Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
bitops.h
Go to the documentation of this file.
1 #ifndef _ASM_X86_BITOPS_H
2 #define _ASM_X86_BITOPS_H
3 
4 /*
5  * Copyright 1992, Linus Torvalds.
6  *
7  * Note: inlines with more than a single statement should be marked
8  * __always_inline to avoid problems with older gcc's inlining heuristics.
9  */
10 
11 #ifndef _LINUX_BITOPS_H
12 #error only <linux/bitops.h> can be included directly
13 #endif
14 
15 #include <linux/compiler.h>
16 #include <asm/alternative.h>
17 
18 #define BIT_64(n) (U64_C(1) << (n))
19 
20 /*
21  * These have to be done with inline assembly: that way the bit-setting
22  * is guaranteed to be atomic. All bit operations return 0 if the bit
23  * was cleared before the operation and != 0 if it was not.
24  *
25  * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
26  */
27 
28 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
29 /* Technically wrong, but this avoids compilation errors on some gcc
30  versions. */
31 #define BITOP_ADDR(x) "=m" (*(volatile long *) (x))
32 #else
33 #define BITOP_ADDR(x) "+m" (*(volatile long *) (x))
34 #endif
35 
36 #define ADDR BITOP_ADDR(addr)
37 
38 /*
39  * We do the locked ops that don't return the old value as
40  * a mask operation on a byte.
41  */
42 #define IS_IMMEDIATE(nr) (__builtin_constant_p(nr))
43 #define CONST_MASK_ADDR(nr, addr) BITOP_ADDR((void *)(addr) + ((nr)>>3))
44 #define CONST_MASK(nr) (1 << ((nr) & 7))
45 
61 static __always_inline void
62 set_bit(unsigned int nr, volatile unsigned long *addr)
63 {
64  if (IS_IMMEDIATE(nr)) {
65  asm volatile(LOCK_PREFIX "orb %1,%0"
66  : CONST_MASK_ADDR(nr, addr)
67  : "iq" ((u8)CONST_MASK(nr))
68  : "memory");
69  } else {
70  asm volatile(LOCK_PREFIX "bts %1,%0"
71  : BITOP_ADDR(addr) : "Ir" (nr) : "memory");
72  }
73 }
74 
84 static inline void __set_bit(int nr, volatile unsigned long *addr)
85 {
86  asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");
87 }
88 
99 static __always_inline void
100 clear_bit(int nr, volatile unsigned long *addr)
101 {
102  if (IS_IMMEDIATE(nr)) {
103  asm volatile(LOCK_PREFIX "andb %1,%0"
104  : CONST_MASK_ADDR(nr, addr)
105  : "iq" ((u8)~CONST_MASK(nr)));
106  } else {
107  asm volatile(LOCK_PREFIX "btr %1,%0"
108  : BITOP_ADDR(addr)
109  : "Ir" (nr));
110  }
111 }
112 
113 /*
114  * clear_bit_unlock - Clears a bit in memory
115  * @nr: Bit to clear
116  * @addr: Address to start counting from
117  *
118  * clear_bit() is atomic and implies release semantics before the memory
119  * operation. It can be used for an unlock.
120  */
121 static inline void clear_bit_unlock(unsigned nr, volatile unsigned long *addr)
122 {
123  barrier();
124  clear_bit(nr, addr);
125 }
126 
127 static inline void __clear_bit(int nr, volatile unsigned long *addr)
128 {
129  asm volatile("btr %1,%0" : ADDR : "Ir" (nr));
130 }
131 
132 /*
133  * __clear_bit_unlock - Clears a bit in memory
134  * @nr: Bit to clear
135  * @addr: Address to start counting from
136  *
137  * __clear_bit() is non-atomic and implies release semantics before the memory
138  * operation. It can be used for an unlock if no other CPUs can concurrently
139  * modify other bits in the word.
140  *
141  * No memory barrier is required here, because x86 cannot reorder stores past
142  * older loads. Same principle as spin_unlock.
143  */
144 static inline void __clear_bit_unlock(unsigned nr, volatile unsigned long *addr)
145 {
146  barrier();
147  __clear_bit(nr, addr);
148 }
149 
150 #define smp_mb__before_clear_bit() barrier()
151 #define smp_mb__after_clear_bit() barrier()
152 
162 static inline void __change_bit(int nr, volatile unsigned long *addr)
163 {
164  asm volatile("btc %1,%0" : ADDR : "Ir" (nr));
165 }
166 
176 static inline void change_bit(int nr, volatile unsigned long *addr)
177 {
178  if (IS_IMMEDIATE(nr)) {
179  asm volatile(LOCK_PREFIX "xorb %1,%0"
180  : CONST_MASK_ADDR(nr, addr)
181  : "iq" ((u8)CONST_MASK(nr)));
182  } else {
183  asm volatile(LOCK_PREFIX "btc %1,%0"
184  : BITOP_ADDR(addr)
185  : "Ir" (nr));
186  }
187 }
188 
197 static inline int test_and_set_bit(int nr, volatile unsigned long *addr)
198 {
199  int oldbit;
200 
201  asm volatile(LOCK_PREFIX "bts %2,%1\n\t"
202  "sbb %0,%0" : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
203 
204  return oldbit;
205 }
206 
214 static __always_inline int
215 test_and_set_bit_lock(int nr, volatile unsigned long *addr)
216 {
217  return test_and_set_bit(nr, addr);
218 }
219 
229 static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
230 {
231  int oldbit;
232 
233  asm("bts %2,%1\n\t"
234  "sbb %0,%0"
235  : "=r" (oldbit), ADDR
236  : "Ir" (nr));
237  return oldbit;
238 }
239 
248 static inline int test_and_clear_bit(int nr, volatile unsigned long *addr)
249 {
250  int oldbit;
251 
252  asm volatile(LOCK_PREFIX "btr %2,%1\n\t"
253  "sbb %0,%0"
254  : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
255 
256  return oldbit;
257 }
258 
275 static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
276 {
277  int oldbit;
278 
279  asm volatile("btr %2,%1\n\t"
280  "sbb %0,%0"
281  : "=r" (oldbit), ADDR
282  : "Ir" (nr));
283  return oldbit;
284 }
285 
286 /* WARNING: non atomic and it can be reordered! */
287 static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
288 {
289  int oldbit;
290 
291  asm volatile("btc %2,%1\n\t"
292  "sbb %0,%0"
293  : "=r" (oldbit), ADDR
294  : "Ir" (nr) : "memory");
295 
296  return oldbit;
297 }
298 
307 static inline int test_and_change_bit(int nr, volatile unsigned long *addr)
308 {
309  int oldbit;
310 
311  asm volatile(LOCK_PREFIX "btc %2,%1\n\t"
312  "sbb %0,%0"
313  : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
314 
315  return oldbit;
316 }
317 
318 static __always_inline int constant_test_bit(unsigned int nr, const volatile unsigned long *addr)
319 {
320  return ((1UL << (nr % BITS_PER_LONG)) &
321  (addr[nr / BITS_PER_LONG])) != 0;
322 }
323 
324 static inline int variable_test_bit(int nr, volatile const unsigned long *addr)
325 {
326  int oldbit;
327 
328  asm volatile("bt %2,%1\n\t"
329  "sbb %0,%0"
330  : "=r" (oldbit)
331  : "m" (*(unsigned long *)addr), "Ir" (nr));
332 
333  return oldbit;
334 }
335 
336 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
337 
342 static int test_bit(int nr, const volatile unsigned long *addr);
343 #endif
344 
345 #define test_bit(nr, addr) \
346  (__builtin_constant_p((nr)) \
347  ? constant_test_bit((nr), (addr)) \
348  : variable_test_bit((nr), (addr)))
349 
356 static inline unsigned long __ffs(unsigned long word)
357 {
358  asm("rep; bsf %1,%0"
359  : "=r" (word)
360  : "rm" (word));
361  return word;
362 }
363 
370 static inline unsigned long ffz(unsigned long word)
371 {
372  asm("rep; bsf %1,%0"
373  : "=r" (word)
374  : "r" (~word));
375  return word;
376 }
377 
378 /*
379  * __fls: find last set bit in word
380  * @word: The word to search
381  *
382  * Undefined if no set bit exists, so code should check against 0 first.
383  */
384 static inline unsigned long __fls(unsigned long word)
385 {
386  asm("bsr %1,%0"
387  : "=r" (word)
388  : "rm" (word));
389  return word;
390 }
391 
392 #undef ADDR
393 
394 #ifdef __KERNEL__
395 
406 static inline int ffs(int x)
407 {
408  int r;
409 
410 #ifdef CONFIG_X86_64
411  /*
412  * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
413  * dest reg is undefined if x==0, but their CPU architect says its
414  * value is written to set it to the same as before, except that the
415  * top 32 bits will be cleared.
416  *
417  * We cannot do this on 32 bits because at the very least some
418  * 486 CPUs did not behave this way.
419  */
420  asm("bsfl %1,%0"
421  : "=r" (r)
422  : "rm" (x), "0" (-1));
423 #elif defined(CONFIG_X86_CMOV)
424  asm("bsfl %1,%0\n\t"
425  "cmovzl %2,%0"
426  : "=&r" (r) : "rm" (x), "r" (-1));
427 #else
428  asm("bsfl %1,%0\n\t"
429  "jnz 1f\n\t"
430  "movl $-1,%0\n"
431  "1:" : "=r" (r) : "rm" (x));
432 #endif
433  return r + 1;
434 }
435 
447 static inline int fls(int x)
448 {
449  int r;
450 
451 #ifdef CONFIG_X86_64
452  /*
453  * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
454  * dest reg is undefined if x==0, but their CPU architect says its
455  * value is written to set it to the same as before, except that the
456  * top 32 bits will be cleared.
457  *
458  * We cannot do this on 32 bits because at the very least some
459  * 486 CPUs did not behave this way.
460  */
461  asm("bsrl %1,%0"
462  : "=r" (r)
463  : "rm" (x), "0" (-1));
464 #elif defined(CONFIG_X86_CMOV)
465  asm("bsrl %1,%0\n\t"
466  "cmovzl %2,%0"
467  : "=&r" (r) : "rm" (x), "rm" (-1));
468 #else
469  asm("bsrl %1,%0\n\t"
470  "jnz 1f\n\t"
471  "movl $-1,%0\n"
472  "1:" : "=r" (r) : "rm" (x));
473 #endif
474  return r + 1;
475 }
476 
488 #ifdef CONFIG_X86_64
489 static __always_inline int fls64(__u64 x)
490 {
491  int bitpos = -1;
492  /*
493  * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
494  * dest reg is undefined if x==0, but their CPU architect says its
495  * value is written to set it to the same as before.
496  */
497  asm("bsrq %1,%q0"
498  : "+r" (bitpos)
499  : "rm" (x));
500  return bitpos + 1;
501 }
502 #else
504 #endif
505 
506 #include <asm-generic/bitops/find.h>
507 
509 
510 #define ARCH_HAS_FAST_MULTIPLIER 1
511 
512 #include <asm/arch_hweight.h>
513 
515 
516 #include <asm-generic/bitops/le.h>
517 
519 
520 #endif /* __KERNEL__ */
521 #endif /* _ASM_X86_BITOPS_H */