Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
bitops.h
Go to the documentation of this file.
1 /*
2  * S390 version
3  * Copyright IBM Corp. 1999
4  * Author(s): Martin Schwidefsky ([email protected])
5  *
6  * Derived from "include/asm-i386/bitops.h"
7  * Copyright (C) 1992, Linus Torvalds
8  *
9  */
10 
11 #ifndef _S390_BITOPS_H
12 #define _S390_BITOPS_H
13 
14 #ifndef _LINUX_BITOPS_H
15 #error only <linux/bitops.h> can be included directly
16 #endif
17 
18 #include <linux/compiler.h>
19 
20 /*
21  * 32 bit bitops format:
22  * bit 0 is the LSB of *addr; bit 31 is the MSB of *addr;
23  * bit 32 is the LSB of *(addr+4). That combined with the
24  * big endian byte order on S390 give the following bit
25  * order in memory:
26  * 1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10 \
27  * 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00
28  * after that follows the next long with bit numbers
29  * 3f 3e 3d 3c 3b 3a 39 38 37 36 35 34 33 32 31 30
30  * 2f 2e 2d 2c 2b 2a 29 28 27 26 25 24 23 22 21 20
31  * The reason for this bit ordering is the fact that
32  * in the architecture independent code bits operations
33  * of the form "flags |= (1 << bitnr)" are used INTERMIXED
34  * with operation of the form "set_bit(bitnr, flags)".
35  *
36  * 64 bit bitops format:
37  * bit 0 is the LSB of *addr; bit 63 is the MSB of *addr;
38  * bit 64 is the LSB of *(addr+8). That combined with the
39  * big endian byte order on S390 give the following bit
40  * order in memory:
41  * 3f 3e 3d 3c 3b 3a 39 38 37 36 35 34 33 32 31 30
42  * 2f 2e 2d 2c 2b 2a 29 28 27 26 25 24 23 22 21 20
43  * 1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10
44  * 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00
45  * after that follows the next long with bit numbers
46  * 7f 7e 7d 7c 7b 7a 79 78 77 76 75 74 73 72 71 70
47  * 6f 6e 6d 6c 6b 6a 69 68 67 66 65 64 63 62 61 60
48  * 5f 5e 5d 5c 5b 5a 59 58 57 56 55 54 53 52 51 50
49  * 4f 4e 4d 4c 4b 4a 49 48 47 46 45 44 43 42 41 40
50  * The reason for this bit ordering is the fact that
51  * in the architecture independent code bits operations
52  * of the form "flags |= (1 << bitnr)" are used INTERMIXED
53  * with operation of the form "set_bit(bitnr, flags)".
54  */
55 
56 /* bitmap tables from arch/s390/kernel/bitmap.c */
57 extern const char _oi_bitmap[];
58 extern const char _ni_bitmap[];
59 extern const char _zb_findmap[];
60 extern const char _sb_findmap[];
61 
62 #ifndef CONFIG_64BIT
63 
64 #define __BITOPS_ALIGN 3
65 #define __BITOPS_WORDSIZE 32
66 #define __BITOPS_OR "or"
67 #define __BITOPS_AND "nr"
68 #define __BITOPS_XOR "xr"
69 
70 #define __BITOPS_LOOP(__old, __new, __addr, __val, __op_string) \
71  asm volatile( \
72  " l %0,%2\n" \
73  "0: lr %1,%0\n" \
74  __op_string " %1,%3\n" \
75  " cs %0,%1,%2\n" \
76  " jl 0b" \
77  : "=&d" (__old), "=&d" (__new), \
78  "=Q" (*(unsigned long *) __addr) \
79  : "d" (__val), "Q" (*(unsigned long *) __addr) \
80  : "cc");
81 
82 #else /* CONFIG_64BIT */
83 
84 #define __BITOPS_ALIGN 7
85 #define __BITOPS_WORDSIZE 64
86 #define __BITOPS_OR "ogr"
87 #define __BITOPS_AND "ngr"
88 #define __BITOPS_XOR "xgr"
89 
90 #define __BITOPS_LOOP(__old, __new, __addr, __val, __op_string) \
91  asm volatile( \
92  " lg %0,%2\n" \
93  "0: lgr %1,%0\n" \
94  __op_string " %1,%3\n" \
95  " csg %0,%1,%2\n" \
96  " jl 0b" \
97  : "=&d" (__old), "=&d" (__new), \
98  "=Q" (*(unsigned long *) __addr) \
99  : "d" (__val), "Q" (*(unsigned long *) __addr) \
100  : "cc");
101 
102 #endif /* CONFIG_64BIT */
103 
104 #define __BITOPS_WORDS(bits) (((bits)+__BITOPS_WORDSIZE-1)/__BITOPS_WORDSIZE)
105 #define __BITOPS_BARRIER() asm volatile("" : : : "memory")
106 
107 #ifdef CONFIG_SMP
108 /*
109  * SMP safe set_bit routine based on compare and swap (CS)
110  */
111 static inline void set_bit_cs(unsigned long nr, volatile unsigned long *ptr)
112 {
113  unsigned long addr, old, new, mask;
114 
115  addr = (unsigned long) ptr;
116  /* calculate address for CS */
117  addr += (nr ^ (nr & (__BITOPS_WORDSIZE - 1))) >> 3;
118  /* make OR mask */
119  mask = 1UL << (nr & (__BITOPS_WORDSIZE - 1));
120  /* Do the atomic update. */
121  __BITOPS_LOOP(old, new, addr, mask, __BITOPS_OR);
122 }
123 
124 /*
125  * SMP safe clear_bit routine based on compare and swap (CS)
126  */
127 static inline void clear_bit_cs(unsigned long nr, volatile unsigned long *ptr)
128 {
129  unsigned long addr, old, new, mask;
130 
131  addr = (unsigned long) ptr;
132  /* calculate address for CS */
133  addr += (nr ^ (nr & (__BITOPS_WORDSIZE - 1))) >> 3;
134  /* make AND mask */
135  mask = ~(1UL << (nr & (__BITOPS_WORDSIZE - 1)));
136  /* Do the atomic update. */
137  __BITOPS_LOOP(old, new, addr, mask, __BITOPS_AND);
138 }
139 
140 /*
141  * SMP safe change_bit routine based on compare and swap (CS)
142  */
143 static inline void change_bit_cs(unsigned long nr, volatile unsigned long *ptr)
144 {
145  unsigned long addr, old, new, mask;
146 
147  addr = (unsigned long) ptr;
148  /* calculate address for CS */
149  addr += (nr ^ (nr & (__BITOPS_WORDSIZE - 1))) >> 3;
150  /* make XOR mask */
151  mask = 1UL << (nr & (__BITOPS_WORDSIZE - 1));
152  /* Do the atomic update. */
153  __BITOPS_LOOP(old, new, addr, mask, __BITOPS_XOR);
154 }
155 
156 /*
157  * SMP safe test_and_set_bit routine based on compare and swap (CS)
158  */
159 static inline int
160 test_and_set_bit_cs(unsigned long nr, volatile unsigned long *ptr)
161 {
162  unsigned long addr, old, new, mask;
163 
164  addr = (unsigned long) ptr;
165  /* calculate address for CS */
166  addr += (nr ^ (nr & (__BITOPS_WORDSIZE - 1))) >> 3;
167  /* make OR/test mask */
168  mask = 1UL << (nr & (__BITOPS_WORDSIZE - 1));
169  /* Do the atomic update. */
170  __BITOPS_LOOP(old, new, addr, mask, __BITOPS_OR);
172  return (old & mask) != 0;
173 }
174 
175 /*
176  * SMP safe test_and_clear_bit routine based on compare and swap (CS)
177  */
178 static inline int
179 test_and_clear_bit_cs(unsigned long nr, volatile unsigned long *ptr)
180 {
181  unsigned long addr, old, new, mask;
182 
183  addr = (unsigned long) ptr;
184  /* calculate address for CS */
185  addr += (nr ^ (nr & (__BITOPS_WORDSIZE - 1))) >> 3;
186  /* make AND/test mask */
187  mask = ~(1UL << (nr & (__BITOPS_WORDSIZE - 1)));
188  /* Do the atomic update. */
189  __BITOPS_LOOP(old, new, addr, mask, __BITOPS_AND);
191  return (old ^ new) != 0;
192 }
193 
194 /*
195  * SMP safe test_and_change_bit routine based on compare and swap (CS)
196  */
197 static inline int
198 test_and_change_bit_cs(unsigned long nr, volatile unsigned long *ptr)
199 {
200  unsigned long addr, old, new, mask;
201 
202  addr = (unsigned long) ptr;
203  /* calculate address for CS */
204  addr += (nr ^ (nr & (__BITOPS_WORDSIZE - 1))) >> 3;
205  /* make XOR/test mask */
206  mask = 1UL << (nr & (__BITOPS_WORDSIZE - 1));
207  /* Do the atomic update. */
208  __BITOPS_LOOP(old, new, addr, mask, __BITOPS_XOR);
210  return (old & mask) != 0;
211 }
212 #endif /* CONFIG_SMP */
213 
214 /*
215  * fast, non-SMP set_bit routine
216  */
217 static inline void __set_bit(unsigned long nr, volatile unsigned long *ptr)
218 {
219  unsigned long addr;
220 
221  addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
222  asm volatile(
223  " oc %O0(1,%R0),%1"
224  : "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7]) : "cc" );
225 }
226 
227 static inline void
228 __constant_set_bit(const unsigned long nr, volatile unsigned long *ptr)
229 {
230  unsigned long addr;
231 
232  addr = ((unsigned long) ptr) + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
233  *(unsigned char *) addr |= 1 << (nr & 7);
234 }
235 
236 #define set_bit_simple(nr,addr) \
237 (__builtin_constant_p((nr)) ? \
238  __constant_set_bit((nr),(addr)) : \
239  __set_bit((nr),(addr)) )
240 
241 /*
242  * fast, non-SMP clear_bit routine
243  */
244 static inline void
245 __clear_bit(unsigned long nr, volatile unsigned long *ptr)
246 {
247  unsigned long addr;
248 
249  addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
250  asm volatile(
251  " nc %O0(1,%R0),%1"
252  : "=Q" (*(char *) addr) : "Q" (_ni_bitmap[nr & 7]) : "cc" );
253 }
254 
255 static inline void
256 __constant_clear_bit(const unsigned long nr, volatile unsigned long *ptr)
257 {
258  unsigned long addr;
259 
260  addr = ((unsigned long) ptr) + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
261  *(unsigned char *) addr &= ~(1 << (nr & 7));
262 }
263 
264 #define clear_bit_simple(nr,addr) \
265 (__builtin_constant_p((nr)) ? \
266  __constant_clear_bit((nr),(addr)) : \
267  __clear_bit((nr),(addr)) )
268 
269 /*
270  * fast, non-SMP change_bit routine
271  */
272 static inline void __change_bit(unsigned long nr, volatile unsigned long *ptr)
273 {
274  unsigned long addr;
275 
276  addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
277  asm volatile(
278  " xc %O0(1,%R0),%1"
279  : "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7]) : "cc" );
280 }
281 
282 static inline void
283 __constant_change_bit(const unsigned long nr, volatile unsigned long *ptr)
284 {
285  unsigned long addr;
286 
287  addr = ((unsigned long) ptr) + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
288  *(unsigned char *) addr ^= 1 << (nr & 7);
289 }
290 
291 #define change_bit_simple(nr,addr) \
292 (__builtin_constant_p((nr)) ? \
293  __constant_change_bit((nr),(addr)) : \
294  __change_bit((nr),(addr)) )
295 
296 /*
297  * fast, non-SMP test_and_set_bit routine
298  */
299 static inline int
300 test_and_set_bit_simple(unsigned long nr, volatile unsigned long *ptr)
301 {
302  unsigned long addr;
303  unsigned char ch;
304 
305  addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
306  ch = *(unsigned char *) addr;
307  asm volatile(
308  " oc %O0(1,%R0),%1"
309  : "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7])
310  : "cc", "memory");
311  return (ch >> (nr & 7)) & 1;
312 }
313 #define __test_and_set_bit(X,Y) test_and_set_bit_simple(X,Y)
314 
315 /*
316  * fast, non-SMP test_and_clear_bit routine
317  */
318 static inline int
319 test_and_clear_bit_simple(unsigned long nr, volatile unsigned long *ptr)
320 {
321  unsigned long addr;
322  unsigned char ch;
323 
324  addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
325  ch = *(unsigned char *) addr;
326  asm volatile(
327  " nc %O0(1,%R0),%1"
328  : "=Q" (*(char *) addr) : "Q" (_ni_bitmap[nr & 7])
329  : "cc", "memory");
330  return (ch >> (nr & 7)) & 1;
331 }
332 #define __test_and_clear_bit(X,Y) test_and_clear_bit_simple(X,Y)
333 
334 /*
335  * fast, non-SMP test_and_change_bit routine
336  */
337 static inline int
338 test_and_change_bit_simple(unsigned long nr, volatile unsigned long *ptr)
339 {
340  unsigned long addr;
341  unsigned char ch;
342 
343  addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
344  ch = *(unsigned char *) addr;
345  asm volatile(
346  " xc %O0(1,%R0),%1"
347  : "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7])
348  : "cc", "memory");
349  return (ch >> (nr & 7)) & 1;
350 }
351 #define __test_and_change_bit(X,Y) test_and_change_bit_simple(X,Y)
352 
353 #ifdef CONFIG_SMP
354 #define set_bit set_bit_cs
355 #define clear_bit clear_bit_cs
356 #define change_bit change_bit_cs
357 #define test_and_set_bit test_and_set_bit_cs
358 #define test_and_clear_bit test_and_clear_bit_cs
359 #define test_and_change_bit test_and_change_bit_cs
360 #else
361 #define set_bit set_bit_simple
362 #define clear_bit clear_bit_simple
363 #define change_bit change_bit_simple
364 #define test_and_set_bit test_and_set_bit_simple
365 #define test_and_clear_bit test_and_clear_bit_simple
366 #define test_and_change_bit test_and_change_bit_simple
367 #endif
368 
369 
370 /*
371  * This routine doesn't need to be atomic.
372  */
373 
374 static inline int __test_bit(unsigned long nr, const volatile unsigned long *ptr)
375 {
376  unsigned long addr;
377  unsigned char ch;
378 
379  addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
380  ch = *(volatile unsigned char *) addr;
381  return (ch >> (nr & 7)) & 1;
382 }
383 
384 static inline int
385 __constant_test_bit(unsigned long nr, const volatile unsigned long *addr) {
386  return (((volatile char *) addr)
387  [(nr^(__BITOPS_WORDSIZE-8))>>3] & (1<<(nr&7))) != 0;
388 }
389 
390 #define test_bit(nr,addr) \
391 (__builtin_constant_p((nr)) ? \
392  __constant_test_bit((nr),(addr)) : \
393  __test_bit((nr),(addr)) )
394 
395 /*
396  * Optimized find bit helper functions.
397  */
398 
404 static inline unsigned long __ffz_word_loop(const unsigned long *addr,
405  unsigned long size)
406 {
407  typedef struct { long _[__BITOPS_WORDS(size)]; } addrtype;
408  unsigned long bytes = 0;
409 
410  asm volatile(
411 #ifndef CONFIG_64BIT
412  " ahi %1,-1\n"
413  " sra %1,5\n"
414  " jz 1f\n"
415  "0: c %2,0(%0,%3)\n"
416  " jne 1f\n"
417  " la %0,4(%0)\n"
418  " brct %1,0b\n"
419  "1:\n"
420 #else
421  " aghi %1,-1\n"
422  " srag %1,%1,6\n"
423  " jz 1f\n"
424  "0: cg %2,0(%0,%3)\n"
425  " jne 1f\n"
426  " la %0,8(%0)\n"
427  " brct %1,0b\n"
428  "1:\n"
429 #endif
430  : "+&a" (bytes), "+&d" (size)
431  : "d" (-1UL), "a" (addr), "m" (*(addrtype *) addr)
432  : "cc" );
433  return bytes;
434 }
435 
441 static inline unsigned long __ffs_word_loop(const unsigned long *addr,
442  unsigned long size)
443 {
444  typedef struct { long _[__BITOPS_WORDS(size)]; } addrtype;
445  unsigned long bytes = 0;
446 
447  asm volatile(
448 #ifndef CONFIG_64BIT
449  " ahi %1,-1\n"
450  " sra %1,5\n"
451  " jz 1f\n"
452  "0: c %2,0(%0,%3)\n"
453  " jne 1f\n"
454  " la %0,4(%0)\n"
455  " brct %1,0b\n"
456  "1:\n"
457 #else
458  " aghi %1,-1\n"
459  " srag %1,%1,6\n"
460  " jz 1f\n"
461  "0: cg %2,0(%0,%3)\n"
462  " jne 1f\n"
463  " la %0,8(%0)\n"
464  " brct %1,0b\n"
465  "1:\n"
466 #endif
467  : "+&a" (bytes), "+&a" (size)
468  : "d" (0UL), "a" (addr), "m" (*(addrtype *) addr)
469  : "cc" );
470  return bytes;
471 }
472 
478 static inline unsigned long __ffz_word(unsigned long nr, unsigned long word)
479 {
480 #ifdef CONFIG_64BIT
481  if ((word & 0xffffffff) == 0xffffffff) {
482  word >>= 32;
483  nr += 32;
484  }
485 #endif
486  if ((word & 0xffff) == 0xffff) {
487  word >>= 16;
488  nr += 16;
489  }
490  if ((word & 0xff) == 0xff) {
491  word >>= 8;
492  nr += 8;
493  }
494  return nr + _zb_findmap[(unsigned char) word];
495 }
496 
502 static inline unsigned long __ffs_word(unsigned long nr, unsigned long word)
503 {
504 #ifdef CONFIG_64BIT
505  if ((word & 0xffffffff) == 0) {
506  word >>= 32;
507  nr += 32;
508  }
509 #endif
510  if ((word & 0xffff) == 0) {
511  word >>= 16;
512  nr += 16;
513  }
514  if ((word & 0xff) == 0) {
515  word >>= 8;
516  nr += 8;
517  }
518  return nr + _sb_findmap[(unsigned char) word];
519 }
520 
521 
527 static inline unsigned long __load_ulong_be(const unsigned long *p,
528  unsigned long offset)
529 {
530  p = (unsigned long *)((unsigned long) p + offset);
531  return *p;
532 }
533 
539 static inline unsigned long __load_ulong_le(const unsigned long *p,
540  unsigned long offset)
541 {
542  unsigned long word;
543 
544  p = (unsigned long *)((unsigned long) p + offset);
545 #ifndef CONFIG_64BIT
546  asm volatile(
547  " ic %0,%O1(%R1)\n"
548  " icm %0,2,%O1+1(%R1)\n"
549  " icm %0,4,%O1+2(%R1)\n"
550  " icm %0,8,%O1+3(%R1)"
551  : "=&d" (word) : "Q" (*p) : "cc");
552 #else
553  asm volatile(
554  " lrvg %0,%1"
555  : "=d" (word) : "m" (*p) );
556 #endif
557  return word;
558 }
559 
560 /*
561  * The various find bit functions.
562  */
563 
564 /*
565  * ffz - find first zero in word.
566  * @word: The word to search
567  *
568  * Undefined if no zero exists, so code should check against ~0UL first.
569  */
570 static inline unsigned long ffz(unsigned long word)
571 {
572  return __ffz_word(0, word);
573 }
574 
581 static inline unsigned long __ffs (unsigned long word)
582 {
583  return __ffs_word(0, word);
584 }
585 
594 static inline int ffs(int x)
595 {
596  if (!x)
597  return 0;
598  return __ffs_word(1, x);
599 }
600 
609 static inline unsigned long find_first_zero_bit(const unsigned long *addr,
610  unsigned long size)
611 {
612  unsigned long bytes, bits;
613 
614  if (!size)
615  return 0;
616  bytes = __ffz_word_loop(addr, size);
617  bits = __ffz_word(bytes*8, __load_ulong_be(addr, bytes));
618  return (bits < size) ? bits : size;
619 }
620 #define find_first_zero_bit find_first_zero_bit
621 
630 static inline unsigned long find_first_bit(const unsigned long * addr,
631  unsigned long size)
632 {
633  unsigned long bytes, bits;
634 
635  if (!size)
636  return 0;
637  bytes = __ffs_word_loop(addr, size);
638  bits = __ffs_word(bytes*8, __load_ulong_be(addr, bytes));
639  return (bits < size) ? bits : size;
640 }
641 #define find_first_bit find_first_bit
642 
649 static inline int find_next_zero_bit (const unsigned long * addr,
650  unsigned long size,
651  unsigned long offset)
652 {
653  const unsigned long *p;
654  unsigned long bit, set;
655 
656  if (offset >= size)
657  return size;
658  bit = offset & (__BITOPS_WORDSIZE - 1);
659  offset -= bit;
660  size -= offset;
661  p = addr + offset / __BITOPS_WORDSIZE;
662  if (bit) {
663  /*
664  * __ffz_word returns __BITOPS_WORDSIZE
665  * if no zero bit is present in the word.
666  */
667  set = __ffz_word(bit, *p >> bit);
668  if (set >= size)
669  return size + offset;
670  if (set < __BITOPS_WORDSIZE)
671  return set + offset;
672  offset += __BITOPS_WORDSIZE;
673  size -= __BITOPS_WORDSIZE;
674  p++;
675  }
676  return offset + find_first_zero_bit(p, size);
677 }
678 #define find_next_zero_bit find_next_zero_bit
679 
686 static inline int find_next_bit (const unsigned long * addr,
687  unsigned long size,
688  unsigned long offset)
689 {
690  const unsigned long *p;
691  unsigned long bit, set;
692 
693  if (offset >= size)
694  return size;
695  bit = offset & (__BITOPS_WORDSIZE - 1);
696  offset -= bit;
697  size -= offset;
698  p = addr + offset / __BITOPS_WORDSIZE;
699  if (bit) {
700  /*
701  * __ffs_word returns __BITOPS_WORDSIZE
702  * if no one bit is present in the word.
703  */
704  set = __ffs_word(0, *p & (~0UL << bit));
705  if (set >= size)
706  return size + offset;
707  if (set < __BITOPS_WORDSIZE)
708  return set + offset;
709  offset += __BITOPS_WORDSIZE;
710  size -= __BITOPS_WORDSIZE;
711  p++;
712  }
713  return offset + find_first_bit(p, size);
714 }
715 #define find_next_bit find_next_bit
716 
717 /*
718  * Every architecture must define this function. It's the fastest
719  * way of searching a 140-bit bitmap where the first 100 bits are
720  * unlikely to be set. It's guaranteed that at least one of the 140
721  * bits is cleared.
722  */
723 static inline int sched_find_first_bit(unsigned long *b)
724 {
725  return find_first_bit(b, 140);
726 }
727 
728 #include <asm-generic/bitops/fls.h>
731 
733 #include <asm-generic/bitops/lock.h>
734 
735 /*
736  * ATTENTION: intel byte ordering convention for ext2 and minix !!
737  * bit 0 is the LSB of addr; bit 31 is the MSB of addr;
738  * bit 32 is the LSB of (addr+4).
739  * That combined with the little endian byte order of Intel gives the
740  * following bit order in memory:
741  * 07 06 05 04 03 02 01 00 15 14 13 12 11 10 09 08 \
742  * 23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24
743  */
744 
745 static inline int find_first_zero_bit_le(void *vaddr, unsigned int size)
746 {
747  unsigned long bytes, bits;
748 
749  if (!size)
750  return 0;
751  bytes = __ffz_word_loop(vaddr, size);
752  bits = __ffz_word(bytes*8, __load_ulong_le(vaddr, bytes));
753  return (bits < size) ? bits : size;
754 }
755 #define find_first_zero_bit_le find_first_zero_bit_le
756 
757 static inline int find_next_zero_bit_le(void *vaddr, unsigned long size,
758  unsigned long offset)
759 {
760  unsigned long *addr = vaddr, *p;
761  unsigned long bit, set;
762 
763  if (offset >= size)
764  return size;
765  bit = offset & (__BITOPS_WORDSIZE - 1);
766  offset -= bit;
767  size -= offset;
768  p = addr + offset / __BITOPS_WORDSIZE;
769  if (bit) {
770  /*
771  * s390 version of ffz returns __BITOPS_WORDSIZE
772  * if no zero bit is present in the word.
773  */
774  set = __ffz_word(bit, __load_ulong_le(p, 0) >> bit);
775  if (set >= size)
776  return size + offset;
777  if (set < __BITOPS_WORDSIZE)
778  return set + offset;
779  offset += __BITOPS_WORDSIZE;
780  size -= __BITOPS_WORDSIZE;
781  p++;
782  }
783  return offset + find_first_zero_bit_le(p, size);
784 }
785 #define find_next_zero_bit_le find_next_zero_bit_le
786 
787 static inline unsigned long find_first_bit_le(void *vaddr, unsigned long size)
788 {
789  unsigned long bytes, bits;
790 
791  if (!size)
792  return 0;
793  bytes = __ffs_word_loop(vaddr, size);
794  bits = __ffs_word(bytes*8, __load_ulong_le(vaddr, bytes));
795  return (bits < size) ? bits : size;
796 }
797 #define find_first_bit_le find_first_bit_le
798 
799 static inline int find_next_bit_le(void *vaddr, unsigned long size,
800  unsigned long offset)
801 {
802  unsigned long *addr = vaddr, *p;
803  unsigned long bit, set;
804 
805  if (offset >= size)
806  return size;
807  bit = offset & (__BITOPS_WORDSIZE - 1);
808  offset -= bit;
809  size -= offset;
810  p = addr + offset / __BITOPS_WORDSIZE;
811  if (bit) {
812  /*
813  * s390 version of ffz returns __BITOPS_WORDSIZE
814  * if no zero bit is present in the word.
815  */
816  set = __ffs_word(0, __load_ulong_le(p, 0) & (~0UL << bit));
817  if (set >= size)
818  return size + offset;
819  if (set < __BITOPS_WORDSIZE)
820  return set + offset;
821  offset += __BITOPS_WORDSIZE;
822  size -= __BITOPS_WORDSIZE;
823  p++;
824  }
825  return offset + find_first_bit_le(p, size);
826 }
827 #define find_next_bit_le find_next_bit_le
828 
829 #include <asm-generic/bitops/le.h>
830 
832 
833 #endif /* _S390_BITOPS_H */