Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cx18-av-audio.c
Go to the documentation of this file.
1 /*
2  * cx18 ADEC audio functions
3  *
4  * Derived from cx25840-audio.c
5  *
6  * Copyright (C) 2007 Hans Verkuil <[email protected]>
7  * Copyright (C) 2008 Andy Walls <[email protected]>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; either version 2
12  * of the License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
22  * 02110-1301, USA.
23  */
24 
25 #include "cx18-driver.h"
26 
27 static int set_audclk_freq(struct cx18 *cx, u32 freq)
28 {
29  struct cx18_av_state *state = &cx->av_state;
30 
31  if (freq != 32000 && freq != 44100 && freq != 48000)
32  return -EINVAL;
33 
34  /*
35  * The PLL parameters are based on the external crystal frequency that
36  * would ideally be:
37  *
38  * NTSC Color subcarrier freq * 8 =
39  * 4.5 MHz/286 * 455/2 * 8 = 28.63636363... MHz
40  *
41  * The accidents of history and rationale that explain from where this
42  * combination of magic numbers originate can be found in:
43  *
44  * [1] Abrahams, I. C., "Choice of Chrominance Subcarrier Frequency in
45  * the NTSC Standards", Proceedings of the I-R-E, January 1954, pp 79-80
46  *
47  * [2] Abrahams, I. C., "The 'Frequency Interleaving' Principle in the
48  * NTSC Standards", Proceedings of the I-R-E, January 1954, pp 81-83
49  *
50  * As Mike Bradley has rightly pointed out, it's not the exact crystal
51  * frequency that matters, only that all parts of the driver and
52  * firmware are using the same value (close to the ideal value).
53  *
54  * Since I have a strong suspicion that, if the firmware ever assumes a
55  * crystal value at all, it will assume 28.636360 MHz, the crystal
56  * freq used in calculations in this driver will be:
57  *
58  * xtal_freq = 28.636360 MHz
59  *
60  * an error of less than 0.13 ppm which is way, way better than any off
61  * the shelf crystal will have for accuracy anyway.
62  *
63  * Below I aim to run the PLLs' VCOs near 400 MHz to minimze error.
64  *
65  * Many thanks to Jeff Campbell and Mike Bradley for their extensive
66  * investigation, experimentation, testing, and suggested solutions of
67  * of audio/video sync problems with SVideo and CVBS captures.
68  */
69 
70  if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
71  switch (freq) {
72  case 32000:
73  /*
74  * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
75  * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20
76  */
77  cx18_av_write4(cx, 0x108, 0x200d040f);
78 
79  /* VID_PLL Fraction = 0x2be2fe */
80  /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
81  cx18_av_write4(cx, 0x10c, 0x002be2fe);
82 
83  /* AUX_PLL Fraction = 0x176740c */
84  /* xtal * 0xd.bb3a060/0x20 = 32000 * 384: 393 MHz p-pd*/
85  cx18_av_write4(cx, 0x110, 0x0176740c);
86 
87  /* src3/4/6_ctl */
88  /* 0x1.f77f = (4 * xtal/8*2/455) / 32000 */
89  cx18_av_write4(cx, 0x900, 0x0801f77f);
90  cx18_av_write4(cx, 0x904, 0x0801f77f);
91  cx18_av_write4(cx, 0x90c, 0x0801f77f);
92 
93  /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */
94  cx18_av_write(cx, 0x127, 0x60);
95 
96  /* AUD_COUNT = 0x2fff = 8 samples * 4 * 384 - 1 */
97  cx18_av_write4(cx, 0x12c, 0x11202fff);
98 
99  /*
100  * EN_AV_LOCK = 0
101  * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 =
102  * ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8
103  */
104  cx18_av_write4(cx, 0x128, 0xa00d2ef8);
105  break;
106 
107  case 44100:
108  /*
109  * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
110  * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x18
111  */
112  cx18_av_write4(cx, 0x108, 0x180e040f);
113 
114  /* VID_PLL Fraction = 0x2be2fe */
115  /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
116  cx18_av_write4(cx, 0x10c, 0x002be2fe);
117 
118  /* AUX_PLL Fraction = 0x062a1f2 */
119  /* xtal * 0xe.3150f90/0x18 = 44100 * 384: 406 MHz p-pd*/
120  cx18_av_write4(cx, 0x110, 0x0062a1f2);
121 
122  /* src3/4/6_ctl */
123  /* 0x1.6d59 = (4 * xtal/8*2/455) / 44100 */
124  cx18_av_write4(cx, 0x900, 0x08016d59);
125  cx18_av_write4(cx, 0x904, 0x08016d59);
126  cx18_av_write4(cx, 0x90c, 0x08016d59);
127 
128  /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x18 */
129  cx18_av_write(cx, 0x127, 0x58);
130 
131  /* AUD_COUNT = 0x92ff = 49 samples * 2 * 384 - 1 */
132  cx18_av_write4(cx, 0x12c, 0x112092ff);
133 
134  /*
135  * EN_AV_LOCK = 0
136  * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 =
137  * ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8
138  */
139  cx18_av_write4(cx, 0x128, 0xa01d4bf8);
140  break;
141 
142  case 48000:
143  /*
144  * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
145  * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x16
146  */
147  cx18_av_write4(cx, 0x108, 0x160e040f);
148 
149  /* VID_PLL Fraction = 0x2be2fe */
150  /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
151  cx18_av_write4(cx, 0x10c, 0x002be2fe);
152 
153  /* AUX_PLL Fraction = 0x05227ad */
154  /* xtal * 0xe.2913d68/0x16 = 48000 * 384: 406 MHz p-pd*/
155  cx18_av_write4(cx, 0x110, 0x005227ad);
156 
157  /* src3/4/6_ctl */
158  /* 0x1.4faa = (4 * xtal/8*2/455) / 48000 */
159  cx18_av_write4(cx, 0x900, 0x08014faa);
160  cx18_av_write4(cx, 0x904, 0x08014faa);
161  cx18_av_write4(cx, 0x90c, 0x08014faa);
162 
163  /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x16 */
164  cx18_av_write(cx, 0x127, 0x56);
165 
166  /* AUD_COUNT = 0x5fff = 4 samples * 16 * 384 - 1 */
167  cx18_av_write4(cx, 0x12c, 0x11205fff);
168 
169  /*
170  * EN_AV_LOCK = 0
171  * VID_COUNT = 0x1193f8 = 143999.000 * 8 =
172  * ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8
173  */
174  cx18_av_write4(cx, 0x128, 0xa01193f8);
175  break;
176  }
177  } else {
178  switch (freq) {
179  case 32000:
180  /*
181  * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
182  * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x30
183  */
184  cx18_av_write4(cx, 0x108, 0x300d040f);
185 
186  /* VID_PLL Fraction = 0x2be2fe */
187  /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
188  cx18_av_write4(cx, 0x10c, 0x002be2fe);
189 
190  /* AUX_PLL Fraction = 0x176740c */
191  /* xtal * 0xd.bb3a060/0x30 = 32000 * 256: 393 MHz p-pd*/
192  cx18_av_write4(cx, 0x110, 0x0176740c);
193 
194  /* src1_ctl */
195  /* 0x1.0000 = 32000/32000 */
196  cx18_av_write4(cx, 0x8f8, 0x08010000);
197 
198  /* src3/4/6_ctl */
199  /* 0x2.0000 = 2 * (32000/32000) */
200  cx18_av_write4(cx, 0x900, 0x08020000);
201  cx18_av_write4(cx, 0x904, 0x08020000);
202  cx18_av_write4(cx, 0x90c, 0x08020000);
203 
204  /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x30 */
205  cx18_av_write(cx, 0x127, 0x70);
206 
207  /* AUD_COUNT = 0x1fff = 8 samples * 4 * 256 - 1 */
208  cx18_av_write4(cx, 0x12c, 0x11201fff);
209 
210  /*
211  * EN_AV_LOCK = 0
212  * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 =
213  * ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8
214  */
215  cx18_av_write4(cx, 0x128, 0xa00d2ef8);
216  break;
217 
218  case 44100:
219  /*
220  * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
221  * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x24
222  */
223  cx18_av_write4(cx, 0x108, 0x240e040f);
224 
225  /* VID_PLL Fraction = 0x2be2fe */
226  /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
227  cx18_av_write4(cx, 0x10c, 0x002be2fe);
228 
229  /* AUX_PLL Fraction = 0x062a1f2 */
230  /* xtal * 0xe.3150f90/0x24 = 44100 * 256: 406 MHz p-pd*/
231  cx18_av_write4(cx, 0x110, 0x0062a1f2);
232 
233  /* src1_ctl */
234  /* 0x1.60cd = 44100/32000 */
235  cx18_av_write4(cx, 0x8f8, 0x080160cd);
236 
237  /* src3/4/6_ctl */
238  /* 0x1.7385 = 2 * (32000/44100) */
239  cx18_av_write4(cx, 0x900, 0x08017385);
240  cx18_av_write4(cx, 0x904, 0x08017385);
241  cx18_av_write4(cx, 0x90c, 0x08017385);
242 
243  /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x24 */
244  cx18_av_write(cx, 0x127, 0x64);
245 
246  /* AUD_COUNT = 0x61ff = 49 samples * 2 * 256 - 1 */
247  cx18_av_write4(cx, 0x12c, 0x112061ff);
248 
249  /*
250  * EN_AV_LOCK = 0
251  * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 =
252  * ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8
253  */
254  cx18_av_write4(cx, 0x128, 0xa01d4bf8);
255  break;
256 
257  case 48000:
258  /*
259  * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
260  * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20
261  */
262  cx18_av_write4(cx, 0x108, 0x200d040f);
263 
264  /* VID_PLL Fraction = 0x2be2fe */
265  /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
266  cx18_av_write4(cx, 0x10c, 0x002be2fe);
267 
268  /* AUX_PLL Fraction = 0x176740c */
269  /* xtal * 0xd.bb3a060/0x20 = 48000 * 256: 393 MHz p-pd*/
270  cx18_av_write4(cx, 0x110, 0x0176740c);
271 
272  /* src1_ctl */
273  /* 0x1.8000 = 48000/32000 */
274  cx18_av_write4(cx, 0x8f8, 0x08018000);
275 
276  /* src3/4/6_ctl */
277  /* 0x1.5555 = 2 * (32000/48000) */
278  cx18_av_write4(cx, 0x900, 0x08015555);
279  cx18_av_write4(cx, 0x904, 0x08015555);
280  cx18_av_write4(cx, 0x90c, 0x08015555);
281 
282  /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */
283  cx18_av_write(cx, 0x127, 0x60);
284 
285  /* AUD_COUNT = 0x3fff = 4 samples * 16 * 256 - 1 */
286  cx18_av_write4(cx, 0x12c, 0x11203fff);
287 
288  /*
289  * EN_AV_LOCK = 0
290  * VID_COUNT = 0x1193f8 = 143999.000 * 8 =
291  * ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8
292  */
293  cx18_av_write4(cx, 0x128, 0xa01193f8);
294  break;
295  }
296  }
297 
298  state->audclk_freq = freq;
299 
300  return 0;
301 }
302 
303 void cx18_av_audio_set_path(struct cx18 *cx)
304 {
305  struct cx18_av_state *state = &cx->av_state;
306  u8 v;
307 
308  /* stop microcontroller */
309  v = cx18_av_read(cx, 0x803) & ~0x10;
310  cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
311 
312  /* assert soft reset */
313  v = cx18_av_read(cx, 0x810) | 0x01;
314  cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
315 
316  /* Mute everything to prevent the PFFT! */
317  cx18_av_write(cx, 0x8d3, 0x1f);
318 
319  if (state->aud_input <= CX18_AV_AUDIO_SERIAL2) {
320  /* Set Path1 to Serial Audio Input */
321  cx18_av_write4(cx, 0x8d0, 0x01011012);
322 
323  /* The microcontroller should not be started for the
324  * non-tuner inputs: autodetection is specific for
325  * TV audio. */
326  } else {
327  /* Set Path1 to Analog Demod Main Channel */
328  cx18_av_write4(cx, 0x8d0, 0x1f063870);
329  }
330 
331  set_audclk_freq(cx, state->audclk_freq);
332 
333  /* deassert soft reset */
334  v = cx18_av_read(cx, 0x810) & ~0x01;
335  cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
336 
337  if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
338  /* When the microcontroller detects the
339  * audio format, it will unmute the lines */
340  v = cx18_av_read(cx, 0x803) | 0x10;
341  cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
342  }
343 }
344 
345 static void set_volume(struct cx18 *cx, int volume)
346 {
347  /* First convert the volume to msp3400 values (0-127) */
348  int vol = volume >> 9;
349  /* now scale it up to cx18_av values
350  * -114dB to -96dB maps to 0
351  * this should be 19, but in my testing that was 4dB too loud */
352  if (vol <= 23)
353  vol = 0;
354  else
355  vol -= 23;
356 
357  /* PATH1_VOLUME */
358  cx18_av_write(cx, 0x8d4, 228 - (vol * 2));
359 }
360 
361 static void set_bass(struct cx18 *cx, int bass)
362 {
363  /* PATH1_EQ_BASS_VOL */
364  cx18_av_and_or(cx, 0x8d9, ~0x3f, 48 - (bass * 48 / 0xffff));
365 }
366 
367 static void set_treble(struct cx18 *cx, int treble)
368 {
369  /* PATH1_EQ_TREBLE_VOL */
370  cx18_av_and_or(cx, 0x8db, ~0x3f, 48 - (treble * 48 / 0xffff));
371 }
372 
373 static void set_balance(struct cx18 *cx, int balance)
374 {
375  int bal = balance >> 8;
376  if (bal > 0x80) {
377  /* PATH1_BAL_LEFT */
378  cx18_av_and_or(cx, 0x8d5, 0x7f, 0x80);
379  /* PATH1_BAL_LEVEL */
380  cx18_av_and_or(cx, 0x8d5, ~0x7f, bal & 0x7f);
381  } else {
382  /* PATH1_BAL_LEFT */
383  cx18_av_and_or(cx, 0x8d5, 0x7f, 0x00);
384  /* PATH1_BAL_LEVEL */
385  cx18_av_and_or(cx, 0x8d5, ~0x7f, 0x80 - bal);
386  }
387 }
388 
389 static void set_mute(struct cx18 *cx, int mute)
390 {
391  struct cx18_av_state *state = &cx->av_state;
392  u8 v;
393 
394  if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
395  /* Must turn off microcontroller in order to mute sound.
396  * Not sure if this is the best method, but it does work.
397  * If the microcontroller is running, then it will undo any
398  * changes to the mute register. */
399  v = cx18_av_read(cx, 0x803);
400  if (mute) {
401  /* disable microcontroller */
402  v &= ~0x10;
403  cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
404  cx18_av_write(cx, 0x8d3, 0x1f);
405  } else {
406  /* enable microcontroller */
407  v |= 0x10;
408  cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
409  }
410  } else {
411  /* SRC1_MUTE_EN */
412  cx18_av_and_or(cx, 0x8d3, ~0x2, mute ? 0x02 : 0x00);
413  }
414 }
415 
417 {
418  struct cx18 *cx = v4l2_get_subdevdata(sd);
419  struct cx18_av_state *state = &cx->av_state;
420  int retval;
421  u8 v;
422 
423  if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
424  v = cx18_av_read(cx, 0x803) & ~0x10;
425  cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
426  cx18_av_write(cx, 0x8d3, 0x1f);
427  }
428  v = cx18_av_read(cx, 0x810) | 0x1;
429  cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
430 
431  retval = set_audclk_freq(cx, freq);
432 
433  v = cx18_av_read(cx, 0x810) & ~0x1;
434  cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
435  if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
436  v = cx18_av_read(cx, 0x803) | 0x10;
437  cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
438  }
439  return retval;
440 }
441 
442 static int cx18_av_audio_s_ctrl(struct v4l2_ctrl *ctrl)
443 {
444  struct v4l2_subdev *sd = to_sd(ctrl);
445  struct cx18 *cx = v4l2_get_subdevdata(sd);
446 
447  switch (ctrl->id) {
449  set_volume(cx, ctrl->val);
450  break;
451  case V4L2_CID_AUDIO_BASS:
452  set_bass(cx, ctrl->val);
453  break;
455  set_treble(cx, ctrl->val);
456  break;
458  set_balance(cx, ctrl->val);
459  break;
460  case V4L2_CID_AUDIO_MUTE:
461  set_mute(cx, ctrl->val);
462  break;
463  default:
464  return -EINVAL;
465  }
466  return 0;
467 }
468 
470  .s_ctrl = cx18_av_audio_s_ctrl,
471 };