Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cfi_probe.c
Go to the documentation of this file.
1 /*
2  Common Flash Interface probe code.
3  (C) 2000 Red Hat. GPL'd.
4 */
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <asm/io.h>
11 #include <asm/byteorder.h>
12 #include <linux/errno.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
15 
16 #include <linux/mtd/xip.h>
17 #include <linux/mtd/map.h>
18 #include <linux/mtd/cfi.h>
19 #include <linux/mtd/gen_probe.h>
20 
21 //#define DEBUG_CFI
22 
23 #ifdef DEBUG_CFI
24 static void print_cfi_ident(struct cfi_ident *);
25 #endif
26 
27 static int cfi_probe_chip(struct map_info *map, __u32 base,
28  unsigned long *chip_map, struct cfi_private *cfi);
29 static int cfi_chip_setup(struct map_info *map, struct cfi_private *cfi);
30 
31 struct mtd_info *cfi_probe(struct map_info *map);
32 
33 #ifdef CONFIG_MTD_XIP
34 
35 /* only needed for short periods, so this is rather simple */
36 #define xip_disable() local_irq_disable()
37 
38 #define xip_allowed(base, map) \
39 do { \
40  (void) map_read(map, base); \
41  xip_iprefetch(); \
42  local_irq_enable(); \
43 } while (0)
44 
45 #define xip_enable(base, map, cfi) \
46 do { \
47  cfi_qry_mode_off(base, map, cfi); \
48  xip_allowed(base, map); \
49 } while (0)
50 
51 #define xip_disable_qry(base, map, cfi) \
52 do { \
53  xip_disable(); \
54  cfi_qry_mode_on(base, map, cfi); \
55 } while (0)
56 
57 #else
58 
59 #define xip_disable() do { } while (0)
60 #define xip_allowed(base, map) do { } while (0)
61 #define xip_enable(base, map, cfi) do { } while (0)
62 #define xip_disable_qry(base, map, cfi) do { } while (0)
63 
64 #endif
65 
66 /* check for QRY.
67  in: interleave,type,mode
68  ret: table index, <0 for error
69  */
70 
71 static int __xipram cfi_probe_chip(struct map_info *map, __u32 base,
72  unsigned long *chip_map, struct cfi_private *cfi)
73 {
74  int i;
75 
76  if ((base + 0) >= map->size) {
78  "Probe at base[0x00](0x%08lx) past the end of the map(0x%08lx)\n",
79  (unsigned long)base, map->size -1);
80  return 0;
81  }
82  if ((base + 0xff) >= map->size) {
84  "Probe at base[0x55](0x%08lx) past the end of the map(0x%08lx)\n",
85  (unsigned long)base + 0x55, map->size -1);
86  return 0;
87  }
88 
89  xip_disable();
90  if (!cfi_qry_mode_on(base, map, cfi)) {
91  xip_enable(base, map, cfi);
92  return 0;
93  }
94 
95  if (!cfi->numchips) {
96  /* This is the first time we're called. Set up the CFI
97  stuff accordingly and return */
98  return cfi_chip_setup(map, cfi);
99  }
100 
101  /* Check each previous chip to see if it's an alias */
102  for (i=0; i < (base >> cfi->chipshift); i++) {
103  unsigned long start;
104  if(!test_bit(i, chip_map)) {
105  /* Skip location; no valid chip at this address */
106  continue;
107  }
108  start = i << cfi->chipshift;
109  /* This chip should be in read mode if it's one
110  we've already touched. */
111  if (cfi_qry_present(map, start, cfi)) {
112  /* Eep. This chip also had the QRY marker.
113  * Is it an alias for the new one? */
114  cfi_qry_mode_off(start, map, cfi);
115 
116  /* If the QRY marker goes away, it's an alias */
117  if (!cfi_qry_present(map, start, cfi)) {
118  xip_allowed(base, map);
119  printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n",
120  map->name, base, start);
121  return 0;
122  }
123  /* Yes, it's actually got QRY for data. Most
124  * unfortunate. Stick the new chip in read mode
125  * too and if it's the same, assume it's an alias. */
126  /* FIXME: Use other modes to do a proper check */
127  cfi_qry_mode_off(base, map, cfi);
128 
129  if (cfi_qry_present(map, base, cfi)) {
130  xip_allowed(base, map);
131  printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n",
132  map->name, base, start);
133  return 0;
134  }
135  }
136  }
137 
138  /* OK, if we got to here, then none of the previous chips appear to
139  be aliases for the current one. */
140  set_bit((base >> cfi->chipshift), chip_map); /* Update chip map */
141  cfi->numchips++;
142 
143  /* Put it back into Read Mode */
144  cfi_qry_mode_off(base, map, cfi);
145  xip_allowed(base, map);
146 
147  printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank\n",
148  map->name, cfi->interleave, cfi->device_type*8, base,
149  map->bankwidth*8);
150 
151  return 1;
152 }
153 
154 static int __xipram cfi_chip_setup(struct map_info *map,
155  struct cfi_private *cfi)
156 {
157  int ofs_factor = cfi->interleave*cfi->device_type;
158  __u32 base = 0;
159  int num_erase_regions = cfi_read_query(map, base + (0x10 + 28)*ofs_factor);
160  int i;
161  int addr_unlock1 = 0x555, addr_unlock2 = 0x2AA;
162 
163  xip_enable(base, map, cfi);
164 #ifdef DEBUG_CFI
165  printk("Number of erase regions: %d\n", num_erase_regions);
166 #endif
167  if (!num_erase_regions)
168  return 0;
169 
170  cfi->cfiq = kmalloc(sizeof(struct cfi_ident) + num_erase_regions * 4, GFP_KERNEL);
171  if (!cfi->cfiq) {
172  printk(KERN_WARNING "%s: kmalloc failed for CFI ident structure\n", map->name);
173  return 0;
174  }
175 
176  memset(cfi->cfiq,0,sizeof(struct cfi_ident));
177 
178  cfi->cfi_mode = CFI_MODE_CFI;
179 
180  cfi->sector_erase_cmd = CMD(0x30);
181 
182  /* Read the CFI info structure */
183  xip_disable_qry(base, map, cfi);
184  for (i=0; i<(sizeof(struct cfi_ident) + num_erase_regions * 4); i++)
185  ((unsigned char *)cfi->cfiq)[i] = cfi_read_query(map,base + (0x10 + i)*ofs_factor);
186 
187  /* Do any necessary byteswapping */
188  cfi->cfiq->P_ID = le16_to_cpu(cfi->cfiq->P_ID);
189 
190  cfi->cfiq->P_ADR = le16_to_cpu(cfi->cfiq->P_ADR);
191  cfi->cfiq->A_ID = le16_to_cpu(cfi->cfiq->A_ID);
192  cfi->cfiq->A_ADR = le16_to_cpu(cfi->cfiq->A_ADR);
193  cfi->cfiq->InterfaceDesc = le16_to_cpu(cfi->cfiq->InterfaceDesc);
194  cfi->cfiq->MaxBufWriteSize = le16_to_cpu(cfi->cfiq->MaxBufWriteSize);
195 
196 #ifdef DEBUG_CFI
197  /* Dump the information therein */
198  print_cfi_ident(cfi->cfiq);
199 #endif
200 
201  for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
202  cfi->cfiq->EraseRegionInfo[i] = le32_to_cpu(cfi->cfiq->EraseRegionInfo[i]);
203 
204 #ifdef DEBUG_CFI
205  printk(" Erase Region #%d: BlockSize 0x%4.4X bytes, %d blocks\n",
206  i, (cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff,
207  (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1);
208 #endif
209  }
210 
211  if (cfi->cfiq->P_ID == P_ID_SST_OLD) {
212  addr_unlock1 = 0x5555;
213  addr_unlock2 = 0x2AAA;
214  }
215 
216  /*
217  * Note we put the device back into Read Mode BEFORE going into Auto
218  * Select Mode, as some devices support nesting of modes, others
219  * don't. This way should always work.
220  * On cmdset 0001 the writes of 0xaa and 0x55 are not needed, and
221  * so should be treated as nops or illegal (and so put the device
222  * back into Read Mode, which is a nop in this case).
223  */
224  cfi_send_gen_cmd(0xf0, 0, base, map, cfi, cfi->device_type, NULL);
225  cfi_send_gen_cmd(0xaa, addr_unlock1, base, map, cfi, cfi->device_type, NULL);
226  cfi_send_gen_cmd(0x55, addr_unlock2, base, map, cfi, cfi->device_type, NULL);
227  cfi_send_gen_cmd(0x90, addr_unlock1, base, map, cfi, cfi->device_type, NULL);
228  cfi->mfr = cfi_read_query16(map, base);
229  cfi->id = cfi_read_query16(map, base + ofs_factor);
230 
231  /* Get AMD/Spansion extended JEDEC ID */
232  if (cfi->mfr == CFI_MFR_AMD && (cfi->id & 0xff) == 0x7e)
233  cfi->id = cfi_read_query(map, base + 0xe * ofs_factor) << 8 |
234  cfi_read_query(map, base + 0xf * ofs_factor);
235 
236  /* Put it back into Read Mode */
237  cfi_qry_mode_off(base, map, cfi);
238  xip_allowed(base, map);
239 
240  printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank. Manufacturer ID %#08x Chip ID %#08x\n",
241  map->name, cfi->interleave, cfi->device_type*8, base,
242  map->bankwidth*8, cfi->mfr, cfi->id);
243 
244  return 1;
245 }
246 
247 #ifdef DEBUG_CFI
248 static char *vendorname(__u16 vendor)
249 {
250  switch (vendor) {
251  case P_ID_NONE:
252  return "None";
253 
254  case P_ID_INTEL_EXT:
255  return "Intel/Sharp Extended";
256 
257  case P_ID_AMD_STD:
258  return "AMD/Fujitsu Standard";
259 
260  case P_ID_INTEL_STD:
261  return "Intel/Sharp Standard";
262 
263  case P_ID_AMD_EXT:
264  return "AMD/Fujitsu Extended";
265 
266  case P_ID_WINBOND:
267  return "Winbond Standard";
268 
269  case P_ID_ST_ADV:
270  return "ST Advanced";
271 
272  case P_ID_MITSUBISHI_STD:
273  return "Mitsubishi Standard";
274 
275  case P_ID_MITSUBISHI_EXT:
276  return "Mitsubishi Extended";
277 
278  case P_ID_SST_PAGE:
279  return "SST Page Write";
280 
281  case P_ID_SST_OLD:
282  return "SST 39VF160x/39VF320x";
283 
285  return "Intel Performance Code";
286 
287  case P_ID_INTEL_DATA:
288  return "Intel Data";
289 
290  case P_ID_RESERVED:
291  return "Not Allowed / Reserved for Future Use";
292 
293  default:
294  return "Unknown";
295  }
296 }
297 
298 
299 static void print_cfi_ident(struct cfi_ident *cfip)
300 {
301 #if 0
302  if (cfip->qry[0] != 'Q' || cfip->qry[1] != 'R' || cfip->qry[2] != 'Y') {
303  printk("Invalid CFI ident structure.\n");
304  return;
305  }
306 #endif
307  printk("Primary Vendor Command Set: %4.4X (%s)\n", cfip->P_ID, vendorname(cfip->P_ID));
308  if (cfip->P_ADR)
309  printk("Primary Algorithm Table at %4.4X\n", cfip->P_ADR);
310  else
311  printk("No Primary Algorithm Table\n");
312 
313  printk("Alternative Vendor Command Set: %4.4X (%s)\n", cfip->A_ID, vendorname(cfip->A_ID));
314  if (cfip->A_ADR)
315  printk("Alternate Algorithm Table at %4.4X\n", cfip->A_ADR);
316  else
317  printk("No Alternate Algorithm Table\n");
318 
319 
320  printk("Vcc Minimum: %2d.%d V\n", cfip->VccMin >> 4, cfip->VccMin & 0xf);
321  printk("Vcc Maximum: %2d.%d V\n", cfip->VccMax >> 4, cfip->VccMax & 0xf);
322  if (cfip->VppMin) {
323  printk("Vpp Minimum: %2d.%d V\n", cfip->VppMin >> 4, cfip->VppMin & 0xf);
324  printk("Vpp Maximum: %2d.%d V\n", cfip->VppMax >> 4, cfip->VppMax & 0xf);
325  }
326  else
327  printk("No Vpp line\n");
328 
329  printk("Typical byte/word write timeout: %d µs\n", 1<<cfip->WordWriteTimeoutTyp);
330  printk("Maximum byte/word write timeout: %d µs\n", (1<<cfip->WordWriteTimeoutMax) * (1<<cfip->WordWriteTimeoutTyp));
331 
332  if (cfip->BufWriteTimeoutTyp || cfip->BufWriteTimeoutMax) {
333  printk("Typical full buffer write timeout: %d µs\n", 1<<cfip->BufWriteTimeoutTyp);
334  printk("Maximum full buffer write timeout: %d µs\n", (1<<cfip->BufWriteTimeoutMax) * (1<<cfip->BufWriteTimeoutTyp));
335  }
336  else
337  printk("Full buffer write not supported\n");
338 
339  printk("Typical block erase timeout: %d ms\n", 1<<cfip->BlockEraseTimeoutTyp);
340  printk("Maximum block erase timeout: %d ms\n", (1<<cfip->BlockEraseTimeoutMax) * (1<<cfip->BlockEraseTimeoutTyp));
341  if (cfip->ChipEraseTimeoutTyp || cfip->ChipEraseTimeoutMax) {
342  printk("Typical chip erase timeout: %d ms\n", 1<<cfip->ChipEraseTimeoutTyp);
343  printk("Maximum chip erase timeout: %d ms\n", (1<<cfip->ChipEraseTimeoutMax) * (1<<cfip->ChipEraseTimeoutTyp));
344  }
345  else
346  printk("Chip erase not supported\n");
347 
348  printk("Device size: 0x%X bytes (%d MiB)\n", 1 << cfip->DevSize, 1<< (cfip->DevSize - 20));
349  printk("Flash Device Interface description: 0x%4.4X\n", cfip->InterfaceDesc);
350  switch(cfip->InterfaceDesc) {
352  printk(" - x8-only asynchronous interface\n");
353  break;
354 
356  printk(" - x16-only asynchronous interface\n");
357  break;
358 
360  printk(" - supports x8 and x16 via BYTE# with asynchronous interface\n");
361  break;
362 
364  printk(" - x32-only asynchronous interface\n");
365  break;
366 
368  printk(" - supports x16 and x32 via Word# with asynchronous interface\n");
369  break;
370 
372  printk(" - Not Allowed / Reserved\n");
373  break;
374 
375  default:
376  printk(" - Unknown\n");
377  break;
378  }
379 
380  printk("Max. bytes in buffer write: 0x%x\n", 1<< cfip->MaxBufWriteSize);
381  printk("Number of Erase Block Regions: %d\n", cfip->NumEraseRegions);
382 
383 }
384 #endif /* DEBUG_CFI */
385 
386 static struct chip_probe cfi_chip_probe = {
387  .name = "CFI",
388  .probe_chip = cfi_probe_chip
389 };
390 
391 struct mtd_info *cfi_probe(struct map_info *map)
392 {
393  /*
394  * Just use the generic probe stuff to call our CFI-specific
395  * chip_probe routine in all the possible permutations, etc.
396  */
397  return mtd_do_chip_probe(map, &cfi_chip_probe);
398 }
399 
400 static struct mtd_chip_driver cfi_chipdrv = {
401  .probe = cfi_probe,
402  .name = "cfi_probe",
403  .module = THIS_MODULE
404 };
405 
406 static int __init cfi_probe_init(void)
407 {
408  register_mtd_chip_driver(&cfi_chipdrv);
409  return 0;
410 }
411 
412 static void __exit cfi_probe_exit(void)
413 {
414  unregister_mtd_chip_driver(&cfi_chipdrv);
415 }
416 
417 module_init(cfi_probe_init);
418 module_exit(cfi_probe_exit);
419 
420 MODULE_LICENSE("GPL");
421 MODULE_AUTHOR("David Woodhouse <[email protected]> et al.");
422 MODULE_DESCRIPTION("Probe code for CFI-compliant flash chips");