Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
div64.h
Go to the documentation of this file.
1 #ifndef __ASM_ARM_DIV64
2 #define __ASM_ARM_DIV64
3 
4 #include <linux/types.h>
5 #include <asm/compiler.h>
6 
7 /*
8  * The semantics of do_div() are:
9  *
10  * uint32_t do_div(uint64_t *n, uint32_t base)
11  * {
12  * uint32_t remainder = *n % base;
13  * *n = *n / base;
14  * return remainder;
15  * }
16  *
17  * In other words, a 64-bit dividend with a 32-bit divisor producing
18  * a 64-bit result and a 32-bit remainder. To accomplish this optimally
19  * we call a special __do_div64 helper with completely non standard
20  * calling convention for arguments and results (beware).
21  */
22 
23 #ifdef __ARMEB__
24 #define __xh "r0"
25 #define __xl "r1"
26 #else
27 #define __xl "r0"
28 #define __xh "r1"
29 #endif
30 
31 #define __do_div_asm(n, base) \
32 ({ \
33  register unsigned int __base asm("r4") = base; \
34  register unsigned long long __n asm("r0") = n; \
35  register unsigned long long __res asm("r2"); \
36  register unsigned int __rem asm(__xh); \
37  asm( __asmeq("%0", __xh) \
38  __asmeq("%1", "r2") \
39  __asmeq("%2", "r0") \
40  __asmeq("%3", "r4") \
41  "bl __do_div64" \
42  : "=r" (__rem), "=r" (__res) \
43  : "r" (__n), "r" (__base) \
44  : "ip", "lr", "cc"); \
45  n = __res; \
46  __rem; \
47 })
48 
49 #if __GNUC__ < 4
50 
51 /*
52  * gcc versions earlier than 4.0 are simply too problematic for the
53  * optimized implementation below. First there is gcc PR 15089 that
54  * tend to trig on more complex constructs, spurious .global __udivsi3
55  * are inserted even if none of those symbols are referenced in the
56  * generated code, and those gcc versions are not able to do constant
57  * propagation on long long values anyway.
58  */
59 #define do_div(n, base) __do_div_asm(n, base)
60 
61 #elif __GNUC__ >= 4
62 
63 #include <asm/bug.h>
64 
65 /*
66  * If the divisor happens to be constant, we determine the appropriate
67  * inverse at compile time to turn the division into a few inline
68  * multiplications instead which is much faster. And yet only if compiling
69  * for ARMv4 or higher (we need umull/umlal) and if the gcc version is
70  * sufficiently recent to perform proper long long constant propagation.
71  * (It is unfortunate that gcc doesn't perform all this internally.)
72  */
73 #define do_div(n, base) \
74 ({ \
75  unsigned int __r, __b = (base); \
76  if (!__builtin_constant_p(__b) || __b == 0 || \
77  (__LINUX_ARM_ARCH__ < 4 && (__b & (__b - 1)) != 0)) { \
78  /* non-constant divisor (or zero): slow path */ \
79  __r = __do_div_asm(n, __b); \
80  } else if ((__b & (__b - 1)) == 0) { \
81  /* Trivial: __b is constant and a power of 2 */ \
82  /* gcc does the right thing with this code. */ \
83  __r = n; \
84  __r &= (__b - 1); \
85  n /= __b; \
86  } else { \
87  /* Multiply by inverse of __b: n/b = n*(p/b)/p */ \
88  /* We rely on the fact that most of this code gets */ \
89  /* optimized away at compile time due to constant */ \
90  /* propagation and only a couple inline assembly */ \
91  /* instructions should remain. Better avoid any */ \
92  /* code construct that might prevent that. */ \
93  unsigned long long __res, __x, __t, __m, __n = n; \
94  unsigned int __c, __p, __z = 0; \
95  /* preserve low part of n for reminder computation */ \
96  __r = __n; \
97  /* determine number of bits to represent __b */ \
98  __p = 1 << __div64_fls(__b); \
99  /* compute __m = ((__p << 64) + __b - 1) / __b */ \
100  __m = (~0ULL / __b) * __p; \
101  __m += (((~0ULL % __b + 1) * __p) + __b - 1) / __b; \
102  /* compute __res = __m*(~0ULL/__b*__b-1)/(__p << 64) */ \
103  __x = ~0ULL / __b * __b - 1; \
104  __res = (__m & 0xffffffff) * (__x & 0xffffffff); \
105  __res >>= 32; \
106  __res += (__m & 0xffffffff) * (__x >> 32); \
107  __t = __res; \
108  __res += (__x & 0xffffffff) * (__m >> 32); \
109  __t = (__res < __t) ? (1ULL << 32) : 0; \
110  __res = (__res >> 32) + __t; \
111  __res += (__m >> 32) * (__x >> 32); \
112  __res /= __p; \
113  /* Now sanitize and optimize what we've got. */ \
114  if (~0ULL % (__b / (__b & -__b)) == 0) { \
115  /* those cases can be simplified with: */ \
116  __n /= (__b & -__b); \
117  __m = ~0ULL / (__b / (__b & -__b)); \
118  __p = 1; \
119  __c = 1; \
120  } else if (__res != __x / __b) { \
121  /* We can't get away without a correction */ \
122  /* to compensate for bit truncation errors. */ \
123  /* To avoid it we'd need an additional bit */ \
124  /* to represent __m which would overflow it. */ \
125  /* Instead we do m=p/b and n/b=(n*m+m)/p. */ \
126  __c = 1; \
127  /* Compute __m = (__p << 64) / __b */ \
128  __m = (~0ULL / __b) * __p; \
129  __m += ((~0ULL % __b + 1) * __p) / __b; \
130  } else { \
131  /* Reduce __m/__p, and try to clear bit 31 */ \
132  /* of __m when possible otherwise that'll */ \
133  /* need extra overflow handling later. */ \
134  unsigned int __bits = -(__m & -__m); \
135  __bits |= __m >> 32; \
136  __bits = (~__bits) << 1; \
137  /* If __bits == 0 then setting bit 31 is */ \
138  /* unavoidable. Simply apply the maximum */ \
139  /* possible reduction in that case. */ \
140  /* Otherwise the MSB of __bits indicates the */ \
141  /* best reduction we should apply. */ \
142  if (!__bits) { \
143  __p /= (__m & -__m); \
144  __m /= (__m & -__m); \
145  } else { \
146  __p >>= __div64_fls(__bits); \
147  __m >>= __div64_fls(__bits); \
148  } \
149  /* No correction needed. */ \
150  __c = 0; \
151  } \
152  /* Now we have a combination of 2 conditions: */ \
153  /* 1) whether or not we need a correction (__c), and */ \
154  /* 2) whether or not there might be an overflow in */ \
155  /* the cross product (__m & ((1<<63) | (1<<31))) */ \
156  /* Select the best insn combination to perform the */ \
157  /* actual __m * __n / (__p << 64) operation. */ \
158  if (!__c) { \
159  asm ( "umull %Q0, %R0, %1, %Q2\n\t" \
160  "mov %Q0, #0" \
161  : "=&r" (__res) \
162  : "r" (__m), "r" (__n) \
163  : "cc" ); \
164  } else if (!(__m & ((1ULL << 63) | (1ULL << 31)))) { \
165  __res = __m; \
166  asm ( "umlal %Q0, %R0, %Q1, %Q2\n\t" \
167  "mov %Q0, #0" \
168  : "+&r" (__res) \
169  : "r" (__m), "r" (__n) \
170  : "cc" ); \
171  } else { \
172  asm ( "umull %Q0, %R0, %Q1, %Q2\n\t" \
173  "cmn %Q0, %Q1\n\t" \
174  "adcs %R0, %R0, %R1\n\t" \
175  "adc %Q0, %3, #0" \
176  : "=&r" (__res) \
177  : "r" (__m), "r" (__n), "r" (__z) \
178  : "cc" ); \
179  } \
180  if (!(__m & ((1ULL << 63) | (1ULL << 31)))) { \
181  asm ( "umlal %R0, %Q0, %R1, %Q2\n\t" \
182  "umlal %R0, %Q0, %Q1, %R2\n\t" \
183  "mov %R0, #0\n\t" \
184  "umlal %Q0, %R0, %R1, %R2" \
185  : "+&r" (__res) \
186  : "r" (__m), "r" (__n) \
187  : "cc" ); \
188  } else { \
189  asm ( "umlal %R0, %Q0, %R2, %Q3\n\t" \
190  "umlal %R0, %1, %Q2, %R3\n\t" \
191  "mov %R0, #0\n\t" \
192  "adds %Q0, %1, %Q0\n\t" \
193  "adc %R0, %R0, #0\n\t" \
194  "umlal %Q0, %R0, %R2, %R3" \
195  : "+&r" (__res), "+&r" (__z) \
196  : "r" (__m), "r" (__n) \
197  : "cc" ); \
198  } \
199  __res /= __p; \
200  /* The reminder can be computed with 32-bit regs */ \
201  /* only, and gcc is good at that. */ \
202  { \
203  unsigned int __res0 = __res; \
204  unsigned int __b0 = __b; \
205  __r -= __res0 * __b0; \
206  } \
207  /* BUG_ON(__r >= __b || __res * __b + __r != n); */ \
208  n = __res; \
209  } \
210  __r; \
211 })
212 
213 /* our own fls implementation to make sure constant propagation is fine */
214 #define __div64_fls(bits) \
215 ({ \
216  unsigned int __left = (bits), __nr = 0; \
217  if (__left & 0xffff0000) __nr += 16, __left >>= 16; \
218  if (__left & 0x0000ff00) __nr += 8, __left >>= 8; \
219  if (__left & 0x000000f0) __nr += 4, __left >>= 4; \
220  if (__left & 0x0000000c) __nr += 2, __left >>= 2; \
221  if (__left & 0x00000002) __nr += 1; \
222  __nr; \
223 })
224 
225 #endif
226 
227 #endif