Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
uaccess.h
Go to the documentation of this file.
1 /*
2  * include/asm-xtensa/uaccess.h
3  *
4  * User space memory access functions
5  *
6  * These routines provide basic accessing functions to the user memory
7  * space for the kernel. This header file provides functions such as:
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License. See the file "COPYING" in the main directory of this archive
11  * for more details.
12  *
13  * Copyright (C) 2001 - 2005 Tensilica Inc.
14  */
15 
16 #ifndef _XTENSA_UACCESS_H
17 #define _XTENSA_UACCESS_H
18 
19 #include <linux/errno.h>
20 #ifndef __ASSEMBLY__
21 #include <linux/prefetch.h>
22 #endif
23 #include <asm/types.h>
24 
25 #define VERIFY_READ 0
26 #define VERIFY_WRITE 1
27 
28 #ifdef __ASSEMBLY__
29 
30 #include <asm/current.h>
31 #include <asm/asm-offsets.h>
32 #include <asm/processor.h>
33 
34 /*
35  * These assembly macros mirror the C macros that follow below. They
36  * should always have identical functionality. See
37  * arch/xtensa/kernel/sys.S for usage.
38  */
39 
40 #define KERNEL_DS 0
41 #define USER_DS 1
42 
43 #define get_ds (KERNEL_DS)
44 
45 /*
46  * get_fs reads current->thread.current_ds into a register.
47  * On Entry:
48  * <ad> anything
49  * <sp> stack
50  * On Exit:
51  * <ad> contains current->thread.current_ds
52  */
53  .macro get_fs ad, sp
54  GET_CURRENT(\ad,\sp)
55  l32i \ad, \ad, THREAD_CURRENT_DS
56  .endm
57 
58 /*
59  * set_fs sets current->thread.current_ds to some value.
60  * On Entry:
61  * <at> anything (temp register)
62  * <av> value to write
63  * <sp> stack
64  * On Exit:
65  * <at> destroyed (actually, current)
66  * <av> preserved, value to write
67  */
68  .macro set_fs at, av, sp
69  GET_CURRENT(\at,\sp)
70  s32i \av, \at, THREAD_CURRENT_DS
71  .endm
72 
73 /*
74  * kernel_ok determines whether we should bypass addr/size checking.
75  * See the equivalent C-macro version below for clarity.
76  * On success, kernel_ok branches to a label indicated by parameter
77  * <success>. This implies that the macro falls through to the next
78  * insruction on an error.
79  *
80  * Note that while this macro can be used independently, we designed
81  * in for optimal use in the access_ok macro below (i.e., we fall
82  * through on error).
83  *
84  * On Entry:
85  * <at> anything (temp register)
86  * <success> label to branch to on success; implies
87  * fall-through macro on error
88  * <sp> stack pointer
89  * On Exit:
90  * <at> destroyed (actually, current->thread.current_ds)
91  */
92 
93 #if ((KERNEL_DS != 0) || (USER_DS == 0))
94 # error Assembly macro kernel_ok fails
95 #endif
96  .macro kernel_ok at, sp, success
97  get_fs \at, \sp
98  beqz \at, \success
99  .endm
100 
101 /*
102  * user_ok determines whether the access to user-space memory is allowed.
103  * See the equivalent C-macro version below for clarity.
104  *
105  * On error, user_ok branches to a label indicated by parameter
106  * <error>. This implies that the macro falls through to the next
107  * instruction on success.
108  *
109  * Note that while this macro can be used independently, we designed
110  * in for optimal use in the access_ok macro below (i.e., we fall
111  * through on success).
112  *
113  * On Entry:
114  * <aa> register containing memory address
115  * <as> register containing memory size
116  * <at> temp register
117  * <error> label to branch to on error; implies fall-through
118  * macro on success
119  * On Exit:
120  * <aa> preserved
121  * <as> preserved
122  * <at> destroyed (actually, (TASK_SIZE + 1 - size))
123  */
124  .macro user_ok aa, as, at, error
126  bgeu \as, \at, \error
127  sub \at, \at, \as
128  bgeu \aa, \at, \error
129  .endm
130 
131 /*
132  * access_ok determines whether a memory access is allowed. See the
133  * equivalent C-macro version below for clarity.
134  *
135  * On error, access_ok branches to a label indicated by parameter
136  * <error>. This implies that the macro falls through to the next
137  * instruction on success.
138  *
139  * Note that we assume success is the common case, and we optimize the
140  * branch fall-through case on success.
141  *
142  * On Entry:
143  * <aa> register containing memory address
144  * <as> register containing memory size
145  * <at> temp register
146  * <sp>
147  * <error> label to branch to on error; implies fall-through
148  * macro on success
149  * On Exit:
150  * <aa> preserved
151  * <as> preserved
152  * <at> destroyed
153  */
154  .macro access_ok aa, as, at, sp, error
155  kernel_ok \at, \sp, .Laccess_ok_\@
156  user_ok \aa, \as, \at, \error
157 .Laccess_ok_\@:
158  .endm
159 
160 #else /* __ASSEMBLY__ not defined */
161 
162 #include <linux/sched.h>
163 
164 /*
165  * The fs value determines whether argument validity checking should
166  * be performed or not. If get_fs() == USER_DS, checking is
167  * performed, with get_fs() == KERNEL_DS, checking is bypassed.
168  *
169  * For historical reasons (Data Segment Register?), these macros are
170  * grossly misnamed.
171  */
172 
173 #define KERNEL_DS ((mm_segment_t) { 0 })
174 #define USER_DS ((mm_segment_t) { 1 })
175 
176 #define get_ds() (KERNEL_DS)
177 #define get_fs() (current->thread.current_ds)
178 #define set_fs(val) (current->thread.current_ds = (val))
179 
180 #define segment_eq(a,b) ((a).seg == (b).seg)
181 
182 #define __kernel_ok (segment_eq(get_fs(), KERNEL_DS))
183 #define __user_ok(addr,size) (((size) <= TASK_SIZE)&&((addr) <= TASK_SIZE-(size)))
184 #define __access_ok(addr,size) (__kernel_ok || __user_ok((addr),(size)))
185 #define access_ok(type,addr,size) __access_ok((unsigned long)(addr),(size))
186 
187 /*
188  * These are the main single-value transfer routines. They
189  * automatically use the right size if we just have the right pointer
190  * type.
191  *
192  * This gets kind of ugly. We want to return _two_ values in
193  * "get_user()" and yet we don't want to do any pointers, because that
194  * is too much of a performance impact. Thus we have a few rather ugly
195  * macros here, and hide all the uglyness from the user.
196  *
197  * Careful to not
198  * (a) re-use the arguments for side effects (sizeof is ok)
199  * (b) require any knowledge of processes at this stage
200  */
201 #define put_user(x,ptr) __put_user_check((x),(ptr),sizeof(*(ptr)))
202 #define get_user(x,ptr) __get_user_check((x),(ptr),sizeof(*(ptr)))
203 
204 /*
205  * The "__xxx" versions of the user access functions are versions that
206  * do not verify the address space, that must have been done previously
207  * with a separate "access_ok()" call (this is used when we do multiple
208  * accesses to the same area of user memory).
209  */
210 #define __put_user(x,ptr) __put_user_nocheck((x),(ptr),sizeof(*(ptr)))
211 #define __get_user(x,ptr) __get_user_nocheck((x),(ptr),sizeof(*(ptr)))
212 
213 
214 extern long __put_user_bad(void);
215 
216 #define __put_user_nocheck(x,ptr,size) \
217 ({ \
218  long __pu_err; \
219  __put_user_size((x),(ptr),(size),__pu_err); \
220  __pu_err; \
221 })
222 
223 #define __put_user_check(x,ptr,size) \
224 ({ \
225  long __pu_err = -EFAULT; \
226  __typeof__(*(ptr)) *__pu_addr = (ptr); \
227  if (access_ok(VERIFY_WRITE,__pu_addr,size)) \
228  __put_user_size((x),__pu_addr,(size),__pu_err); \
229  __pu_err; \
230 })
231 
232 #define __put_user_size(x,ptr,size,retval) \
233 do { \
234  int __cb; \
235  retval = 0; \
236  switch (size) { \
237  case 1: __put_user_asm(x,ptr,retval,1,"s8i",__cb); break; \
238  case 2: __put_user_asm(x,ptr,retval,2,"s16i",__cb); break; \
239  case 4: __put_user_asm(x,ptr,retval,4,"s32i",__cb); break; \
240  case 8: { \
241  __typeof__(*ptr) __v64 = x; \
242  retval = __copy_to_user(ptr,&__v64,8); \
243  break; \
244  } \
245  default: __put_user_bad(); \
246  } \
247 } while (0)
248 
249 
250 /*
251  * Consider a case of a user single load/store would cause both an
252  * unaligned exception and an MMU-related exception (unaligned
253  * exceptions happen first):
254  *
255  * User code passes a bad variable ptr to a system call.
256  * Kernel tries to access the variable.
257  * Unaligned exception occurs.
258  * Unaligned exception handler tries to make aligned accesses.
259  * Double exception occurs for MMU-related cause (e.g., page not mapped).
260  * do_page_fault() thinks the fault address belongs to the kernel, not the
261  * user, and panics.
262  *
263  * The kernel currently prohibits user unaligned accesses. We use the
264  * __check_align_* macros to check for unaligned addresses before
265  * accessing user space so we don't crash the kernel. Both
266  * __put_user_asm and __get_user_asm use these alignment macros, so
267  * macro-specific labels such as 0f, 1f, %0, %2, and %3 must stay in
268  * sync.
269  */
270 
271 #define __check_align_1 ""
272 
273 #define __check_align_2 \
274  " _bbci.l %3, 0, 1f \n" \
275  " movi %0, %4 \n" \
276  " _j 2f \n"
277 
278 #define __check_align_4 \
279  " _bbsi.l %3, 0, 0f \n" \
280  " _bbci.l %3, 1, 1f \n" \
281  "0: movi %0, %4 \n" \
282  " _j 2f \n"
283 
284 
285 /*
286  * We don't tell gcc that we are accessing memory, but this is OK
287  * because we do not write to any memory gcc knows about, so there
288  * are no aliasing issues.
289  *
290  * WARNING: If you modify this macro at all, verify that the
291  * __check_align_* macros still work.
292  */
293 #define __put_user_asm(x, addr, err, align, insn, cb) \
294  __asm__ __volatile__( \
295  __check_align_##align \
296  "1: "insn" %2, %3, 0 \n" \
297  "2: \n" \
298  " .section .fixup,\"ax\" \n" \
299  " .align 4 \n" \
300  "4: \n" \
301  " .long 2b \n" \
302  "5: \n" \
303  " l32r %1, 4b \n" \
304  " movi %0, %4 \n" \
305  " jx %1 \n" \
306  " .previous \n" \
307  " .section __ex_table,\"a\" \n" \
308  " .long 1b, 5b \n" \
309  " .previous" \
310  :"=r" (err), "=r" (cb) \
311  :"r" ((int)(x)), "r" (addr), "i" (-EFAULT), "0" (err))
312 
313 #define __get_user_nocheck(x,ptr,size) \
314 ({ \
315  long __gu_err, __gu_val; \
316  __get_user_size(__gu_val,(ptr),(size),__gu_err); \
317  (x) = (__typeof__(*(ptr)))__gu_val; \
318  __gu_err; \
319 })
320 
321 #define __get_user_check(x,ptr,size) \
322 ({ \
323  long __gu_err = -EFAULT, __gu_val = 0; \
324  const __typeof__(*(ptr)) *__gu_addr = (ptr); \
325  if (access_ok(VERIFY_READ,__gu_addr,size)) \
326  __get_user_size(__gu_val,__gu_addr,(size),__gu_err); \
327  (x) = (__typeof__(*(ptr)))__gu_val; \
328  __gu_err; \
329 })
330 
331 extern long __get_user_bad(void);
332 
333 #define __get_user_size(x,ptr,size,retval) \
334 do { \
335  int __cb; \
336  retval = 0; \
337  switch (size) { \
338  case 1: __get_user_asm(x,ptr,retval,1,"l8ui",__cb); break; \
339  case 2: __get_user_asm(x,ptr,retval,2,"l16ui",__cb); break; \
340  case 4: __get_user_asm(x,ptr,retval,4,"l32i",__cb); break; \
341  case 8: retval = __copy_from_user(&x,ptr,8); break; \
342  default: (x) = __get_user_bad(); \
343  } \
344 } while (0)
345 
346 
347 /*
348  * WARNING: If you modify this macro at all, verify that the
349  * __check_align_* macros still work.
350  */
351 #define __get_user_asm(x, addr, err, align, insn, cb) \
352  __asm__ __volatile__( \
353  __check_align_##align \
354  "1: "insn" %2, %3, 0 \n" \
355  "2: \n" \
356  " .section .fixup,\"ax\" \n" \
357  " .align 4 \n" \
358  "4: \n" \
359  " .long 2b \n" \
360  "5: \n" \
361  " l32r %1, 4b \n" \
362  " movi %2, 0 \n" \
363  " movi %0, %4 \n" \
364  " jx %1 \n" \
365  " .previous \n" \
366  " .section __ex_table,\"a\" \n" \
367  " .long 1b, 5b \n" \
368  " .previous" \
369  :"=r" (err), "=r" (cb), "=r" (x) \
370  :"r" (addr), "i" (-EFAULT), "0" (err))
371 
372 
373 /*
374  * Copy to/from user space
375  */
376 
377 /*
378  * We use a generic, arbitrary-sized copy subroutine. The Xtensa
379  * architecture would cause heavy code bloat if we tried to inline
380  * these functions and provide __constant_copy_* equivalents like the
381  * i386 versions. __xtensa_copy_user is quite efficient. See the
382  * .fixup section of __xtensa_copy_user for a discussion on the
383  * X_zeroing equivalents for Xtensa.
384  */
385 
386 extern unsigned __xtensa_copy_user(void *to, const void *from, unsigned n);
387 #define __copy_user(to,from,size) __xtensa_copy_user(to,from,size)
388 
389 
390 static inline unsigned long
391 __generic_copy_from_user_nocheck(void *to, const void *from, unsigned long n)
392 {
393  return __copy_user(to,from,n);
394 }
395 
396 static inline unsigned long
397 __generic_copy_to_user_nocheck(void *to, const void *from, unsigned long n)
398 {
399  return __copy_user(to,from,n);
400 }
401 
402 static inline unsigned long
403 __generic_copy_to_user(void *to, const void *from, unsigned long n)
404 {
405  prefetch(from);
406  if (access_ok(VERIFY_WRITE, to, n))
407  return __copy_user(to,from,n);
408  return n;
409 }
410 
411 static inline unsigned long
412 __generic_copy_from_user(void *to, const void *from, unsigned long n)
413 {
414  prefetchw(to);
415  if (access_ok(VERIFY_READ, from, n))
416  return __copy_user(to,from,n);
417  else
418  memset(to, 0, n);
419  return n;
420 }
421 
422 #define copy_to_user(to,from,n) __generic_copy_to_user((to),(from),(n))
423 #define copy_from_user(to,from,n) __generic_copy_from_user((to),(from),(n))
424 #define __copy_to_user(to,from,n) __generic_copy_to_user_nocheck((to),(from),(n))
425 #define __copy_from_user(to,from,n) __generic_copy_from_user_nocheck((to),(from),(n))
426 #define __copy_to_user_inatomic __copy_to_user
427 #define __copy_from_user_inatomic __copy_from_user
428 
429 
430 /*
431  * We need to return the number of bytes not cleared. Our memset()
432  * returns zero if a problem occurs while accessing user-space memory.
433  * In that event, return no memory cleared. Otherwise, zero for
434  * success.
435  */
436 
437 static inline unsigned long
438 __xtensa_clear_user(void *addr, unsigned long size)
439 {
440  if ( ! memset(addr, 0, size) )
441  return size;
442  return 0;
443 }
444 
445 static inline unsigned long
446 clear_user(void *addr, unsigned long size)
447 {
448  if (access_ok(VERIFY_WRITE, addr, size))
449  return __xtensa_clear_user(addr, size);
450  return size ? -EFAULT : 0;
451 }
452 
453 #define __clear_user __xtensa_clear_user
454 
455 
456 extern long __strncpy_user(char *, const char *, long);
457 #define __strncpy_from_user __strncpy_user
458 
459 static inline long
460 strncpy_from_user(char *dst, const char *src, long count)
461 {
462  if (access_ok(VERIFY_READ, src, 1))
463  return __strncpy_from_user(dst, src, count);
464  return -EFAULT;
465 }
466 
467 
468 #define strlen_user(str) strnlen_user((str), TASK_SIZE - 1)
469 
470 /*
471  * Return the size of a string (including the ending 0!)
472  */
473 extern long __strnlen_user(const char *, long);
474 
475 static inline long strnlen_user(const char *str, long len)
476 {
477  unsigned long top = __kernel_ok ? ~0UL : TASK_SIZE - 1;
478 
479  if ((unsigned long)str > top)
480  return 0;
481  return __strnlen_user(str, len);
482 }
483 
484 
486 {
487  unsigned long insn, fixup;
488 };
489 
490 /* Returns 0 if exception not found and fixup.unit otherwise. */
491 
492 extern unsigned long search_exception_table(unsigned long addr);
493 extern void sort_exception_table(void);
494 
495 /* Returns the new pc */
496 #define fixup_exception(map_reg, fixup_unit, pc) \
497 ({ \
498  fixup_unit; \
499 })
500 
501 #endif /* __ASSEMBLY__ */
502 #endif /* _XTENSA_UACCESS_H */