Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
callchain.c
Go to the documentation of this file.
1 /*
2  * Performance counter callchain support - powerpc architecture code
3  *
4  * Copyright © 2009 Paul Mackerras, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/mm.h>
17 #include <asm/ptrace.h>
18 #include <asm/pgtable.h>
19 #include <asm/sigcontext.h>
20 #include <asm/ucontext.h>
21 #include <asm/vdso.h>
22 #ifdef CONFIG_PPC64
23 #include "../kernel/ppc32.h"
24 #endif
25 
26 
27 /*
28  * Is sp valid as the address of the next kernel stack frame after prev_sp?
29  * The next frame may be in a different stack area but should not go
30  * back down in the same stack area.
31  */
32 static int valid_next_sp(unsigned long sp, unsigned long prev_sp)
33 {
34  if (sp & 0xf)
35  return 0; /* must be 16-byte aligned */
37  return 0;
38  if (sp >= prev_sp + STACK_FRAME_OVERHEAD)
39  return 1;
40  /*
41  * sp could decrease when we jump off an interrupt stack
42  * back to the regular process stack.
43  */
44  if ((sp & ~(THREAD_SIZE - 1)) != (prev_sp & ~(THREAD_SIZE - 1)))
45  return 1;
46  return 0;
47 }
48 
49 void
51 {
52  unsigned long sp, next_sp;
53  unsigned long next_ip;
54  unsigned long lr;
55  long level = 0;
56  unsigned long *fp;
57 
58  lr = regs->link;
59  sp = regs->gpr[1];
60  perf_callchain_store(entry, perf_instruction_pointer(regs));
61 
63  return;
64 
65  for (;;) {
66  fp = (unsigned long *) sp;
67  next_sp = fp[0];
68 
69  if (next_sp == sp + STACK_INT_FRAME_SIZE &&
71  /*
72  * This looks like an interrupt frame for an
73  * interrupt that occurred in the kernel
74  */
75  regs = (struct pt_regs *)(sp + STACK_FRAME_OVERHEAD);
76  next_ip = regs->nip;
77  lr = regs->link;
78  level = 0;
79  perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
80 
81  } else {
82  if (level == 0)
83  next_ip = lr;
84  else
85  next_ip = fp[STACK_FRAME_LR_SAVE];
86 
87  /*
88  * We can't tell which of the first two addresses
89  * we get are valid, but we can filter out the
90  * obviously bogus ones here. We replace them
91  * with 0 rather than removing them entirely so
92  * that userspace can tell which is which.
93  */
94  if ((level == 1 && next_ip == lr) ||
95  (level <= 1 && !kernel_text_address(next_ip)))
96  next_ip = 0;
97 
98  ++level;
99  }
100 
101  perf_callchain_store(entry, next_ip);
102  if (!valid_next_sp(next_sp, sp))
103  return;
104  sp = next_sp;
105  }
106 }
107 
108 #ifdef CONFIG_PPC64
109 /*
110  * On 64-bit we don't want to invoke hash_page on user addresses from
111  * interrupt context, so if the access faults, we read the page tables
112  * to find which page (if any) is mapped and access it directly.
113  */
114 static int read_user_stack_slow(void __user *ptr, void *ret, int nb)
115 {
116  pgd_t *pgdir;
117  pte_t *ptep, pte;
118  unsigned shift;
119  unsigned long addr = (unsigned long) ptr;
120  unsigned long offset;
121  unsigned long pfn;
122  void *kaddr;
123 
124  pgdir = current->mm->pgd;
125  if (!pgdir)
126  return -EFAULT;
127 
128  ptep = find_linux_pte_or_hugepte(pgdir, addr, &shift);
129  if (!shift)
130  shift = PAGE_SHIFT;
131 
132  /* align address to page boundary */
133  offset = addr & ((1UL << shift) - 1);
134  addr -= offset;
135 
136  if (ptep == NULL)
137  return -EFAULT;
138  pte = *ptep;
139  if (!pte_present(pte) || !(pte_val(pte) & _PAGE_USER))
140  return -EFAULT;
141  pfn = pte_pfn(pte);
142  if (!page_is_ram(pfn))
143  return -EFAULT;
144 
145  /* no highmem to worry about here */
146  kaddr = pfn_to_kaddr(pfn);
147  memcpy(ret, kaddr + offset, nb);
148  return 0;
149 }
150 
151 static int read_user_stack_64(unsigned long __user *ptr, unsigned long *ret)
152 {
153  if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned long) ||
154  ((unsigned long)ptr & 7))
155  return -EFAULT;
156 
157  pagefault_disable();
158  if (!__get_user_inatomic(*ret, ptr)) {
159  pagefault_enable();
160  return 0;
161  }
162  pagefault_enable();
163 
164  return read_user_stack_slow(ptr, ret, 8);
165 }
166 
167 static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
168 {
169  if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
170  ((unsigned long)ptr & 3))
171  return -EFAULT;
172 
173  pagefault_disable();
174  if (!__get_user_inatomic(*ret, ptr)) {
175  pagefault_enable();
176  return 0;
177  }
178  pagefault_enable();
179 
180  return read_user_stack_slow(ptr, ret, 4);
181 }
182 
183 static inline int valid_user_sp(unsigned long sp, int is_64)
184 {
185  if (!sp || (sp & 7) || sp > (is_64 ? TASK_SIZE : 0x100000000UL) - 32)
186  return 0;
187  return 1;
188 }
189 
190 /*
191  * 64-bit user processes use the same stack frame for RT and non-RT signals.
192  */
193 struct signal_frame_64 {
195  struct ucontext uc;
196  unsigned long unused[2];
197  unsigned int tramp[6];
198  struct siginfo *pinfo;
199  void *puc;
200  struct siginfo info;
201  char abigap[288];
202 };
203 
204 static int is_sigreturn_64_address(unsigned long nip, unsigned long fp)
205 {
206  if (nip == fp + offsetof(struct signal_frame_64, tramp))
207  return 1;
208  if (vdso64_rt_sigtramp && current->mm->context.vdso_base &&
209  nip == current->mm->context.vdso_base + vdso64_rt_sigtramp)
210  return 1;
211  return 0;
212 }
213 
214 /*
215  * Do some sanity checking on the signal frame pointed to by sp.
216  * We check the pinfo and puc pointers in the frame.
217  */
218 static int sane_signal_64_frame(unsigned long sp)
219 {
220  struct signal_frame_64 __user *sf;
221  unsigned long pinfo, puc;
222 
223  sf = (struct signal_frame_64 __user *) sp;
224  if (read_user_stack_64((unsigned long __user *) &sf->pinfo, &pinfo) ||
225  read_user_stack_64((unsigned long __user *) &sf->puc, &puc))
226  return 0;
227  return pinfo == (unsigned long) &sf->info &&
228  puc == (unsigned long) &sf->uc;
229 }
230 
231 static void perf_callchain_user_64(struct perf_callchain_entry *entry,
232  struct pt_regs *regs)
233 {
234  unsigned long sp, next_sp;
235  unsigned long next_ip;
236  unsigned long lr;
237  long level = 0;
238  struct signal_frame_64 __user *sigframe;
239  unsigned long __user *fp, *uregs;
240 
241  next_ip = perf_instruction_pointer(regs);
242  lr = regs->link;
243  sp = regs->gpr[1];
244  perf_callchain_store(entry, next_ip);
245 
246  for (;;) {
247  fp = (unsigned long __user *) sp;
248  if (!valid_user_sp(sp, 1) || read_user_stack_64(fp, &next_sp))
249  return;
250  if (level > 0 && read_user_stack_64(&fp[2], &next_ip))
251  return;
252 
253  /*
254  * Note: the next_sp - sp >= signal frame size check
255  * is true when next_sp < sp, which can happen when
256  * transitioning from an alternate signal stack to the
257  * normal stack.
258  */
259  if (next_sp - sp >= sizeof(struct signal_frame_64) &&
260  (is_sigreturn_64_address(next_ip, sp) ||
261  (level <= 1 && is_sigreturn_64_address(lr, sp))) &&
262  sane_signal_64_frame(sp)) {
263  /*
264  * This looks like an signal frame
265  */
266  sigframe = (struct signal_frame_64 __user *) sp;
267  uregs = sigframe->uc.uc_mcontext.gp_regs;
268  if (read_user_stack_64(&uregs[PT_NIP], &next_ip) ||
269  read_user_stack_64(&uregs[PT_LNK], &lr) ||
270  read_user_stack_64(&uregs[PT_R1], &sp))
271  return;
272  level = 0;
273  perf_callchain_store(entry, PERF_CONTEXT_USER);
274  perf_callchain_store(entry, next_ip);
275  continue;
276  }
277 
278  if (level == 0)
279  next_ip = lr;
280  perf_callchain_store(entry, next_ip);
281  ++level;
282  sp = next_sp;
283  }
284 }
285 
286 static inline int current_is_64bit(void)
287 {
288  /*
289  * We can't use test_thread_flag() here because we may be on an
290  * interrupt stack, and the thread flags don't get copied over
291  * from the thread_info on the main stack to the interrupt stack.
292  */
293  return !test_ti_thread_flag(task_thread_info(current), TIF_32BIT);
294 }
295 
296 #else /* CONFIG_PPC64 */
297 /*
298  * On 32-bit we just access the address and let hash_page create a
299  * HPTE if necessary, so there is no need to fall back to reading
300  * the page tables. Since this is called at interrupt level,
301  * do_page_fault() won't treat a DSI as a page fault.
302  */
303 static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
304 {
305  int rc;
306 
307  if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
308  ((unsigned long)ptr & 3))
309  return -EFAULT;
310 
311  pagefault_disable();
312  rc = __get_user_inatomic(*ret, ptr);
313  pagefault_enable();
314 
315  return rc;
316 }
317 
318 static inline void perf_callchain_user_64(struct perf_callchain_entry *entry,
319  struct pt_regs *regs)
320 {
321 }
322 
323 static inline int current_is_64bit(void)
324 {
325  return 0;
326 }
327 
328 static inline int valid_user_sp(unsigned long sp, int is_64)
329 {
330  if (!sp || (sp & 7) || sp > TASK_SIZE - 32)
331  return 0;
332  return 1;
333 }
334 
335 #define __SIGNAL_FRAMESIZE32 __SIGNAL_FRAMESIZE
336 #define sigcontext32 sigcontext
337 #define mcontext32 mcontext
338 #define ucontext32 ucontext
339 #define compat_siginfo_t struct siginfo
340 
341 #endif /* CONFIG_PPC64 */
342 
343 /*
344  * Layout for non-RT signal frames
345  */
349  struct mcontext32 mctx;
350  int abigap[56];
351 };
352 
353 /*
354  * Layout for RT signal frames
355  */
359  struct ucontext32 uc;
360  int abigap[56];
361 };
362 
363 static int is_sigreturn_32_address(unsigned int nip, unsigned int fp)
364 {
365  if (nip == fp + offsetof(struct signal_frame_32, mctx.mc_pad))
366  return 1;
367  if (vdso32_sigtramp && current->mm->context.vdso_base &&
368  nip == current->mm->context.vdso_base + vdso32_sigtramp)
369  return 1;
370  return 0;
371 }
372 
373 static int is_rt_sigreturn_32_address(unsigned int nip, unsigned int fp)
374 {
375  if (nip == fp + offsetof(struct rt_signal_frame_32,
376  uc.uc_mcontext.mc_pad))
377  return 1;
378  if (vdso32_rt_sigtramp && current->mm->context.vdso_base &&
379  nip == current->mm->context.vdso_base + vdso32_rt_sigtramp)
380  return 1;
381  return 0;
382 }
383 
384 static int sane_signal_32_frame(unsigned int sp)
385 {
386  struct signal_frame_32 __user *sf;
387  unsigned int regs;
388 
389  sf = (struct signal_frame_32 __user *) (unsigned long) sp;
390  if (read_user_stack_32((unsigned int __user *) &sf->sctx.regs, &regs))
391  return 0;
392  return regs == (unsigned long) &sf->mctx;
393 }
394 
395 static int sane_rt_signal_32_frame(unsigned int sp)
396 {
397  struct rt_signal_frame_32 __user *sf;
398  unsigned int regs;
399 
400  sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
401  if (read_user_stack_32((unsigned int __user *) &sf->uc.uc_regs, &regs))
402  return 0;
403  return regs == (unsigned long) &sf->uc.uc_mcontext;
404 }
405 
406 static unsigned int __user *signal_frame_32_regs(unsigned int sp,
407  unsigned int next_sp, unsigned int next_ip)
408 {
409  struct mcontext32 __user *mctx = NULL;
410  struct signal_frame_32 __user *sf;
411  struct rt_signal_frame_32 __user *rt_sf;
412 
413  /*
414  * Note: the next_sp - sp >= signal frame size check
415  * is true when next_sp < sp, for example, when
416  * transitioning from an alternate signal stack to the
417  * normal stack.
418  */
419  if (next_sp - sp >= sizeof(struct signal_frame_32) &&
420  is_sigreturn_32_address(next_ip, sp) &&
421  sane_signal_32_frame(sp)) {
422  sf = (struct signal_frame_32 __user *) (unsigned long) sp;
423  mctx = &sf->mctx;
424  }
425 
426  if (!mctx && next_sp - sp >= sizeof(struct rt_signal_frame_32) &&
427  is_rt_sigreturn_32_address(next_ip, sp) &&
428  sane_rt_signal_32_frame(sp)) {
429  rt_sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
430  mctx = &rt_sf->uc.uc_mcontext;
431  }
432 
433  if (!mctx)
434  return NULL;
435  return mctx->mc_gregs;
436 }
437 
438 static void perf_callchain_user_32(struct perf_callchain_entry *entry,
439  struct pt_regs *regs)
440 {
441  unsigned int sp, next_sp;
442  unsigned int next_ip;
443  unsigned int lr;
444  long level = 0;
445  unsigned int __user *fp, *uregs;
446 
447  next_ip = perf_instruction_pointer(regs);
448  lr = regs->link;
449  sp = regs->gpr[1];
450  perf_callchain_store(entry, next_ip);
451 
452  while (entry->nr < PERF_MAX_STACK_DEPTH) {
453  fp = (unsigned int __user *) (unsigned long) sp;
454  if (!valid_user_sp(sp, 0) || read_user_stack_32(fp, &next_sp))
455  return;
456  if (level > 0 && read_user_stack_32(&fp[1], &next_ip))
457  return;
458 
459  uregs = signal_frame_32_regs(sp, next_sp, next_ip);
460  if (!uregs && level <= 1)
461  uregs = signal_frame_32_regs(sp, next_sp, lr);
462  if (uregs) {
463  /*
464  * This looks like an signal frame, so restart
465  * the stack trace with the values in it.
466  */
467  if (read_user_stack_32(&uregs[PT_NIP], &next_ip) ||
468  read_user_stack_32(&uregs[PT_LNK], &lr) ||
469  read_user_stack_32(&uregs[PT_R1], &sp))
470  return;
471  level = 0;
472  perf_callchain_store(entry, PERF_CONTEXT_USER);
473  perf_callchain_store(entry, next_ip);
474  continue;
475  }
476 
477  if (level == 0)
478  next_ip = lr;
479  perf_callchain_store(entry, next_ip);
480  ++level;
481  sp = next_sp;
482  }
483 }
484 
485 void
487 {
488  if (current_is_64bit())
489  perf_callchain_user_64(entry, regs);
490  else
491  perf_callchain_user_32(entry, regs);
492 }