Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
axisflashmap.c
Go to the documentation of this file.
1 /*
2  * Physical mapping layer for MTD using the Axis partitiontable format
3  *
4  * Copyright (c) 2001-2007 Axis Communications AB
5  *
6  * This file is under the GPL.
7  *
8  * First partition is always sector 0 regardless of if we find a partitiontable
9  * or not. In the start of the next sector, there can be a partitiontable that
10  * tells us what other partitions to define. If there isn't, we use a default
11  * partition split defined below.
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/slab.h>
20 
21 #include <linux/mtd/concat.h>
22 #include <linux/mtd/map.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/mtdram.h>
25 #include <linux/mtd/partitions.h>
26 
27 #include <linux/cramfs_fs.h>
28 
29 #include <asm/axisflashmap.h>
30 #include <asm/mmu.h>
31 
32 #define MEM_CSE0_SIZE (0x04000000)
33 #define MEM_CSE1_SIZE (0x04000000)
34 
35 #define FLASH_UNCACHED_ADDR KSEG_E
36 #define FLASH_CACHED_ADDR KSEG_F
37 
38 #define PAGESIZE (512)
39 
40 #if CONFIG_ETRAX_FLASH_BUSWIDTH==1
41 #define flash_data __u8
42 #elif CONFIG_ETRAX_FLASH_BUSWIDTH==2
43 #define flash_data __u16
44 #elif CONFIG_ETRAX_FLASH_BUSWIDTH==4
45 #define flash_data __u32
46 #endif
47 
48 /* From head.S */
49 extern unsigned long romfs_in_flash; /* 1 when romfs_start, _length in flash */
50 extern unsigned long romfs_start, romfs_length;
51 extern unsigned long nand_boot; /* 1 when booted from nand flash */
52 
54  char name[6];
55 };
56 
57 /* The master mtd for the entire flash. */
59 
60 /* Map driver functions. */
61 
62 static map_word flash_read(struct map_info *map, unsigned long ofs)
63 {
64  map_word tmp;
65  tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs);
66  return tmp;
67 }
68 
69 static void flash_copy_from(struct map_info *map, void *to,
70  unsigned long from, ssize_t len)
71 {
72  memcpy(to, (void *)(map->map_priv_1 + from), len);
73 }
74 
75 static void flash_write(struct map_info *map, map_word d, unsigned long adr)
76 {
77  *(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0];
78 }
79 
80 /*
81  * The map for chip select e0.
82  *
83  * We run into tricky coherence situations if we mix cached with uncached
84  * accesses to we only use the uncached version here.
85  *
86  * The size field is the total size where the flash chips may be mapped on the
87  * chip select. MTD probes should find all devices there and it does not matter
88  * if there are unmapped gaps or aliases (mirrors of flash devices). The MTD
89  * probes will ignore them.
90  *
91  * The start address in map_priv_1 is in virtual memory so we cannot use
92  * MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start
93  * address of cse0.
94  */
95 static struct map_info map_cse0 = {
96  .name = "cse0",
97  .size = MEM_CSE0_SIZE,
98  .bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
99  .read = flash_read,
100  .copy_from = flash_copy_from,
101  .write = flash_write,
102  .map_priv_1 = FLASH_UNCACHED_ADDR
103 };
104 
105 /*
106  * The map for chip select e1.
107  *
108  * If there was a gap between cse0 and cse1, map_priv_1 would get the wrong
109  * address, but there isn't.
110  */
111 static struct map_info map_cse1 = {
112  .name = "cse1",
113  .size = MEM_CSE1_SIZE,
114  .bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
115  .read = flash_read,
116  .copy_from = flash_copy_from,
117  .write = flash_write,
118  .map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE
119 };
120 
121 #define MAX_PARTITIONS 7
122 #ifdef CONFIG_ETRAX_NANDBOOT
123 #define NUM_DEFAULT_PARTITIONS 4
124 #define DEFAULT_ROOTFS_PARTITION_NO 2
125 #define DEFAULT_MEDIA_SIZE 0x2000000 /* 32 megs */
126 #else
127 #define NUM_DEFAULT_PARTITIONS 3
128 #define DEFAULT_ROOTFS_PARTITION_NO (-1)
129 #define DEFAULT_MEDIA_SIZE 0x800000 /* 8 megs */
130 #endif
131 
132 #if (MAX_PARTITIONS < NUM_DEFAULT_PARTITIONS)
133 #error MAX_PARTITIONS must be >= than NUM_DEFAULT_PARTITIONS
134 #endif
135 
136 /* Initialize the ones normally used. */
137 static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
138  {
139  .name = "part0",
140  .size = CONFIG_ETRAX_PTABLE_SECTOR,
141  .offset = 0
142  },
143  {
144  .name = "part1",
145  .size = 0,
146  .offset = 0
147  },
148  {
149  .name = "part2",
150  .size = 0,
151  .offset = 0
152  },
153  {
154  .name = "part3",
155  .size = 0,
156  .offset = 0
157  },
158  {
159  .name = "part4",
160  .size = 0,
161  .offset = 0
162  },
163  {
164  .name = "part5",
165  .size = 0,
166  .offset = 0
167  },
168  {
169  .name = "part6",
170  .size = 0,
171  .offset = 0
172  },
173 };
174 
175 
176 /* If no partition-table was found, we use this default-set.
177  * Default flash size is 8MB (NOR). CONFIG_ETRAX_PTABLE_SECTOR is most
178  * likely the size of one flash block and "filesystem"-partition needs
179  * to be >=5 blocks to be able to use JFFS.
180  */
181 static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
182  {
183  .name = "boot firmware",
184  .size = CONFIG_ETRAX_PTABLE_SECTOR,
185  .offset = 0
186  },
187  {
188  .name = "kernel",
189  .size = 10 * CONFIG_ETRAX_PTABLE_SECTOR,
190  .offset = CONFIG_ETRAX_PTABLE_SECTOR
191  },
192 #define FILESYSTEM_SECTOR (11 * CONFIG_ETRAX_PTABLE_SECTOR)
193 #ifdef CONFIG_ETRAX_NANDBOOT
194  {
195  .name = "rootfs",
196  .size = 10 * CONFIG_ETRAX_PTABLE_SECTOR,
197  .offset = FILESYSTEM_SECTOR
198  },
199 #undef FILESYSTEM_SECTOR
200 #define FILESYSTEM_SECTOR (21 * CONFIG_ETRAX_PTABLE_SECTOR)
201 #endif
202  {
203  .name = "rwfs",
205  .offset = FILESYSTEM_SECTOR
206  }
207 };
208 
209 #ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
210 /* Main flash device */
211 static struct mtd_partition main_partition = {
212  .name = "main",
213  .size = 0,
214  .offset = 0
215 };
216 #endif
217 
218 /* Auxiliary partition if we find another flash */
219 static struct mtd_partition aux_partition = {
220  .name = "aux",
221  .size = 0,
222  .offset = 0
223 };
224 
225 /*
226  * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash
227  * chips in that order (because the amd_flash-driver is faster).
228  */
229 static struct mtd_info *probe_cs(struct map_info *map_cs)
230 {
231  struct mtd_info *mtd_cs = NULL;
232 
234  "%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n",
235  map_cs->name, map_cs->size, map_cs->map_priv_1);
236 
237 #ifdef CONFIG_MTD_CFI
238  mtd_cs = do_map_probe("cfi_probe", map_cs);
239 #endif
240 #ifdef CONFIG_MTD_JEDECPROBE
241  if (!mtd_cs)
242  mtd_cs = do_map_probe("jedec_probe", map_cs);
243 #endif
244 
245  return mtd_cs;
246 }
247 
248 /*
249  * Probe each chip select individually for flash chips. If there are chips on
250  * both cse0 and cse1, the mtd_info structs will be concatenated to one struct
251  * so that MTD partitions can cross chip boundries.
252  *
253  * The only known restriction to how you can mount your chips is that each
254  * chip select must hold similar flash chips. But you need external hardware
255  * to do that anyway and you can put totally different chips on cse0 and cse1
256  * so it isn't really much of a restriction.
257  */
258 extern struct mtd_info* __init crisv32_nand_flash_probe (void);
259 static struct mtd_info *flash_probe(void)
260 {
261  struct mtd_info *mtd_cse0;
262  struct mtd_info *mtd_cse1;
263  struct mtd_info *mtd_total;
264  struct mtd_info *mtds[2];
265  int count = 0;
266 
267  if ((mtd_cse0 = probe_cs(&map_cse0)) != NULL)
268  mtds[count++] = mtd_cse0;
269  if ((mtd_cse1 = probe_cs(&map_cse1)) != NULL)
270  mtds[count++] = mtd_cse1;
271 
272  if (!mtd_cse0 && !mtd_cse1) {
273  /* No chip found. */
274  return NULL;
275  }
276 
277  if (count > 1) {
278  /* Since the concatenation layer adds a small overhead we
279  * could try to figure out if the chips in cse0 and cse1 are
280  * identical and reprobe the whole cse0+cse1 window. But since
281  * flash chips are slow, the overhead is relatively small.
282  * So we use the MTD concatenation layer instead of further
283  * complicating the probing procedure.
284  */
285  mtd_total = mtd_concat_create(mtds, count, "cse0+cse1");
286  if (!mtd_total) {
287  printk(KERN_ERR "%s and %s: Concatenation failed!\n",
288  map_cse0.name, map_cse1.name);
289 
290  /* The best we can do now is to only use what we found
291  * at cse0. */
292  mtd_total = mtd_cse0;
293  map_destroy(mtd_cse1);
294  }
295  } else
296  mtd_total = mtd_cse0 ? mtd_cse0 : mtd_cse1;
297 
298  return mtd_total;
299 }
300 
301 /*
302  * Probe the flash chip(s) and, if it succeeds, read the partition-table
303  * and register the partitions with MTD.
304  */
305 static int __init init_axis_flash(void)
306 {
307  struct mtd_info *main_mtd;
308  struct mtd_info *aux_mtd = NULL;
309  int err = 0;
310  int pidx = 0;
311  struct partitiontable_head *ptable_head = NULL;
312  struct partitiontable_entry *ptable;
313  int ptable_ok = 0;
314  static char page[PAGESIZE];
315  size_t len;
316  int ram_rootfs_partition = -1; /* -1 => no RAM rootfs partition */
317  int part;
318 
319  /* We need a root fs. If it resides in RAM, we need to use an
320  * MTDRAM device, so it must be enabled in the kernel config,
321  * but its size must be configured as 0 so as not to conflict
322  * with our usage.
323  */
324 #if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
325  if (!romfs_in_flash && !nand_boot) {
326  printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
327  "device; configure CONFIG_MTD_MTDRAM with size = 0!\n");
328  panic("This kernel cannot boot from RAM!\n");
329  }
330 #endif
331 
332  main_mtd = flash_probe();
333  if (main_mtd)
334  printk(KERN_INFO "%s: 0x%08x bytes of NOR flash memory.\n",
335  main_mtd->name, main_mtd->size);
336 
337 #ifdef CONFIG_ETRAX_NANDFLASH
338  aux_mtd = crisv32_nand_flash_probe();
339  if (aux_mtd)
340  printk(KERN_INFO "%s: 0x%08x bytes of NAND flash memory.\n",
341  aux_mtd->name, aux_mtd->size);
342 
343 #ifdef CONFIG_ETRAX_NANDBOOT
344  {
345  struct mtd_info *tmp_mtd;
346 
347  printk(KERN_INFO "axisflashmap: Set to boot from NAND flash, "
348  "making NAND flash primary device.\n");
349  tmp_mtd = main_mtd;
350  main_mtd = aux_mtd;
351  aux_mtd = tmp_mtd;
352  }
353 #endif /* CONFIG_ETRAX_NANDBOOT */
354 #endif /* CONFIG_ETRAX_NANDFLASH */
355 
356  if (!main_mtd && !aux_mtd) {
357  /* There's no reason to use this module if no flash chip can
358  * be identified. Make sure that's understood.
359  */
360  printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
361  }
362 
363 #if 0 /* Dump flash memory so we can see what is going on */
364  if (main_mtd) {
365  int sectoraddr, i;
366  for (sectoraddr = 0; sectoraddr < 2*65536+4096;
367  sectoraddr += PAGESIZE) {
368  main_mtd->read(main_mtd, sectoraddr, PAGESIZE, &len,
369  page);
371  "Sector at %d (length %d):\n",
372  sectoraddr, len);
373  for (i = 0; i < PAGESIZE; i += 16) {
375  "%02x %02x %02x %02x "
376  "%02x %02x %02x %02x "
377  "%02x %02x %02x %02x "
378  "%02x %02x %02x %02x\n",
379  page[i] & 255, page[i+1] & 255,
380  page[i+2] & 255, page[i+3] & 255,
381  page[i+4] & 255, page[i+5] & 255,
382  page[i+6] & 255, page[i+7] & 255,
383  page[i+8] & 255, page[i+9] & 255,
384  page[i+10] & 255, page[i+11] & 255,
385  page[i+12] & 255, page[i+13] & 255,
386  page[i+14] & 255, page[i+15] & 255);
387  }
388  }
389  }
390 #endif
391 
392  if (main_mtd) {
393  main_mtd->owner = THIS_MODULE;
394  axisflash_mtd = main_mtd;
395 
396  loff_t ptable_sector = CONFIG_ETRAX_PTABLE_SECTOR;
397 
398  /* First partition (rescue) is always set to the default. */
399  pidx++;
400 #ifdef CONFIG_ETRAX_NANDBOOT
401  /* We know where the partition table should be located,
402  * it will be in first good block after that.
403  */
404  int blockstat;
405  do {
406  blockstat = mtd_block_isbad(main_mtd, ptable_sector);
407  if (blockstat < 0)
408  ptable_sector = 0; /* read error */
409  else if (blockstat)
410  ptable_sector += main_mtd->erasesize;
411  } while (blockstat && ptable_sector);
412 #endif
413  if (ptable_sector) {
414  mtd_read(main_mtd, ptable_sector, PAGESIZE, &len,
415  page);
416  ptable_head = &((struct partitiontable *) page)->head;
417  }
418 
419 #if 0 /* Dump partition table so we can see what is going on */
421  "axisflashmap: flash read %d bytes at 0x%08x, data: "
422  "%02x %02x %02x %02x %02x %02x %02x %02x\n",
423  len, CONFIG_ETRAX_PTABLE_SECTOR,
424  page[0] & 255, page[1] & 255,
425  page[2] & 255, page[3] & 255,
426  page[4] & 255, page[5] & 255,
427  page[6] & 255, page[7] & 255);
429  "axisflashmap: partition table offset %d, data: "
430  "%02x %02x %02x %02x %02x %02x %02x %02x\n",
432  page[PARTITION_TABLE_OFFSET+0] & 255,
433  page[PARTITION_TABLE_OFFSET+1] & 255,
434  page[PARTITION_TABLE_OFFSET+2] & 255,
435  page[PARTITION_TABLE_OFFSET+3] & 255,
436  page[PARTITION_TABLE_OFFSET+4] & 255,
437  page[PARTITION_TABLE_OFFSET+5] & 255,
438  page[PARTITION_TABLE_OFFSET+6] & 255,
439  page[PARTITION_TABLE_OFFSET+7] & 255);
440 #endif
441  }
442 
443  if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
444  && (ptable_head->size <
445  (MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
447  && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
448  ptable_head->size -
451  /* Looks like a start, sane length and end of a
452  * partition table, lets check csum etc.
453  */
454  struct partitiontable_entry *max_addr =
455  (struct partitiontable_entry *)
456  ((unsigned long)ptable_head + sizeof(*ptable_head) +
457  ptable_head->size);
458  unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
459  unsigned char *p;
460  unsigned long csum = 0;
461 
462  ptable = (struct partitiontable_entry *)
463  ((unsigned long)ptable_head + sizeof(*ptable_head));
464 
465  /* Lets be PARANOID, and check the checksum. */
466  p = (unsigned char*) ptable;
467 
468  while (p <= (unsigned char*)max_addr) {
469  csum += *p++;
470  csum += *p++;
471  csum += *p++;
472  csum += *p++;
473  }
474  ptable_ok = (csum == ptable_head->checksum);
475 
476  /* Read the entries and use/show the info. */
477  printk(KERN_INFO "axisflashmap: "
478  "Found a%s partition table at 0x%p-0x%p.\n",
479  (ptable_ok ? " valid" : "n invalid"), ptable_head,
480  max_addr);
481 
482  /* We have found a working bootblock. Now read the
483  * partition table. Scan the table. It ends with 0xffffffff.
484  */
485  while (ptable_ok
486  && ptable->offset != PARTITIONTABLE_END_MARKER
487  && ptable < max_addr
488  && pidx < MAX_PARTITIONS - 1) {
489 
490  axis_partitions[pidx].offset = offset + ptable->offset;
491 #ifdef CONFIG_ETRAX_NANDFLASH
492  if (main_mtd->type == MTD_NANDFLASH) {
493  axis_partitions[pidx].size =
494  (((ptable+1)->offset ==
496  main_mtd->size :
497  ((ptable+1)->offset + offset)) -
498  (ptable->offset + offset);
499 
500  } else
501 #endif /* CONFIG_ETRAX_NANDFLASH */
502  axis_partitions[pidx].size = ptable->size;
503 #ifdef CONFIG_ETRAX_NANDBOOT
504  /* Save partition number of jffs2 ro partition.
505  * Needed if RAM booting or root file system in RAM.
506  */
507  if (!nand_boot &&
508  ram_rootfs_partition < 0 && /* not already set */
509  ptable->type == PARTITION_TYPE_JFFS2 &&
510  (ptable->flags & PARTITION_FLAGS_READONLY_MASK) ==
512  ram_rootfs_partition = pidx;
513 #endif /* CONFIG_ETRAX_NANDBOOT */
514  pidx++;
515  ptable++;
516  }
517  }
518 
519  /* Decide whether to use default partition table. */
520  /* Only use default table if we actually have a device (main_mtd) */
521 
522  struct mtd_partition *partition = &axis_partitions[0];
523  if (main_mtd && !ptable_ok) {
524  memcpy(axis_partitions, axis_default_partitions,
525  sizeof(axis_default_partitions));
526  pidx = NUM_DEFAULT_PARTITIONS;
527  ram_rootfs_partition = DEFAULT_ROOTFS_PARTITION_NO;
528  }
529 
530  /* Add artificial partitions for rootfs if necessary */
531  if (romfs_in_flash) {
532  /* rootfs is in directly accessible flash memory = NOR flash.
533  Add an overlapping device for the rootfs partition. */
534  printk(KERN_INFO "axisflashmap: Adding partition for "
535  "overlapping root file system image\n");
536  axis_partitions[pidx].size = romfs_length;
537  axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
538  axis_partitions[pidx].name = "romfs";
539  axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;
540  ram_rootfs_partition = -1;
541  pidx++;
542  } else if (romfs_length && !nand_boot) {
543  /* romfs exists in memory, but not in flash, so must be in RAM.
544  * Configure an MTDRAM partition. */
545  if (ram_rootfs_partition < 0) {
546  /* None set yet, put it at the end */
547  ram_rootfs_partition = pidx;
548  pidx++;
549  }
550  printk(KERN_INFO "axisflashmap: Adding partition for "
551  "root file system image in RAM\n");
552  axis_partitions[ram_rootfs_partition].size = romfs_length;
553  axis_partitions[ram_rootfs_partition].offset = romfs_start;
554  axis_partitions[ram_rootfs_partition].name = "romfs";
555  axis_partitions[ram_rootfs_partition].mask_flags |=
557  }
558 
559 #ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
560  if (main_mtd) {
561  main_partition.size = main_mtd->size;
562  err = mtd_device_register(main_mtd, &main_partition, 1);
563  if (err)
564  panic("axisflashmap: Could not initialize "
565  "partition for whole main mtd device!\n");
566  }
567 #endif
568 
569  /* Now, register all partitions with mtd.
570  * We do this one at a time so we can slip in an MTDRAM device
571  * in the proper place if required. */
572 
573  for (part = 0; part < pidx; part++) {
574  if (part == ram_rootfs_partition) {
575  /* add MTDRAM partition here */
576  struct mtd_info *mtd_ram;
577 
578  mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
579  if (!mtd_ram)
580  panic("axisflashmap: Couldn't allocate memory "
581  "for mtd_info!\n");
582  printk(KERN_INFO "axisflashmap: Adding RAM partition "
583  "for rootfs image.\n");
584  err = mtdram_init_device(mtd_ram,
585  (void *)partition[part].offset,
586  partition[part].size,
587  partition[part].name);
588  if (err)
589  panic("axisflashmap: Could not initialize "
590  "MTD RAM device!\n");
591  /* JFFS2 likes to have an erasesize. Keep potential
592  * JFFS2 rootfs happy by providing one. Since image
593  * was most likely created for main mtd, use that
594  * erasesize, if available. Otherwise, make a guess. */
595  mtd_ram->erasesize = (main_mtd ? main_mtd->erasesize :
596  CONFIG_ETRAX_PTABLE_SECTOR);
597  } else {
598  err = mtd_device_register(main_mtd, &partition[part],
599  1);
600  if (err)
601  panic("axisflashmap: Could not add mtd "
602  "partition %d\n", part);
603  }
604  }
605 
606  if (aux_mtd) {
607  aux_partition.size = aux_mtd->size;
608  err = mtd_device_register(aux_mtd, &aux_partition, 1);
609  if (err)
610  panic("axisflashmap: Could not initialize "
611  "aux mtd device!\n");
612 
613  }
614 
615  return err;
616 }
617 
618 /* This adds the above to the kernels init-call chain. */
619 module_init(init_axis_flash);
620 
621 EXPORT_SYMBOL(axisflash_mtd);