Linux Kernel
3.7.1
Main Page
Related Pages
Modules
Namespaces
Data Structures
Files
File List
Globals
•
All
Data Structures
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Macros
Groups
Pages
arch
x86
include
asm
bitops.h
Go to the documentation of this file.
1
#ifndef _ASM_X86_BITOPS_H
2
#define _ASM_X86_BITOPS_H
3
4
/*
5
* Copyright 1992, Linus Torvalds.
6
*
7
* Note: inlines with more than a single statement should be marked
8
* __always_inline to avoid problems with older gcc's inlining heuristics.
9
*/
10
11
#ifndef _LINUX_BITOPS_H
12
#error only <linux/bitops.h> can be included directly
13
#endif
14
15
#include <linux/compiler.h>
16
#include <
asm/alternative.h
>
17
18
#define BIT_64(n) (U64_C(1) << (n))
19
20
/*
21
* These have to be done with inline assembly: that way the bit-setting
22
* is guaranteed to be atomic. All bit operations return 0 if the bit
23
* was cleared before the operation and != 0 if it was not.
24
*
25
* bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
26
*/
27
28
#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
29
/* Technically wrong, but this avoids compilation errors on some gcc
30
versions. */
31
#define BITOP_ADDR(x) "=m" (*(volatile long *) (x))
32
#else
33
#define BITOP_ADDR(x) "+m" (*(volatile long *) (x))
34
#endif
35
36
#define ADDR BITOP_ADDR(addr)
37
38
/*
39
* We do the locked ops that don't return the old value as
40
* a mask operation on a byte.
41
*/
42
#define IS_IMMEDIATE(nr) (__builtin_constant_p(nr))
43
#define CONST_MASK_ADDR(nr, addr) BITOP_ADDR((void *)(addr) + ((nr)>>3))
44
#define CONST_MASK(nr) (1 << ((nr) & 7))
45
61
static
__always_inline
void
62
set_bit
(
unsigned
int
nr
,
volatile
unsigned
long
*
addr
)
63
{
64
if
(
IS_IMMEDIATE
(nr)) {
65
asm
volatile
(
LOCK_PREFIX
"orb %1,%0"
66
:
CONST_MASK_ADDR
(nr, addr)
67
:
"iq"
((
u8
)
CONST_MASK
(nr))
68
:
"memory"
);
69
}
else
{
70
asm
volatile
(
LOCK_PREFIX
"bts %1,%0"
71
:
BITOP_ADDR
(addr) :
"Ir"
(
nr
) :
"memory"
);
72
}
73
}
74
84
static
inline
void
__set_bit
(
int
nr
,
volatile
unsigned
long
*
addr
)
85
{
86
asm
volatile
(
"bts %1,%0"
:
ADDR
:
"Ir"
(
nr
) :
"memory"
);
87
}
88
99
static
__always_inline
void
100
clear_bit
(
int
nr
,
volatile
unsigned
long
*
addr
)
101
{
102
if
(
IS_IMMEDIATE
(nr)) {
103
asm
volatile
(
LOCK_PREFIX
"andb %1,%0"
104
:
CONST_MASK_ADDR
(nr, addr)
105
:
"iq"
((
u8
)~
CONST_MASK
(nr)));
106
}
else
{
107
asm
volatile
(
LOCK_PREFIX
"btr %1,%0"
108
:
BITOP_ADDR
(addr)
109
:
"Ir"
(nr));
110
}
111
}
112
113
/*
114
* clear_bit_unlock - Clears a bit in memory
115
* @nr: Bit to clear
116
* @addr: Address to start counting from
117
*
118
* clear_bit() is atomic and implies release semantics before the memory
119
* operation. It can be used for an unlock.
120
*/
121
static
inline
void
clear_bit_unlock
(
unsigned
nr,
volatile
unsigned
long
*addr)
122
{
123
barrier
();
124
clear_bit
(nr, addr);
125
}
126
127
static
inline
void
__clear_bit
(
int
nr,
volatile
unsigned
long
*addr)
128
{
129
asm
volatile
(
"btr %1,%0"
:
ADDR
:
"Ir"
(
nr
));
130
}
131
132
/*
133
* __clear_bit_unlock - Clears a bit in memory
134
* @nr: Bit to clear
135
* @addr: Address to start counting from
136
*
137
* __clear_bit() is non-atomic and implies release semantics before the memory
138
* operation. It can be used for an unlock if no other CPUs can concurrently
139
* modify other bits in the word.
140
*
141
* No memory barrier is required here, because x86 cannot reorder stores past
142
* older loads. Same principle as spin_unlock.
143
*/
144
static
inline
void
__clear_bit_unlock
(
unsigned
nr,
volatile
unsigned
long
*addr)
145
{
146
barrier
();
147
__clear_bit
(nr, addr);
148
}
149
150
#define smp_mb__before_clear_bit() barrier()
151
#define smp_mb__after_clear_bit() barrier()
152
162
static
inline
void
__change_bit
(
int
nr,
volatile
unsigned
long
*addr)
163
{
164
asm
volatile
(
"btc %1,%0"
:
ADDR
:
"Ir"
(
nr
));
165
}
166
176
static
inline
void
change_bit
(
int
nr,
volatile
unsigned
long
*addr)
177
{
178
if
(
IS_IMMEDIATE
(nr)) {
179
asm
volatile
(
LOCK_PREFIX
"xorb %1,%0"
180
:
CONST_MASK_ADDR
(nr, addr)
181
:
"iq"
((
u8
)
CONST_MASK
(nr)));
182
}
else
{
183
asm
volatile
(
LOCK_PREFIX
"btc %1,%0"
184
:
BITOP_ADDR
(addr)
185
:
"Ir"
(nr));
186
}
187
}
188
197
static
inline
int
test_and_set_bit
(
int
nr,
volatile
unsigned
long
*addr)
198
{
199
int
oldbit;
200
201
asm
volatile
(
LOCK_PREFIX
"bts %2,%1\n\t"
202
"sbb %0,%0"
:
"=r"
(oldbit),
ADDR
:
"Ir"
(nr) :
"memory"
);
203
204
return
oldbit;
205
}
206
214
static
__always_inline
int
215
test_and_set_bit_lock
(
int
nr,
volatile
unsigned
long
*addr)
216
{
217
return
test_and_set_bit
(nr, addr);
218
}
219
229
static
inline
int
__test_and_set_bit
(
int
nr,
volatile
unsigned
long
*addr)
230
{
231
int
oldbit;
232
233
asm
(
"bts %2,%1\n\t"
234
"sbb %0,%0"
235
:
"=r"
(oldbit),
ADDR
236
:
"Ir"
(nr));
237
return
oldbit;
238
}
239
248
static
inline
int
test_and_clear_bit
(
int
nr,
volatile
unsigned
long
*addr)
249
{
250
int
oldbit;
251
252
asm
volatile
(
LOCK_PREFIX
"btr %2,%1\n\t"
253
"sbb %0,%0"
254
:
"=r"
(oldbit),
ADDR
:
"Ir"
(nr) :
"memory"
);
255
256
return
oldbit;
257
}
258
275
static
inline
int
__test_and_clear_bit
(
int
nr,
volatile
unsigned
long
*addr)
276
{
277
int
oldbit;
278
279
asm
volatile
(
"btr %2,%1\n\t"
280
"sbb %0,%0"
281
:
"=r"
(oldbit),
ADDR
282
:
"Ir"
(nr));
283
return
oldbit;
284
}
285
286
/* WARNING: non atomic and it can be reordered! */
287
static
inline
int
__test_and_change_bit
(
int
nr,
volatile
unsigned
long
*addr)
288
{
289
int
oldbit;
290
291
asm
volatile
(
"btc %2,%1\n\t"
292
"sbb %0,%0"
293
:
"=r"
(oldbit),
ADDR
294
:
"Ir"
(nr) :
"memory"
);
295
296
return
oldbit;
297
}
298
307
static
inline
int
test_and_change_bit
(
int
nr,
volatile
unsigned
long
*addr)
308
{
309
int
oldbit;
310
311
asm
volatile
(
LOCK_PREFIX
"btc %2,%1\n\t"
312
"sbb %0,%0"
313
:
"=r"
(oldbit),
ADDR
:
"Ir"
(nr) :
"memory"
);
314
315
return
oldbit;
316
}
317
318
static
__always_inline
int
constant_test_bit(
unsigned
int
nr,
const
volatile
unsigned
long
*addr)
319
{
320
return
((1
UL
<< (nr %
BITS_PER_LONG
)) &
321
(addr[nr / BITS_PER_LONG])) != 0;
322
}
323
324
static
inline
int
variable_test_bit(
int
nr,
volatile
const
unsigned
long
*addr)
325
{
326
int
oldbit;
327
328
asm
volatile
(
"bt %2,%1\n\t"
329
"sbb %0,%0"
330
:
"=r"
(oldbit)
331
:
"m"
(*(
unsigned
long
*)
addr
),
"Ir"
(nr));
332
333
return
oldbit;
334
}
335
336
#if 0
/* Fool kernel-doc since it doesn't do macros yet */
337
342
static
int
test_bit
(
int
nr,
const
volatile
unsigned
long
*addr);
343
#endif
344
345
#define test_bit(nr, addr) \
346
(__builtin_constant_p((nr)) \
347
? constant_test_bit((nr), (addr)) \
348
: variable_test_bit((nr), (addr)))
349
356
static
inline
unsigned
long
__ffs
(
unsigned
long
word
)
357
{
358
asm
(
"rep; bsf %1,%0"
359
:
"=r"
(
word
)
360
:
"rm"
(word));
361
return
word
;
362
}
363
370
static
inline
unsigned
long
ffz
(
unsigned
long
word
)
371
{
372
asm
(
"rep; bsf %1,%0"
373
:
"=r"
(
word
)
374
:
"r"
(~word));
375
return
word
;
376
}
377
378
/*
379
* __fls: find last set bit in word
380
* @word: The word to search
381
*
382
* Undefined if no set bit exists, so code should check against 0 first.
383
*/
384
static
inline
unsigned
long
__fls
(
unsigned
long
word)
385
{
386
asm
(
"bsr %1,%0"
387
:
"=r"
(
word
)
388
:
"rm"
(word));
389
return
word
;
390
}
391
392
#undef ADDR
393
394
#ifdef __KERNEL__
395
406
static
inline
int
ffs
(
int
x
)
407
{
408
int
r
;
409
410
#ifdef CONFIG_X86_64
411
/*
412
* AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
413
* dest reg is undefined if x==0, but their CPU architect says its
414
* value is written to set it to the same as before, except that the
415
* top 32 bits will be cleared.
416
*
417
* We cannot do this on 32 bits because at the very least some
418
* 486 CPUs did not behave this way.
419
*/
420
asm
(
"bsfl %1,%0"
421
:
"=r"
(
r
)
422
:
"rm"
(x),
"0"
(-1));
423
#elif defined(CONFIG_X86_CMOV)
424
asm
(
"bsfl %1,%0\n\t"
425
"cmovzl %2,%0"
426
:
"=&r"
(
r
) :
"rm"
(x),
"r"
(-1));
427
#else
428
asm
(
"bsfl %1,%0\n\t"
429
"jnz 1f\n\t"
430
"movl $-1,%0\n"
431
"1:"
:
"=r"
(
r
) :
"rm"
(x));
432
#endif
433
return
r + 1;
434
}
435
447
static
inline
int
fls(
int
x)
448
{
449
int
r
;
450
451
#ifdef CONFIG_X86_64
452
/*
453
* AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
454
* dest reg is undefined if x==0, but their CPU architect says its
455
* value is written to set it to the same as before, except that the
456
* top 32 bits will be cleared.
457
*
458
* We cannot do this on 32 bits because at the very least some
459
* 486 CPUs did not behave this way.
460
*/
461
asm
(
"bsrl %1,%0"
462
:
"=r"
(
r
)
463
:
"rm"
(x),
"0"
(-1));
464
#elif defined(CONFIG_X86_CMOV)
465
asm
(
"bsrl %1,%0\n\t"
466
"cmovzl %2,%0"
467
:
"=&r"
(
r
) :
"rm"
(x),
"rm"
(-1));
468
#else
469
asm
(
"bsrl %1,%0\n\t"
470
"jnz 1f\n\t"
471
"movl $-1,%0\n"
472
"1:"
:
"=r"
(
r
) :
"rm"
(x));
473
#endif
474
return
r + 1;
475
}
476
488
#ifdef CONFIG_X86_64
489
static
__always_inline
int
fls64(
__u64
x)
490
{
491
int
bitpos = -1;
492
/*
493
* AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
494
* dest reg is undefined if x==0, but their CPU architect says its
495
* value is written to set it to the same as before.
496
*/
497
asm
(
"bsrq %1,%q0"
498
:
"+r"
(bitpos)
499
:
"rm"
(x));
500
return
bitpos + 1;
501
}
502
#else
503
#include <
asm-generic/bitops/fls64.h
>
504
#endif
505
506
#include <
asm-generic/bitops/find.h
>
507
508
#include <
asm-generic/bitops/sched.h
>
509
510
#define ARCH_HAS_FAST_MULTIPLIER 1
511
512
#include <asm/arch_hweight.h>
513
514
#include <
asm-generic/bitops/const_hweight.h
>
515
516
#include <
asm-generic/bitops/le.h
>
517
518
#include <
asm-generic/bitops/ext2-atomic-setbit.h
>
519
520
#endif
/* __KERNEL__ */
521
#endif
/* _ASM_X86_BITOPS_H */
Generated on Thu Jan 10 2013 12:49:12 for Linux Kernel by
1.8.2