Linux Kernel
3.7.1
Main Page
Related Pages
Modules
Namespaces
Data Structures
Files
File List
Globals
All
Data Structures
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Macros
Groups
Pages
arch
um
include
asm
pgtable.h
Go to the documentation of this file.
1
/*
2
* Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3
* Copyright 2003 PathScale, Inc.
4
* Derived from include/asm-i386/pgtable.h
5
* Licensed under the GPL
6
*/
7
8
#ifndef __UM_PGTABLE_H
9
#define __UM_PGTABLE_H
10
11
#include <asm/fixmap.h>
12
13
#define _PAGE_PRESENT 0x001
14
#define _PAGE_NEWPAGE 0x002
15
#define _PAGE_NEWPROT 0x004
16
#define _PAGE_RW 0x020
17
#define _PAGE_USER 0x040
18
#define _PAGE_ACCESSED 0x080
19
#define _PAGE_DIRTY 0x100
20
/* If _PAGE_PRESENT is clear, we use these: */
21
#define _PAGE_FILE 0x008
/* nonlinear file mapping, saved PTE; unset:swap */
22
#define _PAGE_PROTNONE 0x010
/* if the user mapped it with PROT_NONE;
23
pte_present gives true */
24
25
#ifdef CONFIG_3_LEVEL_PGTABLES
26
#include <asm/pgtable-3level.h>
27
#else
28
#include <asm/pgtable-2level.h>
29
#endif
30
31
extern
pgd_t
swapper_pg_dir
[
PTRS_PER_PGD
];
32
33
/* zero page used for uninitialized stuff */
34
extern
unsigned
long
*
empty_zero_page
;
35
36
#define pgtable_cache_init() do ; while (0)
37
38
/* Just any arbitrary offset to the start of the vmalloc VM area: the
39
* current 8MB value just means that there will be a 8MB "hole" after the
40
* physical memory until the kernel virtual memory starts. That means that
41
* any out-of-bounds memory accesses will hopefully be caught.
42
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
43
* area for the same reason. ;)
44
*/
45
46
extern
unsigned
long
end_iomem
;
47
48
#define VMALLOC_OFFSET (__va_space)
49
#define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
50
#define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
51
#ifdef CONFIG_HIGHMEM
52
# define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
53
#else
54
# define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
55
#endif
56
#define MODULES_VADDR VMALLOC_START
57
#define MODULES_END VMALLOC_END
58
#define MODULES_LEN (MODULES_VADDR - MODULES_END)
59
60
#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
61
#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
62
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
63
#define __PAGE_KERNEL_EXEC \
64
(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
65
#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
66
#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
67
#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
68
#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
69
#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
70
#define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
71
72
#define io_remap_pfn_range remap_pfn_range
73
74
/*
75
* The i386 can't do page protection for execute, and considers that the same
76
* are read.
77
* Also, write permissions imply read permissions. This is the closest we can
78
* get..
79
*/
80
#define __P000 PAGE_NONE
81
#define __P001 PAGE_READONLY
82
#define __P010 PAGE_COPY
83
#define __P011 PAGE_COPY
84
#define __P100 PAGE_READONLY
85
#define __P101 PAGE_READONLY
86
#define __P110 PAGE_COPY
87
#define __P111 PAGE_COPY
88
89
#define __S000 PAGE_NONE
90
#define __S001 PAGE_READONLY
91
#define __S010 PAGE_SHARED
92
#define __S011 PAGE_SHARED
93
#define __S100 PAGE_READONLY
94
#define __S101 PAGE_READONLY
95
#define __S110 PAGE_SHARED
96
#define __S111 PAGE_SHARED
97
98
/*
99
* ZERO_PAGE is a global shared page that is always zero: used
100
* for zero-mapped memory areas etc..
101
*/
102
#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
103
104
#define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
105
106
#define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
107
#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
108
109
#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
110
#define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
111
112
#define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE)
113
#define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
114
115
#define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE)
116
#define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
117
118
#define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
119
120
#define pte_page(x) pfn_to_page(pte_pfn(x))
121
122
#define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
123
124
/*
125
* =================================
126
* Flags checking section.
127
* =================================
128
*/
129
130
static
inline
int
pte_none
(
pte_t
pte
)
131
{
132
return
pte_is_zero
(pte);
133
}
134
135
/*
136
* The following only work if pte_present() is true.
137
* Undefined behaviour if not..
138
*/
139
static
inline
int
pte_read
(
pte_t
pte
)
140
{
141
return
((
pte_get_bits
(pte,
_PAGE_USER
)) &&
142
!(
pte_get_bits
(pte,
_PAGE_PROTNONE
)));
143
}
144
145
static
inline
int
pte_exec
(
pte_t
pte){
146
return
((
pte_get_bits
(pte,
_PAGE_USER
)) &&
147
!(
pte_get_bits
(pte,
_PAGE_PROTNONE
)));
148
}
149
150
static
inline
int
pte_write
(
pte_t
pte)
151
{
152
return
((
pte_get_bits
(pte,
_PAGE_RW
)) &&
153
!(
pte_get_bits
(pte,
_PAGE_PROTNONE
)));
154
}
155
156
/*
157
* The following only works if pte_present() is not true.
158
*/
159
static
inline
int
pte_file
(
pte_t
pte)
160
{
161
return
pte_get_bits
(pte,
_PAGE_FILE
);
162
}
163
164
static
inline
int
pte_dirty
(
pte_t
pte)
165
{
166
return
pte_get_bits
(pte,
_PAGE_DIRTY
);
167
}
168
169
static
inline
int
pte_young
(
pte_t
pte)
170
{
171
return
pte_get_bits
(pte,
_PAGE_ACCESSED
);
172
}
173
174
static
inline
int
pte_newpage(
pte_t
pte)
175
{
176
return
pte_get_bits
(pte,
_PAGE_NEWPAGE
);
177
}
178
179
static
inline
int
pte_newprot(
pte_t
pte)
180
{
181
return
(
pte_present
(pte) && (
pte_get_bits
(pte,
_PAGE_NEWPROT
)));
182
}
183
184
static
inline
int
pte_special
(
pte_t
pte)
185
{
186
return
0;
187
}
188
189
/*
190
* =================================
191
* Flags setting section.
192
* =================================
193
*/
194
195
static
inline
pte_t
pte_mknewprot(
pte_t
pte)
196
{
197
pte_set_bits
(pte,
_PAGE_NEWPROT
);
198
return
(pte);
199
}
200
201
static
inline
pte_t
pte_mkclean
(
pte_t
pte)
202
{
203
pte_clear_bits
(pte,
_PAGE_DIRTY
);
204
return
(pte);
205
}
206
207
static
inline
pte_t
pte_mkold
(
pte_t
pte)
208
{
209
pte_clear_bits
(pte,
_PAGE_ACCESSED
);
210
return
(pte);
211
}
212
213
static
inline
pte_t
pte_wrprotect
(
pte_t
pte)
214
{
215
pte_clear_bits
(pte,
_PAGE_RW
);
216
return
(pte_mknewprot(pte));
217
}
218
219
static
inline
pte_t
pte_mkread
(
pte_t
pte)
220
{
221
pte_set_bits
(pte,
_PAGE_USER
);
222
return
(pte_mknewprot(pte));
223
}
224
225
static
inline
pte_t
pte_mkdirty
(
pte_t
pte)
226
{
227
pte_set_bits
(pte,
_PAGE_DIRTY
);
228
return
(pte);
229
}
230
231
static
inline
pte_t
pte_mkyoung
(
pte_t
pte)
232
{
233
pte_set_bits
(pte,
_PAGE_ACCESSED
);
234
return
(pte);
235
}
236
237
static
inline
pte_t
pte_mkwrite
(
pte_t
pte)
238
{
239
pte_set_bits
(pte,
_PAGE_RW
);
240
return
(pte_mknewprot(pte));
241
}
242
243
static
inline
pte_t
pte_mkuptodate(
pte_t
pte)
244
{
245
pte_clear_bits
(pte,
_PAGE_NEWPAGE
);
246
if
(
pte_present
(pte))
247
pte_clear_bits
(pte,
_PAGE_NEWPROT
);
248
return
(pte);
249
}
250
251
static
inline
pte_t
pte_mknewpage(
pte_t
pte)
252
{
253
pte_set_bits
(pte,
_PAGE_NEWPAGE
);
254
return
(pte);
255
}
256
257
static
inline
pte_t
pte_mkspecial
(
pte_t
pte)
258
{
259
return
(pte);
260
}
261
262
static
inline
void
set_pte
(
pte_t
*pteptr,
pte_t
pteval)
263
{
264
pte_copy
(*pteptr, pteval);
265
266
/* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
267
* fix_range knows to unmap it. _PAGE_NEWPROT is specific to
268
* mapped pages.
269
*/
270
271
*pteptr = pte_mknewpage(*pteptr);
272
if
(
pte_present
(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
273
}
274
#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
275
276
#define __HAVE_ARCH_PTE_SAME
277
static
inline
int
pte_same
(
pte_t
pte_a,
pte_t
pte_b)
278
{
279
return
!((
pte_val
(pte_a) ^
pte_val
(pte_b)) & ~
_PAGE_NEWPAGE
);
280
}
281
282
/*
283
* Conversion functions: convert a page and protection to a page entry,
284
* and a page entry and page directory to the page they refer to.
285
*/
286
287
#define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
288
#define __virt_to_page(virt) phys_to_page(__pa(virt))
289
#define page_to_phys(page) pfn_to_phys((pfn_t) page_to_pfn(page))
290
#define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
291
292
#define mk_pte(page, pgprot) \
293
({ pte_t pte; \
294
\
295
pte_set_val(pte, page_to_phys(page), (pgprot)); \
296
if (pte_present(pte)) \
297
pte_mknewprot(pte_mknewpage(pte)); \
298
pte;})
299
300
static
inline
pte_t
pte_modify
(
pte_t
pte,
pgprot_t
newprot)
301
{
302
pte_set_val
(pte, (
pte_val
(pte) &
_PAGE_CHG_MASK
), newprot);
303
return
pte
;
304
}
305
306
/*
307
* the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
308
*
309
* this macro returns the index of the entry in the pgd page which would
310
* control the given virtual address
311
*/
312
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
313
314
/*
315
* pgd_offset() returns a (pgd_t *)
316
* pgd_index() is used get the offset into the pgd page's array of pgd_t's;
317
*/
318
#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
319
320
/*
321
* a shortcut which implies the use of the kernel's pgd, instead
322
* of a process's
323
*/
324
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
325
326
/*
327
* the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
328
*
329
* this macro returns the index of the entry in the pmd page which would
330
* control the given virtual address
331
*/
332
#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
333
#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
334
335
#define pmd_page_vaddr(pmd) \
336
((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
337
338
/*
339
* the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
340
*
341
* this macro returns the index of the entry in the pte page which would
342
* control the given virtual address
343
*/
344
#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
345
#define pte_offset_kernel(dir, address) \
346
((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
347
#define pte_offset_map(dir, address) \
348
((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
349
#define pte_unmap(pte) do { } while (0)
350
351
struct
mm_struct
;
352
extern
pte_t
*
virt_to_pte
(
struct
mm_struct
*mm,
unsigned
long
addr
);
353
354
#define update_mmu_cache(vma,address,ptep) do ; while (0)
355
356
/* Encode and de-code a swap entry */
357
#define __swp_type(x) (((x).val >> 5) & 0x1f)
358
#define __swp_offset(x) ((x).val >> 11)
359
360
#define __swp_entry(type, offset) \
361
((swp_entry_t) { ((type) << 5) | ((offset) << 11) })
362
#define __pte_to_swp_entry(pte) \
363
((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
364
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
365
366
#define kern_addr_valid(addr) (1)
367
368
#include <
asm-generic/pgtable.h
>
369
370
/* Clear a kernel PTE and flush it from the TLB */
371
#define kpte_clear_flush(ptep, vaddr) \
372
do { \
373
pte_clear(&init_mm, (vaddr), (ptep)); \
374
__flush_tlb_one((vaddr)); \
375
} while (0)
376
377
#endif
Generated on Thu Jan 10 2013 12:50:15 for Linux Kernel by
1.8.2