases (mirrors of flash devices). The MTD
82  * probes will ignore them.
83  *
84  * The start address in map_priv_1 is in virtual memory so we cannot use
85  * MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start
86  * address of cse0.
87  */
88 static struct map_info map_cse0 = {
89  .name = "cse0",
90  .size = MEM_CSE0_SIZE,
91  .bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
92  .read = flash_read,
93  .copy_from = flash_copy_from,
94  .write = flash_write,
95  .map_priv_1 = FLASH_UNCACHED_ADDR
96 };
97 
98 /*
99  * The map for chip select e1.
100  *
101  * If there was a gap between cse0 and cse1, map_priv_1 would get the wrong
102  * address, but there isn't.
103  */
104 static struct map_info map_cse1 = {
105  .name = "cse1",
106  .size = MEM_CSE1_SIZE,
107  .bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
108  .read = flash_read,
109  .copy_from = flash_copy_from,
110  .write = flash_write,
111  .map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE
112 };
113 
114 /* If no partition-table was found, we use this default-set. */
115 #define MAX_PARTITIONS 7
116 #define NUM_DEFAULT_PARTITIONS 3
117 
118 /*
119  * Default flash size is 2MB. CONFIG_ETRAX_PTABLE_SECTOR is most likely the
120  * size of one flash block and "filesystem"-partition needs 5 blocks to be able
121  * to use JFFS.
122  */
123 static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
124  {
125  .name = "boot firmware",
126  .size = CONFIG_ETRAX_PTABLE_SECTOR,
127  .offset = 0
128  },
129  {
130  .name = "kernel",
131  .size = 0x200000 - (6 * CONFIG_ETRAX_PTABLE_SECTOR),
132  .offset = CONFIG_ETRAX_PTABLE_SECTOR
133  },
134  {
135  .name = "filesystem",
136  .size = 5 * CONFIG_ETRAX_PTABLE_SECTOR,
137  .offset = 0x200000 - (5 * CONFIG_ETRAX_PTABLE_SECTOR)
138  }
139 };
140 
141 /* Initialize the ones normally used. */
142 static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
143  {
144  .name = "part0",
145  .size = CONFIG_ETRAX_PTABLE_SECTOR,
146  .offset = 0
147  },
148  {
149  .name = "part1",
150  .size = 0,
151  .offset = 0
152  },
153  {
154  .name = "part2",
155  .size = 0,
156  .offset = 0
157  },
158  {
159  .name = "part3",
160  .size = 0,
161  .offset = 0
162  },
163  {
164  .name = "part4",
165  .size = 0,
166  .offset = 0
167  },
168  {
169  .name = "part5",
170  .size = 0,
171  .offset = 0
172  },
173  {
174  .name = "part6",
175  .size = 0,
176  .offset = 0
177  },
178 };
179 
180 #ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
181 /* Main flash device */
182 static struct mtd_partition main_partition = {
183  .name = "main",
184  .size = 0,
185  .offset = 0
186 };
187 #endif
188 
189 /*
190  * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash
191  * chips in that order (because the amd_flash-driver is faster).
192  */
193 static struct mtd_info *probe_cs(struct map_info *map_cs)
194 {
195  struct mtd_info *mtd_cs = NULL;
196 
198  "%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n",
199  map_cs->name, map_cs->size, map_cs->map_priv_1);
200 
201 #ifdef CONFIG_MTD_CFI
202  mtd_cs = do_map_probe("cfi_probe", map_cs);
203 #endif
204 #ifdef CONFIG_MTD_JEDECPROBE
205  if (!mtd_cs)
206  mtd_cs = do_map_probe("jedec_probe", map_cs);
207 #endif
208 
209  return mtd_cs;
210 }
211 
212 /*
213  * Probe each chip select individually for flash chips. If there are chips on
214  * both cse0 and cse1, the mtd_info structs will be concatenated to one struct
215  * so that MTD partitions can cross chip boundries.
216  *
217  * The only known restriction to how you can mount your chips is that each
218  * chip select must hold similar flash chips. But you need external hardware
219  * to do that anyway and you can put totally different chips on cse0 and cse1
220  * so it isn't really much of a restriction.
221  */
222 static struct mtd_info *flash_probe(void)
223 {
224  struct mtd_info *mtd_cse0;
225  struct mtd_info *mtd_cse1;
226  struct mtd_info *mtd_cse;
227 
228  mtd_cse0 = probe_cs(&map_cse0);
229  mtd_cse1 = probe_cs(&map_cse1);
230 
231  if (!mtd_cse0 && !mtd_cse1) {
232  /* No chip found. */
233  return NULL;
234  }
235 
236  if (mtd_cse0 && mtd_cse1) {
237  struct mtd_info *mtds[] = { mtd_cse0, mtd_cse1 };
238 
239  /* Since the concatenation layer adds a small overhead we
240  * could try to figure out if the chips in cse0 and cse1 are
241  * identical and reprobe the whole cse0+cse1 window. But since
242  * flash chips are slow, the overhead is relatively small.
243  * So we use the MTD concatenation layer instead of further
244  * complicating the probing procedure.
245  */
246  mtd_cse = mtd_concat_create(mtds, ARRAY_SIZE(mtds),
247  "cse0+cse1");
248  if (!mtd_cse) {
249  printk(KERN_ERR "%s and %s: Concatenation failed!\n",
250  map_cse0.name, map_cse1.name);
251 
252  /* The best we can do now is to only use what we found
253  * at cse0.
254  */
255  mtd_cse = mtd_cse0;
256  map_destroy(mtd_cse1);
257  }
258  } else {
259  mtd_cse = mtd_cse0? mtd_cse0 : mtd_cse1;
260  }
261 
262  return mtd_cse;
263 }
264 
265 /*
266  * Probe the flash chip(s) and, if it succeeds, read the partition-table
267  * and register the partitions with MTD.
268  */
269 static int __init init_axis_flash(void)
270 {
271  struct mtd_info *mymtd;
272  int err = 0;
273  int pidx = 0;
274  struct partitiontable_head *ptable_head = NULL;
275  struct partitiontable_entry *ptable;
276  int use_default_ptable = 1; /* Until proven otherwise. */
277  const char pmsg[] = " /dev/flash%d at 0x%08x, size 0x%08x\n";
278 
279  if (!(mymtd = flash_probe())) {
280  /* There's no reason to use this module if no flash chip can
281  * be identified. Make sure that's understood.
282  */
283  printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
284  } else {
285  printk(KERN_INFO "%s: 0x%08x bytes of flash memory.\n",
286  mymtd->name, mymtd->size);
287  axisflash_mtd = mymtd;
288  }
289 
290  if (mymtd) {
291  mymtd->owner = THIS_MODULE;
292  ptable_head = (struct partitiontable_head *)(FLASH_CACHED_ADDR +
293  CONFIG_ETRAX_PTABLE_SECTOR +
295  }
296  pidx++; /* First partition is always set to the default. */
297 
298  if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
299  && (ptable_head->size <
300  (MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
301  PARTITIONTABLE_END_MARKER_SIZE))
302  && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
303  ptable_head->size -
306  /* Looks like a start, sane length and end of a
307  * partition table, lets check csum etc.
308  */
309  int ptable_ok = 0;
310  struct partitiontable_entry *max_addr =
311  (struct partitiontable_entry *)
312  ((unsigned long)ptable_head + sizeof(*ptable_head) +
313  ptable_head->size);
314  unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
315  unsigned char *p;
316  unsigned long csum = 0;
317 
318  ptable = (struct partitiontable_entry *)
319  ((unsigned long)ptable_head + sizeof(*ptable_head));
320 
321  /* Lets be PARANOID, and check the checksum. */
322  p = (unsigned char*) ptable;
323 
324  while (p <= (unsigned char*)max_addr) {
325  csum += *p++;
326  csum += *p++;
327  csum += *p++;
328  csum += *p++;
329  }
330  ptable_ok = (csum == ptable_head->checksum);
331 
332  /* Read the entries and use/show the info. */
333  printk(KERN_INFO " Found a%s partition table at 0x%p-0x%p.\n",
334  (ptable_ok ? " valid" : "n invalid"), ptable_head,
335  max_addr);
336 
337  /* We have found a working bootblock. Now read the
338  * partition table. Scan the table. It ends when
339  * there is 0xffffffff, that is, empty flash.
340  */
341  while (ptable_ok
342  && ptable->offset != 0xffffffff
343  && ptable < max_addr
344  && pidx < MAX_PARTITIONS) {
345 
346  axis_partitions[pidx].offset = offset + ptable->offset;
347  axis_partitions[pidx].size = ptable->size;
348 
349  printk(pmsg, pidx, axis_partitions[pidx].offset,
350  axis_partitions[pidx].size);
351  pidx++;
352  ptable++;
353  }
354  use_default_ptable = !ptable_ok;
355  }
356 
357  if (romfs_in_flash) {
358  /* Add an overlapping device for the root partition (romfs). */
359 
360  axis_partitions[pidx].name = "romfs";
361  axis_partitions[pidx].size = romfs_length;
362  axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
363  axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;
364 
366  " Adding readonly flash partition for romfs image:\n");
367  printk(pmsg, pidx, axis_partitions[pidx].offset,
368  axis_partitions[pidx].size);
369  pidx++;
370  }
371 
372 #ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
373  if (mymtd) {
374  main_partition.size = mymtd->size;
375  err = mtd_device_register(mymtd, &main_partition, 1);
376  if (err)
377  panic("axisflashmap: Could not initialize "
378  "partition for whole main mtd device!\n");
379  }
380 #endif
381 
382  if (mymtd) {
383  if (use_default_ptable) {
384  printk(KERN_INFO " Using default partition table.\n");
385  err = mtd_device_register(mymtd,
386  axis_default_partitions,
388  } else {
389  err = mtd_device_register(mymtd, axis_partitions,
390  pidx);
391  }
392 
393  if (err)
394  panic("axisflashmap could not add MTD partitions!\n");
395  }
396 
397  if (!romfs_in_flash) {
398  /* Create an RAM device for the root partition (romfs). */
399 
400 #if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
401  /* No use trying to boot this kernel from RAM. Panic! */
402  printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
403  "device due to kernel (mis)configuration!\n");
404  panic("This kernel cannot boot from RAM!\n");
405 #else
406  struct mtd_info *mtd_ram;
407 
408  mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
409  if (!mtd_ram)
410  panic("axisflashmap couldn't allocate memory for "
411  "mtd_info!\n");
412 
413  printk(KERN_INFO " Adding RAM partition for romfs image:\n");
414  printk(pmsg, pidx, (unsigned)romfs_start,
415  (unsigned)romfs_length);
416 
417  err = mtdram_init_device(mtd_ram,
418  (void *)romfs_start,
419  romfs_length,
420  "romfs");
421  if (err)
422  panic("axisflashmap could not initialize MTD RAM "
423  "device!\n");
424 #endif
425  }
426  return err;
427 }
428 
429 /* This adds the above to the kernels init-call chain. */
430 module_init(init_axis_flash);
431 
432 EXPORT_SYMBOL(axisflash_mtd);