Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
process.c
Go to the documentation of this file.
1 /*
2  * arch/xtensa/kernel/process.c
3  *
4  * Xtensa Processor version.
5  *
6  * This file is subject to the terms and conditions of the GNU General Public
7  * License. See the file "COPYING" in the main directory of this archive
8  * for more details.
9  *
10  * Copyright (C) 2001 - 2005 Tensilica Inc.
11  *
13  * Chris Zankel <[email protected]>
14  * Marc Gauthier <[email protected], [email protected]>
15  * Kevin Chea
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/smp.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/ptrace.h>
26 #include <linux/elf.h>
27 #include <linux/init.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/module.h>
31 #include <linux/mqueue.h>
32 #include <linux/fs.h>
33 #include <linux/slab.h>
34 #include <linux/rcupdate.h>
35 
36 #include <asm/pgtable.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/processor.h>
40 #include <asm/platform.h>
41 #include <asm/mmu.h>
42 #include <asm/irq.h>
43 #include <linux/atomic.h>
44 #include <asm/asm-offsets.h>
45 #include <asm/regs.h>
46 
47 extern void ret_from_fork(void);
48 extern void ret_from_kernel_thread(void);
49 
51 
54 
55 
56 #if XTENSA_HAVE_COPROCESSORS
57 
58 void coprocessor_release_all(struct thread_info *ti)
59 {
60  unsigned long cpenable;
61  int i;
62 
63  /* Make sure we don't switch tasks during this operation. */
64 
66 
67  /* Walk through all cp owners and release it for the requested one. */
68 
69  cpenable = ti->cpenable;
70 
71  for (i = 0; i < XCHAL_CP_MAX; i++) {
72  if (coprocessor_owner[i] == ti) {
73  coprocessor_owner[i] = 0;
74  cpenable &= ~(1 << i);
75  }
76  }
77 
78  ti->cpenable = cpenable;
79  coprocessor_clear_cpenable();
80 
82 }
83 
84 void coprocessor_flush_all(struct thread_info *ti)
85 {
86  unsigned long cpenable;
87  int i;
88 
90 
91  cpenable = ti->cpenable;
92 
93  for (i = 0; i < XCHAL_CP_MAX; i++) {
94  if ((cpenable & 1) != 0 && coprocessor_owner[i] == ti)
95  coprocessor_flush(ti, i);
96  cpenable >>= 1;
97  }
98 
100 }
101 
102 #endif
103 
104 
105 /*
106  * Powermanagement idle function, if any is provided by the platform.
107  */
108 
109 void cpu_idle(void)
110 {
112 
113  /* endless idle loop with no priority at all */
114  while (1) {
115  rcu_idle_enter();
116  while (!need_resched())
117  platform_idle();
118  rcu_idle_exit();
120  }
121 }
122 
123 /*
124  * This is called when the thread calls exit().
125  */
126 void exit_thread(void)
127 {
128 #if XTENSA_HAVE_COPROCESSORS
129  coprocessor_release_all(current_thread_info());
130 #endif
131 }
132 
133 /*
134  * Flush thread state. This is called when a thread does an execve()
135  * Note that we flush coprocessor registers for the case execve fails.
136  */
137 void flush_thread(void)
138 {
139 #if XTENSA_HAVE_COPROCESSORS
140  struct thread_info *ti = current_thread_info();
141  coprocessor_flush_all(ti);
142  coprocessor_release_all(ti);
143 #endif
144 }
145 
146 /*
147  * this gets called so that we can store coprocessor state into memory and
148  * copy the current task into the new thread.
149  */
151 {
152 #if XTENSA_HAVE_COPROCESSORS
153  coprocessor_flush_all(task_thread_info(src));
154 #endif
155  *dst = *src;
156  return 0;
157 }
158 
159 /*
160  * Copy thread.
161  *
162  * There are two modes in which this function is called:
163  * 1) Userspace thread creation,
164  * regs != NULL, usp_thread_fn is userspace stack pointer.
165  * It is expected to copy parent regs (in case CLONE_VM is not set
166  * in the clone_flags) and set up passed usp in the childregs.
167  * 2) Kernel thread creation,
168  * regs == NULL, usp_thread_fn is the function to run in the new thread
169  * and thread_fn_arg is its parameter.
170  * childregs are not used for the kernel threads.
171  *
172  * The stack layout for the new thread looks like this:
173  *
174  * +------------------------+
175  * | childregs |
176  * +------------------------+ <- thread.sp = sp in dummy-frame
177  * | dummy-frame | (saved in dummy-frame spill-area)
178  * +------------------------+
179  *
180  * We create a dummy frame to return to either ret_from_fork or
181  * ret_from_kernel_thread:
182  * a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4)
183  * sp points to itself (thread.sp)
184  * a2, a3 are unused for userspace threads,
185  * a2 points to thread_fn, a3 holds thread_fn arg for kernel threads.
186  *
187  * Note: This is a pristine frame, so we don't need any spill region on top of
188  * childregs.
189  *
190  * The fun part: if we're keeping the same VM (i.e. cloning a thread,
191  * not an entire process), we're normally given a new usp, and we CANNOT share
192  * any live address register windows. If we just copy those live frames over,
193  * the two threads (parent and child) will overflow the same frames onto the
194  * parent stack at different times, likely corrupting the parent stack (esp.
195  * if the parent returns from functions that called clone() and calls new
196  * ones, before the child overflows its now old copies of its parent windows).
197  * One solution is to spill windows to the parent stack, but that's fairly
198  * involved. Much simpler to just not copy those live frames across.
199  */
200 
201 int copy_thread(unsigned long clone_flags, unsigned long usp_thread_fn,
202  unsigned long thread_fn_arg,
203  struct task_struct *p, struct pt_regs *unused)
204 {
205  struct pt_regs *childregs = task_pt_regs(p);
206 
207 #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
208  struct thread_info *ti;
209 #endif
210 
211  /* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
212  *((int*)childregs - 3) = (unsigned long)childregs;
213  *((int*)childregs - 4) = 0;
214 
215  p->thread.sp = (unsigned long)childregs;
216 
217  if (!(p->flags & PF_KTHREAD)) {
218  struct pt_regs *regs = current_pt_regs();
219  unsigned long usp = usp_thread_fn ?
220  usp_thread_fn : regs->areg[1];
221 
222  p->thread.ra = MAKE_RA_FOR_CALL(
223  (unsigned long)ret_from_fork, 0x1);
224 
225  /* This does not copy all the regs.
226  * In a bout of brilliance or madness,
227  * ARs beyond a0-a15 exist past the end of the struct.
228  */
229  *childregs = *regs;
230  childregs->areg[1] = usp;
231  childregs->areg[2] = 0;
232 
233  /* When sharing memory with the parent thread, the child
234  usually starts on a pristine stack, so we have to reset
235  windowbase, windowstart and wmask.
236  (Note that such a new thread is required to always create
237  an initial call4 frame)
238  The exception is vfork, where the new thread continues to
239  run on the parent's stack until it calls execve. This could
240  be a call8 or call12, which requires a legal stack frame
241  of the previous caller for the overflow handlers to work.
242  (Note that it's always legal to overflow live registers).
243  In this case, ensure to spill at least the stack pointer
244  of that frame. */
245 
246  if (clone_flags & CLONE_VM) {
247  /* check that caller window is live and same stack */
248  int len = childregs->wmask & ~0xf;
249  if (regs->areg[1] == usp && len != 0) {
250  int callinc = (regs->areg[0] >> 30) & 3;
251  int caller_ars = XCHAL_NUM_AREGS - callinc * 4;
252  put_user(regs->areg[caller_ars+1],
253  (unsigned __user*)(usp - 12));
254  }
255  childregs->wmask = 1;
256  childregs->windowstart = 1;
257  childregs->windowbase = 0;
258  } else {
259  int len = childregs->wmask & ~0xf;
260  memcpy(&childregs->areg[XCHAL_NUM_AREGS - len/4],
261  &regs->areg[XCHAL_NUM_AREGS - len/4], len);
262  }
263 // FIXME: we need to set THREADPTR in thread_info...
264  if (clone_flags & CLONE_SETTLS)
265  childregs->areg[2] = childregs->areg[6];
266  } else {
267  p->thread.ra = MAKE_RA_FOR_CALL(
268  (unsigned long)ret_from_kernel_thread, 1);
269 
270  /* pass parameters to ret_from_kernel_thread:
271  * a2 = thread_fn, a3 = thread_fn arg
272  */
273  *((int *)childregs - 1) = thread_fn_arg;
274  *((int *)childregs - 2) = usp_thread_fn;
275 
276  /* Childregs are only used when we're going to userspace
277  * in which case start_thread will set them up.
278  */
279  }
280 
281 #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
282  ti = task_thread_info(p);
283  ti->cpenable = 0;
284 #endif
285 
286  return 0;
287 }
288 
289 
290 /*
291  * These bracket the sleeping functions..
292  */
293 
294 unsigned long get_wchan(struct task_struct *p)
295 {
296  unsigned long sp, pc;
297  unsigned long stack_page = (unsigned long) task_stack_page(p);
298  int count = 0;
299 
300  if (!p || p == current || p->state == TASK_RUNNING)
301  return 0;
302 
303  sp = p->thread.sp;
304  pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp);
305 
306  do {
307  if (sp < stack_page + sizeof(struct task_struct) ||
308  sp >= (stack_page + THREAD_SIZE) ||
309  pc == 0)
310  return 0;
311  if (!in_sched_functions(pc))
312  return pc;
313 
314  /* Stack layout: sp-4: ra, sp-3: sp' */
315 
316  pc = MAKE_PC_FROM_RA(*(unsigned long*)sp - 4, sp);
317  sp = *(unsigned long *)sp - 3;
318  } while (count++ < 16);
319  return 0;
320 }
321 
322 /*
323  * xtensa_gregset_t and 'struct pt_regs' are vastly different formats
324  * of processor registers. Besides different ordering,
325  * xtensa_gregset_t contains non-live register information that
326  * 'struct pt_regs' does not. Exception handling (primarily) uses
327  * 'struct pt_regs'. Core files and ptrace use xtensa_gregset_t.
328  *
329  */
330 
332 {
333  unsigned long wb, ws, wm;
334  int live, last;
335 
336  wb = regs->windowbase;
337  ws = regs->windowstart;
338  wm = regs->wmask;
339  ws = ((ws >> wb) | (ws << (WSBITS - wb))) & ((1 << WSBITS) - 1);
340 
341  /* Don't leak any random bits. */
342 
343  memset(elfregs, 0, sizeof(*elfregs));
344 
345  /* Note: PS.EXCM is not set while user task is running; its
346  * being set in regs->ps is for exception handling convenience.
347  */
348 
349  elfregs->pc = regs->pc;
350  elfregs->ps = (regs->ps & ~(1 << PS_EXCM_BIT));
351  elfregs->lbeg = regs->lbeg;
352  elfregs->lend = regs->lend;
353  elfregs->lcount = regs->lcount;
354  elfregs->sar = regs->sar;
355  elfregs->windowstart = ws;
356 
357  live = (wm & 2) ? 4 : (wm & 4) ? 8 : (wm & 8) ? 12 : 16;
358  last = XCHAL_NUM_AREGS - (wm >> 4) * 4;
359  memcpy(elfregs->a, regs->areg, live * 4);
360  memcpy(elfregs->a + last, regs->areg + last, (wm >> 4) * 16);
361 }
362 
363 int dump_fpu(void)
364 {
365  return 0;
366 }
367 
369 long xtensa_clone(unsigned long clone_flags, unsigned long newsp,
370  void __user *parent_tid, void *child_tls,
371  void __user *child_tid, long a5,
372  struct pt_regs *regs)
373 {
374  return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
375 }