Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
binfmt_flat.c
Go to the documentation of this file.
1 /****************************************************************************/
2 /*
3  * linux/fs/binfmt_flat.c
4  *
5  * Copyright (C) 2000-2003 David McCullough <[email protected]>
6  * Copyright (C) 2002 Greg Ungerer <[email protected]>
7  * Copyright (C) 2002 SnapGear, by Paul Dale <[email protected]>
8  * Copyright (C) 2000, 2001 Lineo, by David McCullough <[email protected]>
9  * based heavily on:
10  *
11  * linux/fs/binfmt_aout.c:
12  * Copyright (C) 1991, 1992, 1996 Linus Torvalds
13  * linux/fs/binfmt_flat.c for 2.0 kernel
14  * Copyright (C) 1998 Kenneth Albanowski <[email protected]>
15  * JAN/99 -- coded full program relocation ([email protected])
16  */
17 
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/mm.h>
22 #include <linux/mman.h>
23 #include <linux/errno.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/stat.h>
29 #include <linux/fcntl.h>
30 #include <linux/ptrace.h>
31 #include <linux/user.h>
32 #include <linux/slab.h>
33 #include <linux/binfmts.h>
34 #include <linux/personality.h>
35 #include <linux/init.h>
36 #include <linux/flat.h>
37 #include <linux/syscalls.h>
38 
39 #include <asm/byteorder.h>
40 #include <asm/uaccess.h>
41 #include <asm/unaligned.h>
42 #include <asm/cacheflush.h>
43 #include <asm/page.h>
44 
45 /****************************************************************************/
46 
47 #if 0
48 #define DEBUG 1
49 #endif
50 
51 #ifdef DEBUG
52 #define DBG_FLT(a...) printk(a)
53 #else
54 #define DBG_FLT(a...)
55 #endif
56 
57 /*
58  * User data (data section and bss) needs to be aligned.
59  * We pick 0x20 here because it is the max value elf2flt has always
60  * used in producing FLAT files, and because it seems to be large
61  * enough to make all the gcc alignment related tests happy.
62  */
63 #define FLAT_DATA_ALIGN (0x20)
64 
65 /*
66  * User data (stack) also needs to be aligned.
67  * Here we can be a bit looser than the data sections since this
68  * needs to only meet arch ABI requirements.
69  */
70 #define FLAT_STACK_ALIGN max_t(unsigned long, sizeof(void *), ARCH_SLAB_MINALIGN)
71 
72 #define RELOC_FAILED 0xff00ff01 /* Relocation incorrect somewhere */
73 #define UNLOADED_LIB 0x7ff000ff /* Placeholder for unused library */
74 
75 struct lib_info {
76  struct {
77  unsigned long start_code; /* Start of text segment */
78  unsigned long start_data; /* Start of data segment */
79  unsigned long start_brk; /* End of data segment */
80  unsigned long text_len; /* Length of text segment */
81  unsigned long entry; /* Start address for this module */
82  unsigned long build_date; /* When this one was compiled */
83  short loaded; /* Has this library been loaded? */
85 };
86 
87 #ifdef CONFIG_BINFMT_SHARED_FLAT
88 static int load_flat_shared_library(int id, struct lib_info *p);
89 #endif
90 
91 static int load_flat_binary(struct linux_binprm *, struct pt_regs * regs);
92 static int flat_core_dump(struct coredump_params *cprm);
93 
94 static struct linux_binfmt flat_format = {
95  .module = THIS_MODULE,
96  .load_binary = load_flat_binary,
97  .core_dump = flat_core_dump,
98  .min_coredump = PAGE_SIZE
99 };
100 
101 /****************************************************************************/
102 /*
103  * Routine writes a core dump image in the current directory.
104  * Currently only a stub-function.
105  */
106 
107 static int flat_core_dump(struct coredump_params *cprm)
108 {
109  printk("Process %s:%d received signr %d and should have core dumped\n",
110  current->comm, current->pid, (int) cprm->siginfo->si_signo);
111  return(1);
112 }
113 
114 /****************************************************************************/
115 /*
116  * create_flat_tables() parses the env- and arg-strings in new user
117  * memory and creates the pointer tables from them, and puts their
118  * addresses on the "stack", returning the new stack pointer value.
119  */
120 
121 static unsigned long create_flat_tables(
122  unsigned long pp,
123  struct linux_binprm * bprm)
124 {
125  unsigned long *argv,*envp;
126  unsigned long * sp;
127  char * p = (char*)pp;
128  int argc = bprm->argc;
129  int envc = bprm->envc;
130  char uninitialized_var(dummy);
131 
132  sp = (unsigned long *)p;
133  sp -= (envc + argc + 2) + 1 + (flat_argvp_envp_on_stack() ? 2 : 0);
134  sp = (unsigned long *) ((unsigned long)sp & -FLAT_STACK_ALIGN);
135  argv = sp + 1 + (flat_argvp_envp_on_stack() ? 2 : 0);
136  envp = argv + (argc + 1);
137 
138  if (flat_argvp_envp_on_stack()) {
139  put_user((unsigned long) envp, sp + 2);
140  put_user((unsigned long) argv, sp + 1);
141  }
142 
143  put_user(argc, sp);
144  current->mm->arg_start = (unsigned long) p;
145  while (argc-->0) {
146  put_user((unsigned long) p, argv++);
147  do {
148  get_user(dummy, p); p++;
149  } while (dummy);
150  }
151  put_user((unsigned long) NULL, argv);
152  current->mm->arg_end = current->mm->env_start = (unsigned long) p;
153  while (envc-->0) {
154  put_user((unsigned long)p, envp); envp++;
155  do {
156  get_user(dummy, p); p++;
157  } while (dummy);
158  }
159  put_user((unsigned long) NULL, envp);
160  current->mm->env_end = (unsigned long) p;
161  return (unsigned long)sp;
162 }
163 
164 /****************************************************************************/
165 
166 #ifdef CONFIG_BINFMT_ZFLAT
167 
168 #include <linux/zlib.h>
169 
170 #define LBUFSIZE 4000
171 
172 /* gzip flag byte */
173 #define ASCII_FLAG 0x01 /* bit 0 set: file probably ASCII text */
174 #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
175 #define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
176 #define ORIG_NAME 0x08 /* bit 3 set: original file name present */
177 #define COMMENT 0x10 /* bit 4 set: file comment present */
178 #define ENCRYPTED 0x20 /* bit 5 set: file is encrypted */
179 #define RESERVED 0xC0 /* bit 6,7: reserved */
180 
181 static int decompress_exec(
182  struct linux_binprm *bprm,
183  unsigned long offset,
184  char *dst,
185  long len,
186  int fd)
187 {
188  unsigned char *buf;
189  z_stream strm;
190  loff_t fpos;
191  int ret, retval;
192 
193  DBG_FLT("decompress_exec(offset=%x,buf=%x,len=%x)\n",(int)offset, (int)dst, (int)len);
194 
195  memset(&strm, 0, sizeof(strm));
197  if (strm.workspace == NULL) {
198  DBG_FLT("binfmt_flat: no memory for decompress workspace\n");
199  return -ENOMEM;
200  }
201  buf = kmalloc(LBUFSIZE, GFP_KERNEL);
202  if (buf == NULL) {
203  DBG_FLT("binfmt_flat: no memory for read buffer\n");
204  retval = -ENOMEM;
205  goto out_free;
206  }
207 
208  /* Read in first chunk of data and parse gzip header. */
209  fpos = offset;
210  ret = bprm->file->f_op->read(bprm->file, buf, LBUFSIZE, &fpos);
211 
212  strm.next_in = buf;
213  strm.avail_in = ret;
214  strm.total_in = 0;
215 
216  retval = -ENOEXEC;
217 
218  /* Check minimum size -- gzip header */
219  if (ret < 10) {
220  DBG_FLT("binfmt_flat: file too small?\n");
221  goto out_free_buf;
222  }
223 
224  /* Check gzip magic number */
225  if ((buf[0] != 037) || ((buf[1] != 0213) && (buf[1] != 0236))) {
226  DBG_FLT("binfmt_flat: unknown compression magic?\n");
227  goto out_free_buf;
228  }
229 
230  /* Check gzip method */
231  if (buf[2] != 8) {
232  DBG_FLT("binfmt_flat: unknown compression method?\n");
233  goto out_free_buf;
234  }
235  /* Check gzip flags */
236  if ((buf[3] & ENCRYPTED) || (buf[3] & CONTINUATION) ||
237  (buf[3] & RESERVED)) {
238  DBG_FLT("binfmt_flat: unknown flags?\n");
239  goto out_free_buf;
240  }
241 
242  ret = 10;
243  if (buf[3] & EXTRA_FIELD) {
244  ret += 2 + buf[10] + (buf[11] << 8);
245  if (unlikely(LBUFSIZE <= ret)) {
246  DBG_FLT("binfmt_flat: buffer overflow (EXTRA)?\n");
247  goto out_free_buf;
248  }
249  }
250  if (buf[3] & ORIG_NAME) {
251  while (ret < LBUFSIZE && buf[ret++] != 0)
252  ;
253  if (unlikely(LBUFSIZE == ret)) {
254  DBG_FLT("binfmt_flat: buffer overflow (ORIG_NAME)?\n");
255  goto out_free_buf;
256  }
257  }
258  if (buf[3] & COMMENT) {
259  while (ret < LBUFSIZE && buf[ret++] != 0)
260  ;
261  if (unlikely(LBUFSIZE == ret)) {
262  DBG_FLT("binfmt_flat: buffer overflow (COMMENT)?\n");
263  goto out_free_buf;
264  }
265  }
266 
267  strm.next_in += ret;
268  strm.avail_in -= ret;
269 
270  strm.next_out = dst;
271  strm.avail_out = len;
272  strm.total_out = 0;
273 
274  if (zlib_inflateInit2(&strm, -MAX_WBITS) != Z_OK) {
275  DBG_FLT("binfmt_flat: zlib init failed?\n");
276  goto out_free_buf;
277  }
278 
279  while ((ret = zlib_inflate(&strm, Z_NO_FLUSH)) == Z_OK) {
280  ret = bprm->file->f_op->read(bprm->file, buf, LBUFSIZE, &fpos);
281  if (ret <= 0)
282  break;
283  len -= ret;
284 
285  strm.next_in = buf;
286  strm.avail_in = ret;
287  strm.total_in = 0;
288  }
289 
290  if (ret < 0) {
291  DBG_FLT("binfmt_flat: decompression failed (%d), %s\n",
292  ret, strm.msg);
293  goto out_zlib;
294  }
295 
296  retval = 0;
297 out_zlib:
298  zlib_inflateEnd(&strm);
299 out_free_buf:
300  kfree(buf);
301 out_free:
302  kfree(strm.workspace);
303  return retval;
304 }
305 
306 #endif /* CONFIG_BINFMT_ZFLAT */
307 
308 /****************************************************************************/
309 
310 static unsigned long
311 calc_reloc(unsigned long r, struct lib_info *p, int curid, int internalp)
312 {
313  unsigned long addr;
314  int id;
315  unsigned long start_brk;
316  unsigned long start_data;
317  unsigned long text_len;
318  unsigned long start_code;
319 
320 #ifdef CONFIG_BINFMT_SHARED_FLAT
321  if (r == 0)
322  id = curid; /* Relocs of 0 are always self referring */
323  else {
324  id = (r >> 24) & 0xff; /* Find ID for this reloc */
325  r &= 0x00ffffff; /* Trim ID off here */
326  }
327  if (id >= MAX_SHARED_LIBS) {
328  printk("BINFMT_FLAT: reference 0x%x to shared library %d",
329  (unsigned) r, id);
330  goto failed;
331  }
332  if (curid != id) {
333  if (internalp) {
334  printk("BINFMT_FLAT: reloc address 0x%x not in same module "
335  "(%d != %d)", (unsigned) r, curid, id);
336  goto failed;
337  } else if ( ! p->lib_list[id].loaded &&
338  IS_ERR_VALUE(load_flat_shared_library(id, p))) {
339  printk("BINFMT_FLAT: failed to load library %d", id);
340  goto failed;
341  }
342  /* Check versioning information (i.e. time stamps) */
343  if (p->lib_list[id].build_date && p->lib_list[curid].build_date &&
344  p->lib_list[curid].build_date < p->lib_list[id].build_date) {
345  printk("BINFMT_FLAT: library %d is younger than %d", id, curid);
346  goto failed;
347  }
348  }
349 #else
350  id = 0;
351 #endif
352 
353  start_brk = p->lib_list[id].start_brk;
354  start_data = p->lib_list[id].start_data;
355  start_code = p->lib_list[id].start_code;
356  text_len = p->lib_list[id].text_len;
357 
358  if (!flat_reloc_valid(r, start_brk - start_data + text_len)) {
359  printk("BINFMT_FLAT: reloc outside program 0x%x (0 - 0x%x/0x%x)",
360  (int) r,(int)(start_brk-start_data+text_len),(int)text_len);
361  goto failed;
362  }
363 
364  if (r < text_len) /* In text segment */
365  addr = r + start_code;
366  else /* In data segment */
367  addr = r - text_len + start_data;
368 
369  /* Range checked already above so doing the range tests is redundant...*/
370  return(addr);
371 
372 failed:
373  printk(", killing %s!\n", current->comm);
374  send_sig(SIGSEGV, current, 0);
375 
376  return RELOC_FAILED;
377 }
378 
379 /****************************************************************************/
380 
381 void old_reloc(unsigned long rl)
382 {
383 #ifdef DEBUG
384  char *segment[] = { "TEXT", "DATA", "BSS", "*UNKNOWN*" };
385 #endif
387  unsigned long *ptr;
388 
389  r.value = rl;
390 #if defined(CONFIG_COLDFIRE)
391  ptr = (unsigned long *) (current->mm->start_code + r.reloc.offset);
392 #else
393  ptr = (unsigned long *) (current->mm->start_data + r.reloc.offset);
394 #endif
395 
396 #ifdef DEBUG
397  printk("Relocation of variable at DATASEG+%x "
398  "(address %p, currently %x) into segment %s\n",
399  r.reloc.offset, ptr, (int)*ptr, segment[r.reloc.type]);
400 #endif
401 
402  switch (r.reloc.type) {
404  *ptr += current->mm->start_code;
405  break;
407  *ptr += current->mm->start_data;
408  break;
410  *ptr += current->mm->end_data;
411  break;
412  default:
413  printk("BINFMT_FLAT: Unknown relocation type=%x\n", r.reloc.type);
414  break;
415  }
416 
417 #ifdef DEBUG
418  printk("Relocation became %x\n", (int)*ptr);
419 #endif
420 }
421 
422 /****************************************************************************/
423 
424 static int load_flat_file(struct linux_binprm * bprm,
425  struct lib_info *libinfo, int id, unsigned long *extra_stack)
426 {
427  struct flat_hdr * hdr;
428  unsigned long textpos = 0, datapos = 0, result;
429  unsigned long realdatastart = 0;
430  unsigned long text_len, data_len, bss_len, stack_len, flags;
431  unsigned long len, memp = 0;
432  unsigned long memp_size, extra, rlim;
433  unsigned long *reloc = 0, *rp;
434  struct inode *inode;
435  int i, rev, relocs = 0;
436  loff_t fpos;
437  unsigned long start_code, end_code;
438  int ret;
439 
440  hdr = ((struct flat_hdr *) bprm->buf); /* exec-header */
441  inode = bprm->file->f_path.dentry->d_inode;
442 
443  text_len = ntohl(hdr->data_start);
444  data_len = ntohl(hdr->data_end) - ntohl(hdr->data_start);
445  bss_len = ntohl(hdr->bss_end) - ntohl(hdr->data_end);
446  stack_len = ntohl(hdr->stack_size);
447  if (extra_stack) {
448  stack_len += *extra_stack;
449  *extra_stack = stack_len;
450  }
451  relocs = ntohl(hdr->reloc_count);
452  flags = ntohl(hdr->flags);
453  rev = ntohl(hdr->rev);
454 
455  if (strncmp(hdr->magic, "bFLT", 4)) {
456  /*
457  * Previously, here was a printk to tell people
458  * "BINFMT_FLAT: bad header magic".
459  * But for the kernel which also use ELF FD-PIC format, this
460  * error message is confusing.
461  * because a lot of people do not manage to produce good
462  */
463  ret = -ENOEXEC;
464  goto err;
465  }
466 
467  if (flags & FLAT_FLAG_KTRACE)
468  printk("BINFMT_FLAT: Loading file: %s\n", bprm->filename);
469 
470  if (rev != FLAT_VERSION && rev != OLD_FLAT_VERSION) {
471  printk("BINFMT_FLAT: bad flat file version 0x%x (supported "
472  "0x%lx and 0x%lx)\n",
474  ret = -ENOEXEC;
475  goto err;
476  }
477 
478  /* Don't allow old format executables to use shared libraries */
479  if (rev == OLD_FLAT_VERSION && id != 0) {
480  printk("BINFMT_FLAT: shared libraries are not available before rev 0x%x\n",
481  (int) FLAT_VERSION);
482  ret = -ENOEXEC;
483  goto err;
484  }
485 
486  /*
487  * fix up the flags for the older format, there were all kinds
488  * of endian hacks, this only works for the simple cases
489  */
490  if (rev == OLD_FLAT_VERSION && flat_old_ram_flag(flags))
491  flags = FLAT_FLAG_RAM;
492 
493 #ifndef CONFIG_BINFMT_ZFLAT
494  if (flags & (FLAT_FLAG_GZIP|FLAT_FLAG_GZDATA)) {
495  printk("Support for ZFLAT executables is not enabled.\n");
496  ret = -ENOEXEC;
497  goto err;
498  }
499 #endif
500 
501  /*
502  * Check initial limits. This avoids letting people circumvent
503  * size limits imposed on them by creating programs with large
504  * arrays in the data or bss.
505  */
506  rlim = rlimit(RLIMIT_DATA);
507  if (rlim >= RLIM_INFINITY)
508  rlim = ~0;
509  if (data_len + bss_len > rlim) {
510  ret = -ENOMEM;
511  goto err;
512  }
513 
514  /* Flush all traces of the currently running executable */
515  if (id == 0) {
516  result = flush_old_exec(bprm);
517  if (result) {
518  ret = result;
519  goto err;
520  }
521 
522  /* OK, This is the point of no return */
524  setup_new_exec(bprm);
525  }
526 
527  /*
528  * calculate the extra space we need to map in
529  */
530  extra = max_t(unsigned long, bss_len + stack_len,
531  relocs * sizeof(unsigned long));
532 
533  /*
534  * there are a couple of cases here, the separate code/data
535  * case, and then the fully copied to RAM case which lumps
536  * it all together.
537  */
538  if ((flags & (FLAT_FLAG_RAM|FLAT_FLAG_GZIP)) == 0) {
539  /*
540  * this should give us a ROM ptr, but if it doesn't we don't
541  * really care
542  */
543  DBG_FLT("BINFMT_FLAT: ROM mapping of file (we hope)\n");
544 
545  textpos = vm_mmap(bprm->file, 0, text_len, PROT_READ|PROT_EXEC,
547  if (!textpos || IS_ERR_VALUE(textpos)) {
548  if (!textpos)
549  textpos = (unsigned long) -ENOMEM;
550  printk("Unable to mmap process text, errno %d\n", (int)-textpos);
551  ret = textpos;
552  goto err;
553  }
554 
555  len = data_len + extra + MAX_SHARED_LIBS * sizeof(unsigned long);
556  len = PAGE_ALIGN(len);
557  realdatastart = vm_mmap(0, 0, len,
559 
560  if (realdatastart == 0 || IS_ERR_VALUE(realdatastart)) {
561  if (!realdatastart)
562  realdatastart = (unsigned long) -ENOMEM;
563  printk("Unable to allocate RAM for process data, errno %d\n",
564  (int)-realdatastart);
565  vm_munmap(textpos, text_len);
566  ret = realdatastart;
567  goto err;
568  }
569  datapos = ALIGN(realdatastart +
570  MAX_SHARED_LIBS * sizeof(unsigned long),
572 
573  DBG_FLT("BINFMT_FLAT: Allocated data+bss+stack (%d bytes): %x\n",
574  (int)(data_len + bss_len + stack_len), (int)datapos);
575 
576  fpos = ntohl(hdr->data_start);
577 #ifdef CONFIG_BINFMT_ZFLAT
578  if (flags & FLAT_FLAG_GZDATA) {
579  result = decompress_exec(bprm, fpos, (char *) datapos,
580  data_len + (relocs * sizeof(unsigned long)), 0);
581  } else
582 #endif
583  {
584  result = bprm->file->f_op->read(bprm->file, (char *) datapos,
585  data_len + (relocs * sizeof(unsigned long)), &fpos);
586  }
587  if (IS_ERR_VALUE(result)) {
588  printk("Unable to read data+bss, errno %d\n", (int)-result);
589  vm_munmap(textpos, text_len);
590  vm_munmap(realdatastart, len);
591  ret = result;
592  goto err;
593  }
594 
595  reloc = (unsigned long *) (datapos+(ntohl(hdr->reloc_start)-text_len));
596  memp = realdatastart;
597  memp_size = len;
598  } else {
599 
600  len = text_len + data_len + extra + MAX_SHARED_LIBS * sizeof(unsigned long);
601  len = PAGE_ALIGN(len);
602  textpos = vm_mmap(0, 0, len,
604 
605  if (!textpos || IS_ERR_VALUE(textpos)) {
606  if (!textpos)
607  textpos = (unsigned long) -ENOMEM;
608  printk("Unable to allocate RAM for process text/data, errno %d\n",
609  (int)-textpos);
610  ret = textpos;
611  goto err;
612  }
613 
614  realdatastart = textpos + ntohl(hdr->data_start);
615  datapos = ALIGN(realdatastart +
616  MAX_SHARED_LIBS * sizeof(unsigned long),
618 
619  reloc = (unsigned long *)
620  (datapos + (ntohl(hdr->reloc_start) - text_len));
621  memp = textpos;
622  memp_size = len;
623 #ifdef CONFIG_BINFMT_ZFLAT
624  /*
625  * load it all in and treat it like a RAM load from now on
626  */
627  if (flags & FLAT_FLAG_GZIP) {
628  result = decompress_exec(bprm, sizeof (struct flat_hdr),
629  (((char *) textpos) + sizeof (struct flat_hdr)),
630  (text_len + data_len + (relocs * sizeof(unsigned long))
631  - sizeof (struct flat_hdr)),
632  0);
633  memmove((void *) datapos, (void *) realdatastart,
634  data_len + (relocs * sizeof(unsigned long)));
635  } else if (flags & FLAT_FLAG_GZDATA) {
636  fpos = 0;
637  result = bprm->file->f_op->read(bprm->file,
638  (char *) textpos, text_len, &fpos);
639  if (!IS_ERR_VALUE(result))
640  result = decompress_exec(bprm, text_len, (char *) datapos,
641  data_len + (relocs * sizeof(unsigned long)), 0);
642  }
643  else
644 #endif
645  {
646  fpos = 0;
647  result = bprm->file->f_op->read(bprm->file,
648  (char *) textpos, text_len, &fpos);
649  if (!IS_ERR_VALUE(result)) {
650  fpos = ntohl(hdr->data_start);
651  result = bprm->file->f_op->read(bprm->file, (char *) datapos,
652  data_len + (relocs * sizeof(unsigned long)), &fpos);
653  }
654  }
655  if (IS_ERR_VALUE(result)) {
656  printk("Unable to read code+data+bss, errno %d\n",(int)-result);
657  vm_munmap(textpos, text_len + data_len + extra +
658  MAX_SHARED_LIBS * sizeof(unsigned long));
659  ret = result;
660  goto err;
661  }
662  }
663 
664  if (flags & FLAT_FLAG_KTRACE)
665  printk("Mapping is %x, Entry point is %x, data_start is %x\n",
666  (int)textpos, 0x00ffffff&ntohl(hdr->entry), ntohl(hdr->data_start));
667 
668  /* The main program needs a little extra setup in the task structure */
669  start_code = textpos + sizeof (struct flat_hdr);
670  end_code = textpos + text_len;
671  if (id == 0) {
672  current->mm->start_code = start_code;
673  current->mm->end_code = end_code;
674  current->mm->start_data = datapos;
675  current->mm->end_data = datapos + data_len;
676  /*
677  * set up the brk stuff, uses any slack left in data/bss/stack
678  * allocation. We put the brk after the bss (between the bss
679  * and stack) like other platforms.
680  * Userspace code relies on the stack pointer starting out at
681  * an address right at the end of a page.
682  */
683  current->mm->start_brk = datapos + data_len + bss_len;
684  current->mm->brk = (current->mm->start_brk + 3) & ~3;
685  current->mm->context.end_brk = memp + memp_size - stack_len;
686  }
687 
688  if (flags & FLAT_FLAG_KTRACE)
689  printk("%s %s: TEXT=%x-%x DATA=%x-%x BSS=%x-%x\n",
690  id ? "Lib" : "Load", bprm->filename,
691  (int) start_code, (int) end_code,
692  (int) datapos,
693  (int) (datapos + data_len),
694  (int) (datapos + data_len),
695  (int) (((datapos + data_len + bss_len) + 3) & ~3));
696 
697  text_len -= sizeof(struct flat_hdr); /* the real code len */
698 
699  /* Store the current module values into the global library structure */
700  libinfo->lib_list[id].start_code = start_code;
701  libinfo->lib_list[id].start_data = datapos;
702  libinfo->lib_list[id].start_brk = datapos + data_len + bss_len;
703  libinfo->lib_list[id].text_len = text_len;
704  libinfo->lib_list[id].loaded = 1;
705  libinfo->lib_list[id].entry = (0x00ffffff & ntohl(hdr->entry)) + textpos;
706  libinfo->lib_list[id].build_date = ntohl(hdr->build_date);
707 
708  /*
709  * We just load the allocations into some temporary memory to
710  * help simplify all this mumbo jumbo
711  *
712  * We've got two different sections of relocation entries.
713  * The first is the GOT which resides at the beginning of the data segment
714  * and is terminated with a -1. This one can be relocated in place.
715  * The second is the extra relocation entries tacked after the image's
716  * data segment. These require a little more processing as the entry is
717  * really an offset into the image which contains an offset into the
718  * image.
719  */
720  if (flags & FLAT_FLAG_GOTPIC) {
721  for (rp = (unsigned long *)datapos; *rp != 0xffffffff; rp++) {
722  unsigned long addr;
723  if (*rp) {
724  addr = calc_reloc(*rp, libinfo, id, 0);
725  if (addr == RELOC_FAILED) {
726  ret = -ENOEXEC;
727  goto err;
728  }
729  *rp = addr;
730  }
731  }
732  }
733 
734  /*
735  * Now run through the relocation entries.
736  * We've got to be careful here as C++ produces relocatable zero
737  * entries in the constructor and destructor tables which are then
738  * tested for being not zero (which will always occur unless we're
739  * based from address zero). This causes an endless loop as __start
740  * is at zero. The solution used is to not relocate zero addresses.
741  * This has the negative side effect of not allowing a global data
742  * reference to be statically initialised to _stext (I've moved
743  * __start to address 4 so that is okay).
744  */
745  if (rev > OLD_FLAT_VERSION) {
746  unsigned long persistent = 0;
747  for (i=0; i < relocs; i++) {
748  unsigned long addr, relval;
749 
750  /* Get the address of the pointer to be
751  relocated (of course, the address has to be
752  relocated first). */
753  relval = ntohl(reloc[i]);
754  if (flat_set_persistent (relval, &persistent))
755  continue;
756  addr = flat_get_relocate_addr(relval);
757  rp = (unsigned long *) calc_reloc(addr, libinfo, id, 1);
758  if (rp == (unsigned long *)RELOC_FAILED) {
759  ret = -ENOEXEC;
760  goto err;
761  }
762 
763  /* Get the pointer's value. */
764  addr = flat_get_addr_from_rp(rp, relval, flags,
765  &persistent);
766  if (addr != 0) {
767  /*
768  * Do the relocation. PIC relocs in the data section are
769  * already in target order
770  */
771  if ((flags & FLAT_FLAG_GOTPIC) == 0)
772  addr = ntohl(addr);
773  addr = calc_reloc(addr, libinfo, id, 0);
774  if (addr == RELOC_FAILED) {
775  ret = -ENOEXEC;
776  goto err;
777  }
778 
779  /* Write back the relocated pointer. */
780  flat_put_addr_at_rp(rp, addr, relval);
781  }
782  }
783  } else {
784  for (i=0; i < relocs; i++)
785  old_reloc(ntohl(reloc[i]));
786  }
787 
788  flush_icache_range(start_code, end_code);
789 
790  /* zero the BSS, BRK and stack areas */
791  memset((void*)(datapos + data_len), 0, bss_len +
792  (memp + memp_size - stack_len - /* end brk */
793  libinfo->lib_list[id].start_brk) + /* start brk */
794  stack_len);
795 
796  return 0;
797 err:
798  return ret;
799 }
800 
801 
802 /****************************************************************************/
803 #ifdef CONFIG_BINFMT_SHARED_FLAT
804 
805 /*
806  * Load a shared library into memory. The library gets its own data
807  * segment (including bss) but not argv/argc/environ.
808  */
809 
810 static int load_flat_shared_library(int id, struct lib_info *libs)
811 {
812  struct linux_binprm bprm;
813  int res;
814  char buf[16];
815 
816  memset(&bprm, 0, sizeof(bprm));
817 
818  /* Create the file name */
819  sprintf(buf, "/lib/lib%d.so", id);
820 
821  /* Open the file up */
822  bprm.filename = buf;
823  bprm.file = open_exec(bprm.filename);
824  res = PTR_ERR(bprm.file);
825  if (IS_ERR(bprm.file))
826  return res;
827 
828  bprm.cred = prepare_exec_creds();
829  res = -ENOMEM;
830  if (!bprm.cred)
831  goto out;
832 
833  /* We don't really care about recalculating credentials at this point
834  * as we're past the point of no return and are dealing with shared
835  * libraries.
836  */
837  bprm.cred_prepared = 1;
838 
839  res = prepare_binprm(&bprm);
840 
841  if (!IS_ERR_VALUE(res))
842  res = load_flat_file(&bprm, libs, id, NULL);
843 
844  abort_creds(bprm.cred);
845 
846 out:
847  allow_write_access(bprm.file);
848  fput(bprm.file);
849 
850  return(res);
851 }
852 
853 #endif /* CONFIG_BINFMT_SHARED_FLAT */
854 /****************************************************************************/
855 
856 /*
857  * These are the functions used to load flat style executables and shared
858  * libraries. There is no binary dependent code anywhere else.
859  */
860 
861 static int load_flat_binary(struct linux_binprm * bprm, struct pt_regs * regs)
862 {
863  struct lib_info libinfo;
864  unsigned long p = bprm->p;
865  unsigned long stack_len;
866  unsigned long start_addr;
867  unsigned long *sp;
868  int res;
869  int i, j;
870 
871  memset(&libinfo, 0, sizeof(libinfo));
872  /*
873  * We have to add the size of our arguments to our stack size
874  * otherwise it's too easy for users to create stack overflows
875  * by passing in a huge argument list. And yes, we have to be
876  * pedantic and include space for the argv/envp array as it may have
877  * a lot of entries.
878  */
879 #define TOP_OF_ARGS (PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *))
880  stack_len = TOP_OF_ARGS - bprm->p; /* the strings */
881  stack_len += (bprm->argc + 1) * sizeof(char *); /* the argv array */
882  stack_len += (bprm->envc + 1) * sizeof(char *); /* the envp array */
883  stack_len += FLAT_STACK_ALIGN - 1; /* reserve for upcoming alignment */
884 
885  res = load_flat_file(bprm, &libinfo, 0, &stack_len);
886  if (IS_ERR_VALUE(res))
887  return res;
888 
889  /* Update data segment pointers for all libraries */
890  for (i=0; i<MAX_SHARED_LIBS; i++)
891  if (libinfo.lib_list[i].loaded)
892  for (j=0; j<MAX_SHARED_LIBS; j++)
893  (-(j+1))[(unsigned long *)(libinfo.lib_list[i].start_data)] =
894  (libinfo.lib_list[j].loaded)?
895  libinfo.lib_list[j].start_data:UNLOADED_LIB;
896 
897  install_exec_creds(bprm);
898 
899  set_binfmt(&flat_format);
900 
901  p = ((current->mm->context.end_brk + stack_len + 3) & ~3) - 4;
902  DBG_FLT("p=%x\n", (int)p);
903 
904  /* copy the arg pages onto the stack, this could be more efficient :-) */
905  for (i = TOP_OF_ARGS - 1; i >= bprm->p; i--)
906  * (char *) --p =
907  ((char *) page_address(bprm->page[i/PAGE_SIZE]))[i % PAGE_SIZE];
908 
909  sp = (unsigned long *) create_flat_tables(p, bprm);
910 
911  /* Fake some return addresses to ensure the call chain will
912  * initialise library in order for us. We are required to call
913  * lib 1 first, then 2, ... and finally the main program (id 0).
914  */
915  start_addr = libinfo.lib_list[0].entry;
916 
917 #ifdef CONFIG_BINFMT_SHARED_FLAT
918  for (i = MAX_SHARED_LIBS-1; i>0; i--) {
919  if (libinfo.lib_list[i].loaded) {
920  /* Push previos first to call address */
921  --sp; put_user(start_addr, sp);
922  start_addr = libinfo.lib_list[i].entry;
923  }
924  }
925 #endif
926 
927  /* Stash our initial stack pointer into the mm structure */
928  current->mm->start_stack = (unsigned long )sp;
929 
930 #ifdef FLAT_PLAT_INIT
931  FLAT_PLAT_INIT(regs);
932 #endif
933  DBG_FLT("start_thread(regs=0x%x, entry=0x%x, start_stack=0x%x)\n",
934  (int)regs, (int)start_addr, (int)current->mm->start_stack);
935 
936  start_thread(regs, start_addr, current->mm->start_stack);
937 
938  return 0;
939 }
940 
941 /****************************************************************************/
942 
943 static int __init init_flat_binfmt(void)
944 {
945  register_binfmt(&flat_format);
946  return 0;
947 }
948 
949 /****************************************************************************/
950 
951 core_initcall(init_flat_binfmt);
952 
953 /****************************************************************************/