Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
time.c
Go to the documentation of this file.
1 /*
2  * linux/arch/cris/arch-v10/kernel/time.c
3  *
4  * Copyright (C) 1991, 1992, 1995 Linus Torvalds
5  * Copyright (C) 1999-2002 Axis Communications AB
6  *
7  */
8 
9 #include <linux/timex.h>
10 #include <linux/time.h>
11 #include <linux/jiffies.h>
12 #include <linux/interrupt.h>
13 #include <linux/swap.h>
14 #include <linux/sched.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <arch/svinto.h>
18 #include <asm/types.h>
19 #include <asm/signal.h>
20 #include <asm/io.h>
21 #include <asm/delay.h>
22 #include <asm/irq_regs.h>
23 
24 /* define this if you need to use print_timestamp */
25 /* it will make jiffies at 96 hz instead of 100 hz though */
26 #undef USE_CASCADE_TIMERS
27 
28 unsigned long get_ns_in_jiffie(void)
29 {
30  unsigned char timer_count, t1;
31  unsigned short presc_count;
32  unsigned long ns;
33  unsigned long flags;
34 
35  local_irq_save(flags);
36  timer_count = *R_TIMER0_DATA;
37  presc_count = *R_TIM_PRESC_STATUS;
38  /* presc_count might be wrapped */
39  t1 = *R_TIMER0_DATA;
40 
41  if (timer_count != t1){
42  /* it wrapped, read prescaler again... */
43  presc_count = *R_TIM_PRESC_STATUS;
44  timer_count = t1;
45  }
46  local_irq_restore(flags);
47  if (presc_count >= PRESCALE_VALUE/2 ){
48  presc_count = PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2;
49  } else {
50  presc_count = PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2;
51  }
52 
53  ns = ( (TIMER0_DIV - timer_count) * ((1000000000/HZ)/TIMER0_DIV )) +
54  ( (presc_count) * (1000000000/PRESCALE_FREQ));
55  return ns;
56 }
57 
58 unsigned long do_slow_gettimeoffset(void)
59 {
60  unsigned long count;
61 
62  /* The timer interrupt comes from Etrax timer 0. In order to get
63  * better precision, we check the current value. It might have
64  * underflowed already though.
65  */
66  count = *R_TIMER0_DATA;
67 
68  /* Convert timer value to usec */
69  return (TIMER0_DIV - count) * ((NSEC_PER_SEC/1000)/HZ)/TIMER0_DIV;
70 }
71 
72 /* Excerpt from the Etrax100 HSDD about the built-in watchdog:
73  *
74  * 3.10.4 Watchdog timer
75 
76  * When the watchdog timer is started, it generates an NMI if the watchdog
77  * isn't restarted or stopped within 0.1 s. If it still isn't restarted or
78  * stopped after an additional 3.3 ms, the watchdog resets the chip.
79  * The watchdog timer is stopped after reset. The watchdog timer is controlled
80  * by the R_WATCHDOG register. The R_WATCHDOG register contains an enable bit
81  * and a 3-bit key value. The effect of writing to the R_WATCHDOG register is
82  * described in the table below:
83  *
84  * Watchdog Value written:
85  * state: To enable: To key: Operation:
86  * -------- ---------- ------- ----------
87  * stopped 0 X No effect.
88  * stopped 1 key_val Start watchdog with key = key_val.
89  * started 0 ~key Stop watchdog
90  * started 1 ~key Restart watchdog with key = ~key.
91  * started X new_key_val Change key to new_key_val.
92  *
93  * Note: '~' is the bitwise NOT operator.
94  *
95  */
96 
97 /* right now, starting the watchdog is the same as resetting it */
98 #define start_watchdog reset_watchdog
99 
100 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
101 static int watchdog_key = 0; /* arbitrary number */
102 #endif
103 
104 /* number of pages to consider "out of memory". it is normal that the memory
105  * is used though, so put this really low.
106  */
107 
108 #define WATCHDOG_MIN_FREE_PAGES 8
109 
110 void
112 {
113 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
114  /* only keep watchdog happy as long as we have memory left! */
115  if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
116  /* reset the watchdog with the inverse of the old key */
117  watchdog_key ^= 0x7; /* invert key, which is 3 bits */
118  *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
119  IO_STATE(R_WATCHDOG, enable, start);
120  }
121 #endif
122 }
123 
124 /* stop the watchdog - we still need the correct key */
125 
126 void
128 {
129 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
130  watchdog_key ^= 0x7; /* invert key, which is 3 bits */
131  *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
132  IO_STATE(R_WATCHDOG, enable, stop);
133 #endif
134 }
135 
136 
137 /*
138  * timer_interrupt() needs to keep up the real-time clock,
139  * as well as call the "xtime_update()" routine every clocktick
140  */
141 
142 //static unsigned short myjiff; /* used by our debug routine print_timestamp */
143 
144 extern void cris_do_profile(struct pt_regs *regs);
145 
146 static inline irqreturn_t
147 timer_interrupt(int irq, void *dev_id)
148 {
149  struct pt_regs *regs = get_irq_regs();
150  /* acknowledge the timer irq */
151 
152 #ifdef USE_CASCADE_TIMERS
153  *R_TIMER_CTRL =
154  IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
155  IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
156  IO_STATE( R_TIMER_CTRL, i1, clr) |
157  IO_STATE( R_TIMER_CTRL, tm1, run) |
158  IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
159  IO_STATE( R_TIMER_CTRL, i0, clr) |
160  IO_STATE( R_TIMER_CTRL, tm0, run) |
161  IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
162 #else
163  *R_TIMER_CTRL = r_timer_ctrl_shadow |
164  IO_STATE(R_TIMER_CTRL, i0, clr);
165 #endif
166 
167  /* reset watchdog otherwise it resets us! */
168  reset_watchdog();
169 
170  /* Update statistics. */
172 
173  /* call the real timer interrupt handler */
174 
175  xtime_update(1);
176 
177  cris_do_profile(regs); /* Save profiling information */
178  return IRQ_HANDLED;
179 }
180 
181 /* timer is IRQF_SHARED so drivers can add stuff to the timer irq chain
182  * it needs to be IRQF_DISABLED to make the jiffies update work properly
183  */
184 
185 static struct irqaction irq2 = {
186  .handler = timer_interrupt,
187  .flags = IRQF_SHARED | IRQF_DISABLED,
188  .name = "timer",
189 };
190 
191 void __init
193 {
194  /* probe for the RTC and read it if it exists
195  * Before the RTC can be probed the loops_per_usec variable needs
196  * to be initialized to make usleep work. A better value for
197  * loops_per_usec is calculated by the kernel later once the
198  * clock has started.
199  */
200  loops_per_usec = 50;
201 
202  /* Setup the etrax timers
203  * Base frequency is 25000 hz, divider 250 -> 100 HZ
204  * In normal mode, we use timer0, so timer1 is free. In cascade
205  * mode (which we sometimes use for debugging) both timers are used.
206  * Remember that linux/timex.h contains #defines that rely on the
207  * timer settings below (hz and divide factor) !!!
208  */
209 
210 #ifdef USE_CASCADE_TIMERS
211  *R_TIMER_CTRL =
212  IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
213  IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
214  IO_STATE( R_TIMER_CTRL, i1, nop) |
215  IO_STATE( R_TIMER_CTRL, tm1, stop_ld) |
216  IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
217  IO_STATE( R_TIMER_CTRL, i0, nop) |
218  IO_STATE( R_TIMER_CTRL, tm0, stop_ld) |
219  IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
220 
221  *R_TIMER_CTRL = r_timer_ctrl_shadow =
222  IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
223  IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
224  IO_STATE( R_TIMER_CTRL, i1, nop) |
225  IO_STATE( R_TIMER_CTRL, tm1, run) |
226  IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
227  IO_STATE( R_TIMER_CTRL, i0, nop) |
228  IO_STATE( R_TIMER_CTRL, tm0, run) |
229  IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
230 #else
231  *R_TIMER_CTRL =
232  IO_FIELD(R_TIMER_CTRL, timerdiv1, 192) |
233  IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV) |
234  IO_STATE(R_TIMER_CTRL, i1, nop) |
235  IO_STATE(R_TIMER_CTRL, tm1, stop_ld) |
236  IO_STATE(R_TIMER_CTRL, clksel1, c19k2Hz) |
237  IO_STATE(R_TIMER_CTRL, i0, nop) |
238  IO_STATE(R_TIMER_CTRL, tm0, stop_ld) |
239  IO_STATE(R_TIMER_CTRL, clksel0, flexible);
240 
241  *R_TIMER_CTRL = r_timer_ctrl_shadow =
242  IO_FIELD(R_TIMER_CTRL, timerdiv1, 192) |
243  IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV) |
244  IO_STATE(R_TIMER_CTRL, i1, nop) |
245  IO_STATE(R_TIMER_CTRL, tm1, run) |
246  IO_STATE(R_TIMER_CTRL, clksel1, c19k2Hz) |
247  IO_STATE(R_TIMER_CTRL, i0, nop) |
248  IO_STATE(R_TIMER_CTRL, tm0, run) |
249  IO_STATE(R_TIMER_CTRL, clksel0, flexible);
250 
251  *R_TIMER_PRESCALE = PRESCALE_VALUE;
252 #endif
253 
254  *R_IRQ_MASK0_SET =
255  IO_STATE(R_IRQ_MASK0_SET, timer0, set); /* unmask the timer irq */
256 
257  /* now actually register the timer irq handler that calls timer_interrupt() */
258 
259  setup_irq(2, &irq2); /* irq 2 is the timer0 irq in etrax */
260 
261  /* enable watchdog if we should use one */
262 
263 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
264  printk("Enabling watchdog...\n");
265  start_watchdog();
266 
267  /* If we use the hardware watchdog, we want to trap it as an NMI
268  and dump registers before it resets us. For this to happen, we
269  must set the "m" NMI enable flag (which once set, is unset only
270  when an NMI is taken).
271 
272  The same goes for the external NMI, but that doesn't have any
273  driver or infrastructure support yet. */
274  asm ("setf m");
275 
276  *R_IRQ_MASK0_SET =
277  IO_STATE(R_IRQ_MASK0_SET, watchdog_nmi, set);
278  *R_VECT_MASK_SET =
279  IO_STATE(R_VECT_MASK_SET, nmi, set);
280 #endif
281 }