Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
signal.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2004 PathScale, Inc
3  * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4  * Licensed under the GPL
5  */
6 
7 #include <stdlib.h>
8 #include <stdarg.h>
9 #include <errno.h>
10 #include <signal.h>
11 #include <strings.h>
12 #include <as-layout.h>
13 #include <kern_util.h>
14 #include <os.h>
15 #include <sysdep/mcontext.h>
16 #include "internal.h"
17 
18 void (*sig_info[NSIG])(int, siginfo_t *, struct uml_pt_regs *) = {
20  [SIGFPE] = relay_signal,
21  [SIGILL] = relay_signal,
22  [SIGWINCH] = winch,
23  [SIGBUS] = bus_handler,
25  [SIGIO] = sigio_handler,
27 
28 static void sig_handler_common(int sig, siginfo_t *si, mcontext_t *mc)
29 {
30  struct uml_pt_regs r;
31  int save_errno = errno;
32 
33  r.is_user = 0;
34  if (sig == SIGSEGV) {
35  /* For segfaults, we want the data from the sigcontext. */
36  get_regs_from_mc(&r, mc);
37  GET_FAULTINFO_FROM_MC(r.faultinfo, mc);
38  }
39 
40  /* enable signals if sig isn't IRQ signal */
41  if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGVTALRM))
43 
44  (*sig_info[sig])(sig, si, &r);
45 
46  errno = save_errno;
47 }
48 
49 /*
50  * These are the asynchronous signals. SIGPROF is excluded because we want to
51  * be able to profile all of UML, not just the non-critical sections. If
52  * profiling is not thread-safe, then that is not my problem. We can disable
53  * profiling when SMP is enabled in that case.
54  */
55 #define SIGIO_BIT 0
56 #define SIGIO_MASK (1 << SIGIO_BIT)
57 
58 #define SIGVTALRM_BIT 1
59 #define SIGVTALRM_MASK (1 << SIGVTALRM_BIT)
60 
61 static int signals_enabled;
62 static unsigned int signals_pending;
63 
64 void sig_handler(int sig, siginfo_t *si, mcontext_t *mc)
65 {
66  int enabled;
67 
68  enabled = signals_enabled;
69  if (!enabled && (sig == SIGIO)) {
70  signals_pending |= SIGIO_MASK;
71  return;
72  }
73 
74  block_signals();
75 
76  sig_handler_common(sig, si, mc);
77 
78  set_signals(enabled);
79 }
80 
81 static void real_alarm_handler(mcontext_t *mc)
82 {
83  struct uml_pt_regs regs;
84 
85  if (mc != NULL)
86  get_regs_from_mc(&regs, mc);
87  regs.is_user = 0;
90 }
91 
92 void alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
93 {
94  int enabled;
95 
96  enabled = signals_enabled;
97  if (!signals_enabled) {
98  signals_pending |= SIGVTALRM_MASK;
99  return;
100  }
101 
102  block_signals();
103 
104  real_alarm_handler(mc);
105  set_signals(enabled);
106 }
107 
108 void timer_init(void)
109 {
111 }
112 
113 void set_sigstack(void *sig_stack, int size)
114 {
115  stack_t stack = ((stack_t) { .ss_flags = 0,
116  .ss_sp = (__ptr_t) sig_stack,
117  .ss_size = size - sizeof(void *) });
118 
119  if (sigaltstack(&stack, NULL) != 0)
120  panic("enabling signal stack failed, errno = %d\n", errno);
121 }
122 
123 static void (*handlers[_NSIG])(int sig, siginfo_t *si, mcontext_t *mc) = {
124  [SIGSEGV] = sig_handler,
125  [SIGBUS] = sig_handler,
126  [SIGILL] = sig_handler,
127  [SIGFPE] = sig_handler,
128  [SIGTRAP] = sig_handler,
129 
130  [SIGIO] = sig_handler,
131  [SIGWINCH] = sig_handler,
133 };
134 
135 
136 static void hard_handler(int sig, siginfo_t *si, void *p)
137 {
138  struct ucontext *uc = p;
139  mcontext_t *mc = &uc->uc_mcontext;
140  unsigned long pending = 1UL << sig;
141 
142  do {
143  int nested, bail;
144 
145  /*
146  * pending comes back with one bit set for each
147  * interrupt that arrived while setting up the stack,
148  * plus a bit for this interrupt, plus the zero bit is
149  * set if this is a nested interrupt.
150  * If bail is true, then we interrupted another
151  * handler setting up the stack. In this case, we
152  * have to return, and the upper handler will deal
153  * with this interrupt.
154  */
155  bail = to_irq_stack(&pending);
156  if (bail)
157  return;
158 
159  nested = pending & 1;
160  pending &= ~1;
161 
162  while ((sig = ffs(pending)) != 0){
163  sig--;
164  pending &= ~(1 << sig);
165  (*handlers[sig])(sig, si, mc);
166  }
167 
168  /*
169  * Again, pending comes back with a mask of signals
170  * that arrived while tearing down the stack. If this
171  * is non-zero, we just go back, set up the stack
172  * again, and handle the new interrupts.
173  */
174  if (!nested)
175  pending = from_irq_stack(nested);
176  } while (pending);
177 }
178 
179 void set_handler(int sig)
180 {
181  struct sigaction action;
182  int flags = SA_SIGINFO | SA_ONSTACK;
183  sigset_t sig_mask;
184 
185  action.sa_sigaction = hard_handler;
186 
187  /* block irq ones */
188  sigemptyset(&action.sa_mask);
189  sigaddset(&action.sa_mask, SIGVTALRM);
190  sigaddset(&action.sa_mask, SIGIO);
191  sigaddset(&action.sa_mask, SIGWINCH);
192 
193  if (sig == SIGSEGV)
194  flags |= SA_NODEFER;
195 
196  if (sigismember(&action.sa_mask, sig))
197  flags |= SA_RESTART; /* if it's an irq signal */
198 
199  action.sa_flags = flags;
200  action.sa_restorer = NULL;
201  if (sigaction(sig, &action, NULL) < 0)
202  panic("sigaction failed - errno = %d\n", errno);
203 
204  sigemptyset(&sig_mask);
205  sigaddset(&sig_mask, sig);
206  if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
207  panic("sigprocmask failed - errno = %d\n", errno);
208 }
209 
210 int change_sig(int signal, int on)
211 {
212  sigset_t sigset;
213 
214  sigemptyset(&sigset);
215  sigaddset(&sigset, signal);
216  if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
217  return -errno;
218 
219  return 0;
220 }
221 
222 void block_signals(void)
223 {
224  signals_enabled = 0;
225  /*
226  * This must return with signals disabled, so this barrier
227  * ensures that writes are flushed out before the return.
228  * This might matter if gcc figures out how to inline this and
229  * decides to shuffle this code into the caller.
230  */
231  barrier();
232 }
233 
234 void unblock_signals(void)
235 {
236  int save_pending;
237 
238  if (signals_enabled == 1)
239  return;
240 
241  /*
242  * We loop because the IRQ handler returns with interrupts off. So,
243  * interrupts may have arrived and we need to re-enable them and
244  * recheck signals_pending.
245  */
246  while (1) {
247  /*
248  * Save and reset save_pending after enabling signals. This
249  * way, signals_pending won't be changed while we're reading it.
250  */
251  signals_enabled = 1;
252 
253  /*
254  * Setting signals_enabled and reading signals_pending must
255  * happen in this order.
256  */
257  barrier();
258 
259  save_pending = signals_pending;
260  if (save_pending == 0)
261  return;
262 
263  signals_pending = 0;
264 
265  /*
266  * We have pending interrupts, so disable signals, as the
267  * handlers expect them off when they are called. They will
268  * be enabled again above.
269  */
270 
271  signals_enabled = 0;
272 
273  /*
274  * Deal with SIGIO first because the alarm handler might
275  * schedule, leaving the pending SIGIO stranded until we come
276  * back here.
277  *
278  * SIGIO's handler doesn't use siginfo or mcontext,
279  * so they can be NULL.
280  */
281  if (save_pending & SIGIO_MASK)
282  sig_handler_common(SIGIO, NULL, NULL);
283 
284  if (save_pending & SIGVTALRM_MASK)
285  real_alarm_handler(NULL);
286  }
287 }
288 
289 int get_signals(void)
290 {
291  return signals_enabled;
292 }
293 
295 {
296  int ret;
297  if (signals_enabled == enable)
298  return enable;
299 
300  ret = signals_enabled;
301  if (enable)
302  unblock_signals();
303  else block_signals();
304 
305  return ret;
306 }