Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
decode_rs.c
Go to the documentation of this file.
1 /*
2  * lib/reed_solomon/decode_rs.c
3  *
4  * Overview:
5  * Generic Reed Solomon encoder / decoder library
6  *
7  * Copyright 2002, Phil Karn, KA9Q
8  * May be used under the terms of the GNU General Public License (GPL)
9  *
10  * Adaption to the kernel by Thomas Gleixner ([email protected])
11  *
12  * $Id: decode_rs.c,v 1.7 2005/11/07 11:14:59 gleixner Exp $
13  *
14  */
15 
16 /* Generic data width independent code which is included by the
17  * wrappers.
18  */
19 {
20  int deg_lambda, el, deg_omega;
21  int i, j, r, k, pad;
22  int nn = rs->nn;
23  int nroots = rs->nroots;
24  int fcr = rs->fcr;
25  int prim = rs->prim;
26  int iprim = rs->iprim;
27  uint16_t *alpha_to = rs->alpha_to;
28  uint16_t *index_of = rs->index_of;
30  /* Err+Eras Locator poly and syndrome poly The maximum value
31  * of nroots is 8. So the necessary stack size will be about
32  * 220 bytes max.
33  */
34  uint16_t lambda[nroots + 1], syn[nroots];
35  uint16_t b[nroots + 1], t[nroots + 1], omega[nroots + 1];
36  uint16_t root[nroots], reg[nroots + 1], loc[nroots];
37  int count = 0;
39 
40  /* Check length parameter for validity */
41  pad = nn - nroots - len;
42  BUG_ON(pad < 0 || pad >= nn);
43 
44  /* Does the caller provide the syndrome ? */
45  if (s != NULL)
46  goto decode;
47 
48  /* form the syndromes; i.e., evaluate data(x) at roots of
49  * g(x) */
50  for (i = 0; i < nroots; i++)
51  syn[i] = (((uint16_t) data[0]) ^ invmsk) & msk;
52 
53  for (j = 1; j < len; j++) {
54  for (i = 0; i < nroots; i++) {
55  if (syn[i] == 0) {
56  syn[i] = (((uint16_t) data[j]) ^
57  invmsk) & msk;
58  } else {
59  syn[i] = ((((uint16_t) data[j]) ^
60  invmsk) & msk) ^
61  alpha_to[rs_modnn(rs, index_of[syn[i]] +
62  (fcr + i) * prim)];
63  }
64  }
65  }
66 
67  for (j = 0; j < nroots; j++) {
68  for (i = 0; i < nroots; i++) {
69  if (syn[i] == 0) {
70  syn[i] = ((uint16_t) par[j]) & msk;
71  } else {
72  syn[i] = (((uint16_t) par[j]) & msk) ^
73  alpha_to[rs_modnn(rs, index_of[syn[i]] +
74  (fcr+i)*prim)];
75  }
76  }
77  }
78  s = syn;
79 
80  /* Convert syndromes to index form, checking for nonzero condition */
81  syn_error = 0;
82  for (i = 0; i < nroots; i++) {
83  syn_error |= s[i];
84  s[i] = index_of[s[i]];
85  }
86 
87  if (!syn_error) {
88  /* if syndrome is zero, data[] is a codeword and there are no
89  * errors to correct. So return data[] unmodified
90  */
91  count = 0;
92  goto finish;
93  }
94 
95  decode:
96  memset(&lambda[1], 0, nroots * sizeof(lambda[0]));
97  lambda[0] = 1;
98 
99  if (no_eras > 0) {
100  /* Init lambda to be the erasure locator polynomial */
101  lambda[1] = alpha_to[rs_modnn(rs,
102  prim * (nn - 1 - eras_pos[0]))];
103  for (i = 1; i < no_eras; i++) {
104  u = rs_modnn(rs, prim * (nn - 1 - eras_pos[i]));
105  for (j = i + 1; j > 0; j--) {
106  tmp = index_of[lambda[j - 1]];
107  if (tmp != nn) {
108  lambda[j] ^=
109  alpha_to[rs_modnn(rs, u + tmp)];
110  }
111  }
112  }
113  }
114 
115  for (i = 0; i < nroots + 1; i++)
116  b[i] = index_of[lambda[i]];
117 
118  /*
119  * Begin Berlekamp-Massey algorithm to determine error+erasure
120  * locator polynomial
121  */
122  r = no_eras;
123  el = no_eras;
124  while (++r <= nroots) { /* r is the step number */
125  /* Compute discrepancy at the r-th step in poly-form */
126  discr_r = 0;
127  for (i = 0; i < r; i++) {
128  if ((lambda[i] != 0) && (s[r - i - 1] != nn)) {
129  discr_r ^=
130  alpha_to[rs_modnn(rs,
131  index_of[lambda[i]] +
132  s[r - i - 1])];
133  }
134  }
135  discr_r = index_of[discr_r]; /* Index form */
136  if (discr_r == nn) {
137  /* 2 lines below: B(x) <-- x*B(x) */
138  memmove (&b[1], b, nroots * sizeof (b[0]));
139  b[0] = nn;
140  } else {
141  /* 7 lines below: T(x) <-- lambda(x)-discr_r*x*b(x) */
142  t[0] = lambda[0];
143  for (i = 0; i < nroots; i++) {
144  if (b[i] != nn) {
145  t[i + 1] = lambda[i + 1] ^
146  alpha_to[rs_modnn(rs, discr_r +
147  b[i])];
148  } else
149  t[i + 1] = lambda[i + 1];
150  }
151  if (2 * el <= r + no_eras - 1) {
152  el = r + no_eras - el;
153  /*
154  * 2 lines below: B(x) <-- inv(discr_r) *
155  * lambda(x)
156  */
157  for (i = 0; i <= nroots; i++) {
158  b[i] = (lambda[i] == 0) ? nn :
159  rs_modnn(rs, index_of[lambda[i]]
160  - discr_r + nn);
161  }
162  } else {
163  /* 2 lines below: B(x) <-- x*B(x) */
164  memmove(&b[1], b, nroots * sizeof(b[0]));
165  b[0] = nn;
166  }
167  memcpy(lambda, t, (nroots + 1) * sizeof(t[0]));
168  }
169  }
170 
171  /* Convert lambda to index form and compute deg(lambda(x)) */
172  deg_lambda = 0;
173  for (i = 0; i < nroots + 1; i++) {
174  lambda[i] = index_of[lambda[i]];
175  if (lambda[i] != nn)
176  deg_lambda = i;
177  }
178  /* Find roots of error+erasure locator polynomial by Chien search */
179  memcpy(&reg[1], &lambda[1], nroots * sizeof(reg[0]));
180  count = 0; /* Number of roots of lambda(x) */
181  for (i = 1, k = iprim - 1; i <= nn; i++, k = rs_modnn(rs, k + iprim)) {
182  q = 1; /* lambda[0] is always 0 */
183  for (j = deg_lambda; j > 0; j--) {
184  if (reg[j] != nn) {
185  reg[j] = rs_modnn(rs, reg[j] + j);
186  q ^= alpha_to[reg[j]];
187  }
188  }
189  if (q != 0)
190  continue; /* Not a root */
191  /* store root (index-form) and error location number */
192  root[count] = i;
193  loc[count] = k;
194  /* If we've already found max possible roots,
195  * abort the search to save time
196  */
197  if (++count == deg_lambda)
198  break;
199  }
200  if (deg_lambda != count) {
201  /*
202  * deg(lambda) unequal to number of roots => uncorrectable
203  * error detected
204  */
205  count = -EBADMSG;
206  goto finish;
207  }
208  /*
209  * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
210  * x**nroots). in index form. Also find deg(omega).
211  */
212  deg_omega = deg_lambda - 1;
213  for (i = 0; i <= deg_omega; i++) {
214  tmp = 0;
215  for (j = i; j >= 0; j--) {
216  if ((s[i - j] != nn) && (lambda[j] != nn))
217  tmp ^=
218  alpha_to[rs_modnn(rs, s[i - j] + lambda[j])];
219  }
220  omega[i] = index_of[tmp];
221  }
222 
223  /*
224  * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
225  * inv(X(l))**(fcr-1) and den = lambda_pr(inv(X(l))) all in poly-form
226  */
227  for (j = count - 1; j >= 0; j--) {
228  num1 = 0;
229  for (i = deg_omega; i >= 0; i--) {
230  if (omega[i] != nn)
231  num1 ^= alpha_to[rs_modnn(rs, omega[i] +
232  i * root[j])];
233  }
234  num2 = alpha_to[rs_modnn(rs, root[j] * (fcr - 1) + nn)];
235  den = 0;
236 
237  /* lambda[i+1] for i even is the formal derivative
238  * lambda_pr of lambda[i] */
239  for (i = min(deg_lambda, nroots - 1) & ~1; i >= 0; i -= 2) {
240  if (lambda[i + 1] != nn) {
241  den ^= alpha_to[rs_modnn(rs, lambda[i + 1] +
242  i * root[j])];
243  }
244  }
245  /* Apply error to data */
246  if (num1 != 0 && loc[j] >= pad) {
247  uint16_t cor = alpha_to[rs_modnn(rs,index_of[num1] +
248  index_of[num2] +
249  nn - index_of[den])];
250  /* Store the error correction pattern, if a
251  * correction buffer is available */
252  if (corr) {
253  corr[j] = cor;
254  } else {
255  /* If a data buffer is given and the
256  * error is inside the message,
257  * correct it */
258  if (data && (loc[j] < (nn - nroots)))
259  data[loc[j] - pad] ^= cor;
260  }
261  }
262  }
263 
264 finish:
265  if (eras_pos != NULL) {
266  for (i = 0; i < count; i++)
267  eras_pos[i] = loc[i] - pad;
268  }
269  return count;
270 
271 }