Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cputime.c
Go to the documentation of this file.
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include "sched.h"
7 
8 
9 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
10 
11 /*
12  * There are no locks covering percpu hardirq/softirq time.
13  * They are only modified in vtime_account, on corresponding CPU
14  * with interrupts disabled. So, writes are safe.
15  * They are read and saved off onto struct rq in update_rq_clock().
16  * This may result in other CPU reading this CPU's irq time and can
17  * race with irq/vtime_account on this CPU. We would either get old
18  * or new value with a side effect of accounting a slice of irq time to wrong
19  * task when irq is in progress while we read rq->clock. That is a worthy
20  * compromise in place of having locks on each irq in account_system_time.
21  */
22 DEFINE_PER_CPU(u64, cpu_hardirq_time);
23 DEFINE_PER_CPU(u64, cpu_softirq_time);
24 
25 static DEFINE_PER_CPU(u64, irq_start_time);
26 static int sched_clock_irqtime;
27 
28 void enable_sched_clock_irqtime(void)
29 {
31 }
32 
33 void disable_sched_clock_irqtime(void)
34 {
36 }
37 
38 #ifndef CONFIG_64BIT
39 DEFINE_PER_CPU(seqcount_t, irq_time_seq);
40 #endif /* CONFIG_64BIT */
41 
42 /*
43  * Called before incrementing preempt_count on {soft,}irq_enter
44  * and before decrementing preempt_count on {soft,}irq_exit.
45  */
46 void vtime_account(struct task_struct *curr)
47 {
48  unsigned long flags;
49  s64 delta;
50  int cpu;
51 
53  return;
54 
55  local_irq_save(flags);
56 
57  cpu = smp_processor_id();
58  delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
59  __this_cpu_add(irq_start_time, delta);
60 
61  irq_time_write_begin();
62  /*
63  * We do not account for softirq time from ksoftirqd here.
64  * We want to continue accounting softirq time to ksoftirqd thread
65  * in that case, so as not to confuse scheduler with a special task
66  * that do not consume any time, but still wants to run.
67  */
68  if (hardirq_count())
69  __this_cpu_add(cpu_hardirq_time, delta);
70  else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
71  __this_cpu_add(cpu_softirq_time, delta);
72 
73  irq_time_write_end();
74  local_irq_restore(flags);
75 }
77 
78 static int irqtime_account_hi_update(void)
79 {
80  u64 *cpustat = kcpustat_this_cpu->cpustat;
81  unsigned long flags;
82  u64 latest_ns;
83  int ret = 0;
84 
85  local_irq_save(flags);
86  latest_ns = this_cpu_read(cpu_hardirq_time);
87  if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
88  ret = 1;
89  local_irq_restore(flags);
90  return ret;
91 }
92 
93 static int irqtime_account_si_update(void)
94 {
95  u64 *cpustat = kcpustat_this_cpu->cpustat;
96  unsigned long flags;
97  u64 latest_ns;
98  int ret = 0;
99 
100  local_irq_save(flags);
101  latest_ns = this_cpu_read(cpu_softirq_time);
102  if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
103  ret = 1;
104  local_irq_restore(flags);
105  return ret;
106 }
107 
108 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
109 
110 #define sched_clock_irqtime (0)
111 
112 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
113 
114 static inline void task_group_account_field(struct task_struct *p, int index,
115  u64 tmp)
116 {
117 #ifdef CONFIG_CGROUP_CPUACCT
118  struct kernel_cpustat *kcpustat;
119  struct cpuacct *ca;
120 #endif
121  /*
122  * Since all updates are sure to touch the root cgroup, we
123  * get ourselves ahead and touch it first. If the root cgroup
124  * is the only cgroup, then nothing else should be necessary.
125  *
126  */
127  __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
128 
129 #ifdef CONFIG_CGROUP_CPUACCT
130  if (unlikely(!cpuacct_subsys.active))
131  return;
132 
133  rcu_read_lock();
134  ca = task_ca(p);
135  while (ca && (ca != &root_cpuacct)) {
136  kcpustat = this_cpu_ptr(ca->cpustat);
137  kcpustat->cpustat[index] += tmp;
138  ca = parent_ca(ca);
139  }
140  rcu_read_unlock();
141 #endif
142 }
143 
144 /*
145  * Account user cpu time to a process.
146  * @p: the process that the cpu time gets accounted to
147  * @cputime: the cpu time spent in user space since the last update
148  * @cputime_scaled: cputime scaled by cpu frequency
149  */
150 void account_user_time(struct task_struct *p, cputime_t cputime,
151  cputime_t cputime_scaled)
152 {
153  int index;
154 
155  /* Add user time to process. */
156  p->utime += cputime;
157  p->utimescaled += cputime_scaled;
158  account_group_user_time(p, cputime);
159 
160  index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
161 
162  /* Add user time to cpustat. */
163  task_group_account_field(p, index, (__force u64) cputime);
164 
165  /* Account for user time used */
166  acct_update_integrals(p);
167 }
168 
169 /*
170  * Account guest cpu time to a process.
171  * @p: the process that the cpu time gets accounted to
172  * @cputime: the cpu time spent in virtual machine since the last update
173  * @cputime_scaled: cputime scaled by cpu frequency
174  */
175 static void account_guest_time(struct task_struct *p, cputime_t cputime,
176  cputime_t cputime_scaled)
177 {
178  u64 *cpustat = kcpustat_this_cpu->cpustat;
179 
180  /* Add guest time to process. */
181  p->utime += cputime;
182  p->utimescaled += cputime_scaled;
183  account_group_user_time(p, cputime);
184  p->gtime += cputime;
185 
186  /* Add guest time to cpustat. */
187  if (TASK_NICE(p) > 0) {
188  cpustat[CPUTIME_NICE] += (__force u64) cputime;
189  cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
190  } else {
191  cpustat[CPUTIME_USER] += (__force u64) cputime;
192  cpustat[CPUTIME_GUEST] += (__force u64) cputime;
193  }
194 }
195 
196 /*
197  * Account system cpu time to a process and desired cpustat field
198  * @p: the process that the cpu time gets accounted to
199  * @cputime: the cpu time spent in kernel space since the last update
200  * @cputime_scaled: cputime scaled by cpu frequency
201  * @target_cputime64: pointer to cpustat field that has to be updated
202  */
203 static inline
204 void __account_system_time(struct task_struct *p, cputime_t cputime,
205  cputime_t cputime_scaled, int index)
206 {
207  /* Add system time to process. */
208  p->stime += cputime;
209  p->stimescaled += cputime_scaled;
210  account_group_system_time(p, cputime);
211 
212  /* Add system time to cpustat. */
213  task_group_account_field(p, index, (__force u64) cputime);
214 
215  /* Account for system time used */
216  acct_update_integrals(p);
217 }
218 
219 /*
220  * Account system cpu time to a process.
221  * @p: the process that the cpu time gets accounted to
222  * @hardirq_offset: the offset to subtract from hardirq_count()
223  * @cputime: the cpu time spent in kernel space since the last update
224  * @cputime_scaled: cputime scaled by cpu frequency
225  */
226 void account_system_time(struct task_struct *p, int hardirq_offset,
227  cputime_t cputime, cputime_t cputime_scaled)
228 {
229  int index;
230 
231  if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
232  account_guest_time(p, cputime, cputime_scaled);
233  return;
234  }
235 
236  if (hardirq_count() - hardirq_offset)
237  index = CPUTIME_IRQ;
238  else if (in_serving_softirq())
239  index = CPUTIME_SOFTIRQ;
240  else
241  index = CPUTIME_SYSTEM;
242 
243  __account_system_time(p, cputime, cputime_scaled, index);
244 }
245 
246 /*
247  * Account for involuntary wait time.
248  * @cputime: the cpu time spent in involuntary wait
249  */
251 {
252  u64 *cpustat = kcpustat_this_cpu->cpustat;
253 
254  cpustat[CPUTIME_STEAL] += (__force u64) cputime;
255 }
256 
257 /*
258  * Account for idle time.
259  * @cputime: the cpu time spent in idle wait
260  */
262 {
263  u64 *cpustat = kcpustat_this_cpu->cpustat;
264  struct rq *rq = this_rq();
265 
266  if (atomic_read(&rq->nr_iowait) > 0)
267  cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
268  else
269  cpustat[CPUTIME_IDLE] += (__force u64) cputime;
270 }
271 
272 static __always_inline bool steal_account_process_tick(void)
273 {
274 #ifdef CONFIG_PARAVIRT
275  if (static_key_false(&paravirt_steal_enabled)) {
276  u64 steal, st = 0;
277 
278  steal = paravirt_steal_clock(smp_processor_id());
279  steal -= this_rq()->prev_steal_time;
280 
281  st = steal_ticks(steal);
282  this_rq()->prev_steal_time += st * TICK_NSEC;
283 
284  account_steal_time(st);
285  return st;
286  }
287 #endif
288  return false;
289 }
290 
291 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
292 
293 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
294 /*
295  * Account a tick to a process and cpustat
296  * @p: the process that the cpu time gets accounted to
297  * @user_tick: is the tick from userspace
298  * @rq: the pointer to rq
299  *
300  * Tick demultiplexing follows the order
301  * - pending hardirq update
302  * - pending softirq update
303  * - user_time
304  * - idle_time
305  * - system time
306  * - check for guest_time
307  * - else account as system_time
308  *
309  * Check for hardirq is done both for system and user time as there is
310  * no timer going off while we are on hardirq and hence we may never get an
311  * opportunity to update it solely in system time.
312  * p->stime and friends are only updated on system time and not on irq
313  * softirq as those do not count in task exec_runtime any more.
314  */
315 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
316  struct rq *rq)
317 {
318  cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
319  u64 *cpustat = kcpustat_this_cpu->cpustat;
320 
321  if (steal_account_process_tick())
322  return;
323 
324  if (irqtime_account_hi_update()) {
326  } else if (irqtime_account_si_update()) {
328  } else if (this_cpu_ksoftirqd() == p) {
329  /*
330  * ksoftirqd time do not get accounted in cpu_softirq_time.
331  * So, we have to handle it separately here.
332  * Also, p->stime needs to be updated for ksoftirqd.
333  */
334  __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
336  } else if (user_tick) {
337  account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
338  } else if (p == rq->idle) {
340  } else if (p->flags & PF_VCPU) { /* System time or guest time */
341  account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
342  } else {
343  __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
345  }
346 }
347 
348 static void irqtime_account_idle_ticks(int ticks)
349 {
350  int i;
351  struct rq *rq = this_rq();
352 
353  for (i = 0; i < ticks; i++)
354  irqtime_account_process_tick(current, 0, rq);
355 }
356 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
357 static void irqtime_account_idle_ticks(int ticks) {}
358 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
359  struct rq *rq) {}
360 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
361 
362 /*
363  * Account a single tick of cpu time.
364  * @p: the process that the cpu time gets accounted to
365  * @user_tick: indicates if the tick is a user or a system tick
366  */
367 void account_process_tick(struct task_struct *p, int user_tick)
368 {
369  cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
370  struct rq *rq = this_rq();
371 
372  if (sched_clock_irqtime) {
373  irqtime_account_process_tick(p, user_tick, rq);
374  return;
375  }
376 
377  if (steal_account_process_tick())
378  return;
379 
380  if (user_tick)
381  account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
382  else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
384  one_jiffy_scaled);
385  else
387 }
388 
389 /*
390  * Account multiple ticks of steal time.
391  * @p: the process from which the cpu time has been stolen
392  * @ticks: number of stolen ticks
393  */
394 void account_steal_ticks(unsigned long ticks)
395 {
397 }
398 
399 /*
400  * Account multiple ticks of idle time.
401  * @ticks: number of stolen ticks
402  */
403 void account_idle_ticks(unsigned long ticks)
404 {
405 
406  if (sched_clock_irqtime) {
407  irqtime_account_idle_ticks(ticks);
408  return;
409  }
410 
412 }
413 
414 #endif
415 
416 /*
417  * Use precise platform statistics if available:
418  */
419 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
420 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
421 {
422  *ut = p->utime;
423  *st = p->stime;
424 }
425 
426 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
427 {
428  struct task_cputime cputime;
429 
430  thread_group_cputime(p, &cputime);
431 
432  *ut = cputime.utime;
433  *st = cputime.stime;
434 }
435 
436 /*
437  * Archs that account the whole time spent in the idle task
438  * (outside irq) as idle time can rely on this and just implement
439  * vtime_account_system() and vtime_account_idle(). Archs that
440  * have other meaning of the idle time (s390 only includes the
441  * time spent by the CPU when it's in low power mode) must override
442  * vtime_account().
443  */
444 #ifndef __ARCH_HAS_VTIME_ACCOUNT
445 void vtime_account(struct task_struct *tsk)
446 {
447  unsigned long flags;
448 
449  local_irq_save(flags);
450 
451  if (in_interrupt() || !is_idle_task(tsk))
452  vtime_account_system(tsk);
453  else
454  vtime_account_idle(tsk);
455 
456  local_irq_restore(flags);
457 }
459 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
460 
461 #else
462 
463 #ifndef nsecs_to_cputime
464 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
465 #endif
466 
467 static cputime_t scale_utime(cputime_t utime, cputime_t rtime, cputime_t total)
468 {
469  u64 temp = (__force u64) rtime;
470 
471  temp *= (__force u64) utime;
472 
473  if (sizeof(cputime_t) == 4)
474  temp = div_u64(temp, (__force u32) total);
475  else
476  temp = div64_u64(temp, (__force u64) total);
477 
478  return (__force cputime_t) temp;
479 }
480 
482 {
483  cputime_t rtime, utime = p->utime, total = utime + p->stime;
484 
485  /*
486  * Use CFS's precise accounting:
487  */
488  rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
489 
490  if (total)
491  utime = scale_utime(utime, rtime, total);
492  else
493  utime = rtime;
494 
495  /*
496  * Compare with previous values, to keep monotonicity:
497  */
498  p->prev_utime = max(p->prev_utime, utime);
499  p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
500 
501  *ut = p->prev_utime;
502  *st = p->prev_stime;
503 }
504 
505 /*
506  * Must be called with siglock held.
507  */
509 {
510  struct signal_struct *sig = p->signal;
511  struct task_cputime cputime;
512  cputime_t rtime, utime, total;
513 
514  thread_group_cputime(p, &cputime);
515 
516  total = cputime.utime + cputime.stime;
517  rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
518 
519  if (total)
520  utime = scale_utime(cputime.utime, rtime, total);
521  else
522  utime = rtime;
523 
524  sig->prev_utime = max(sig->prev_utime, utime);
525  sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
526 
527  *ut = sig->prev_utime;
528  *st = sig->prev_stime;
529 }
530 #endif