Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
copypage-v4mc.c
Go to the documentation of this file.
1 /*
2  * linux/arch/arm/lib/copypage-armv4mc.S
3  *
4  * Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This handles the mini data cache, as found on SA11x0 and XScale
11  * processors. When we copy a user page page, we map it in such a way
12  * that accesses to this page will not touch the main data cache, but
13  * will be cached in the mini data cache. This prevents us thrashing
14  * the main data cache on page faults.
15  */
16 #include <linux/init.h>
17 #include <linux/mm.h>
18 #include <linux/highmem.h>
19 
20 #include <asm/pgtable.h>
21 #include <asm/tlbflush.h>
22 #include <asm/cacheflush.h>
23 
24 #include "mm.h"
25 
26 #define minicache_pgprot __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | \
27  L_PTE_MT_MINICACHE)
28 
29 static DEFINE_RAW_SPINLOCK(minicache_lock);
30 
31 /*
32  * ARMv4 mini-dcache optimised copy_user_highpage
33  *
34  * We flush the destination cache lines just before we write the data into the
35  * corresponding address. Since the Dcache is read-allocate, this removes the
36  * Dcache aliasing issue. The writes will be forwarded to the write buffer,
37  * and merged as appropriate.
38  *
39  * Note: We rely on all ARMv4 processors implementing the "invalidate D line"
40  * instruction. If your processor does not supply this, you have to write your
41  * own copy_user_highpage that does the right thing.
42  */
43 static void __naked
44 mc_copy_user_page(void *from, void *to)
45 {
46  asm volatile(
47  "stmfd sp!, {r4, lr} @ 2\n\
48  mov r4, %2 @ 1\n\
49  ldmia %0!, {r2, r3, ip, lr} @ 4\n\
50 1: mcr p15, 0, %1, c7, c6, 1 @ 1 invalidate D line\n\
51  stmia %1!, {r2, r3, ip, lr} @ 4\n\
52  ldmia %0!, {r2, r3, ip, lr} @ 4+1\n\
53  stmia %1!, {r2, r3, ip, lr} @ 4\n\
54  ldmia %0!, {r2, r3, ip, lr} @ 4\n\
55  mcr p15, 0, %1, c7, c6, 1 @ 1 invalidate D line\n\
56  stmia %1!, {r2, r3, ip, lr} @ 4\n\
57  ldmia %0!, {r2, r3, ip, lr} @ 4\n\
58  subs r4, r4, #1 @ 1\n\
59  stmia %1!, {r2, r3, ip, lr} @ 4\n\
60  ldmneia %0!, {r2, r3, ip, lr} @ 4\n\
61  bne 1b @ 1\n\
62  ldmfd sp!, {r4, pc} @ 3"
63  :
64  : "r" (from), "r" (to), "I" (PAGE_SIZE / 64));
65 }
66 
67 void v4_mc_copy_user_highpage(struct page *to, struct page *from,
68  unsigned long vaddr, struct vm_area_struct *vma)
69 {
70  void *kto = kmap_atomic(to);
71 
73  __flush_dcache_page(page_mapping(from), from);
74 
75  raw_spin_lock(&minicache_lock);
76 
77  set_top_pte(COPYPAGE_MINICACHE, mk_pte(from, minicache_pgprot));
78 
79  mc_copy_user_page((void *)COPYPAGE_MINICACHE, kto);
80 
81  raw_spin_unlock(&minicache_lock);
82 
83  kunmap_atomic(kto);
84 }
85 
86 /*
87  * ARMv4 optimised clear_user_page
88  */
89 void v4_mc_clear_user_highpage(struct page *page, unsigned long vaddr)
90 {
91  void *ptr, *kaddr = kmap_atomic(page);
92  asm volatile("\
93  mov r1, %2 @ 1\n\
94  mov r2, #0 @ 1\n\
95  mov r3, #0 @ 1\n\
96  mov ip, #0 @ 1\n\
97  mov lr, #0 @ 1\n\
98 1: mcr p15, 0, %0, c7, c6, 1 @ 1 invalidate D line\n\
99  stmia %0!, {r2, r3, ip, lr} @ 4\n\
100  stmia %0!, {r2, r3, ip, lr} @ 4\n\
101  mcr p15, 0, %0, c7, c6, 1 @ 1 invalidate D line\n\
102  stmia %0!, {r2, r3, ip, lr} @ 4\n\
103  stmia %0!, {r2, r3, ip, lr} @ 4\n\
104  subs r1, r1, #1 @ 1\n\
105  bne 1b @ 1"
106  : "=r" (ptr)
107  : "0" (kaddr), "I" (PAGE_SIZE / 64)
108  : "r1", "r2", "r3", "ip", "lr");
109  kunmap_atomic(kaddr);
110 }
111 
112 struct cpu_user_fns v4_mc_user_fns __initdata = {
113  .cpu_clear_user_highpage = v4_mc_clear_user_highpage,
114  .cpu_copy_user_highpage = v4_mc_copy_user_highpage,
115 };