Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
deftree.c
Go to the documentation of this file.
1 /* +++ trees.c */
2 /* trees.c -- output deflated data using Huffman coding
3  * Copyright (C) 1995-1996 Jean-loup Gailly
4  * For conditions of distribution and use, see copyright notice in zlib.h
5  */
6 
7 /*
8  * ALGORITHM
9  *
10  * The "deflation" process uses several Huffman trees. The more
11  * common source values are represented by shorter bit sequences.
12  *
13  * Each code tree is stored in a compressed form which is itself
14  * a Huffman encoding of the lengths of all the code strings (in
15  * ascending order by source values). The actual code strings are
16  * reconstructed from the lengths in the inflate process, as described
17  * in the deflate specification.
18  *
19  * REFERENCES
20  *
21  * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22  * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23  *
24  * Storer, James A.
25  * Data Compression: Methods and Theory, pp. 49-50.
26  * Computer Science Press, 1988. ISBN 0-7167-8156-5.
27  *
28  * Sedgewick, R.
29  * Algorithms, p290.
30  * Addison-Wesley, 1983. ISBN 0-201-06672-6.
31  */
32 
33 /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
34 
35 /* #include "deflate.h" */
36 
37 #include <linux/zutil.h>
38 #include "defutil.h"
39 
40 #ifdef DEBUG_ZLIB
41 # include <ctype.h>
42 #endif
43 
44 /* ===========================================================================
45  * Constants
46  */
47 
48 #define MAX_BL_BITS 7
49 /* Bit length codes must not exceed MAX_BL_BITS bits */
50 
51 #define END_BLOCK 256
52 /* end of block literal code */
53 
54 #define REP_3_6 16
55 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
56 
57 #define REPZ_3_10 17
58 /* repeat a zero length 3-10 times (3 bits of repeat count) */
59 
60 #define REPZ_11_138 18
61 /* repeat a zero length 11-138 times (7 bits of repeat count) */
62 
63 static const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
64  = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
65 
66 static const int extra_dbits[D_CODES] /* extra bits for each distance code */
67  = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
68 
69 static const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
70  = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
71 
72 static const uch bl_order[BL_CODES]
73  = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
74 /* The lengths of the bit length codes are sent in order of decreasing
75  * probability, to avoid transmitting the lengths for unused bit length codes.
76  */
77 
78 #define Buf_size (8 * 2*sizeof(char))
79 /* Number of bits used within bi_buf. (bi_buf might be implemented on
80  * more than 16 bits on some systems.)
81  */
82 
83 /* ===========================================================================
84  * Local data. These are initialized only once.
85  */
86 
87 static ct_data static_ltree[L_CODES+2];
88 /* The static literal tree. Since the bit lengths are imposed, there is no
89  * need for the L_CODES extra codes used during heap construction. However
90  * The codes 286 and 287 are needed to build a canonical tree (see zlib_tr_init
91  * below).
92  */
93 
94 static ct_data static_dtree[D_CODES];
95 /* The static distance tree. (Actually a trivial tree since all codes use
96  * 5 bits.)
97  */
98 
99 static uch dist_code[512];
100 /* distance codes. The first 256 values correspond to the distances
101  * 3 .. 258, the last 256 values correspond to the top 8 bits of
102  * the 15 bit distances.
103  */
104 
105 static uch length_code[MAX_MATCH-MIN_MATCH+1];
106 /* length code for each normalized match length (0 == MIN_MATCH) */
107 
108 static int base_length[LENGTH_CODES];
109 /* First normalized length for each code (0 = MIN_MATCH) */
110 
111 static int base_dist[D_CODES];
112 /* First normalized distance for each code (0 = distance of 1) */
113 
115  const ct_data *static_tree; /* static tree or NULL */
116  const int *extra_bits; /* extra bits for each code or NULL */
117  int extra_base; /* base index for extra_bits */
118  int elems; /* max number of elements in the tree */
119  int max_length; /* max bit length for the codes */
120 };
121 
122 static static_tree_desc static_l_desc =
123 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
124 
125 static static_tree_desc static_d_desc =
126 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
127 
128 static static_tree_desc static_bl_desc =
129 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
130 
131 /* ===========================================================================
132  * Local (static) routines in this file.
133  */
134 
135 static void tr_static_init (void);
136 static void init_block (deflate_state *s);
137 static void pqdownheap (deflate_state *s, ct_data *tree, int k);
138 static void gen_bitlen (deflate_state *s, tree_desc *desc);
139 static void gen_codes (ct_data *tree, int max_code, ush *bl_count);
140 static void build_tree (deflate_state *s, tree_desc *desc);
141 static void scan_tree (deflate_state *s, ct_data *tree, int max_code);
142 static void send_tree (deflate_state *s, ct_data *tree, int max_code);
143 static int build_bl_tree (deflate_state *s);
144 static void send_all_trees (deflate_state *s, int lcodes, int dcodes,
145  int blcodes);
146 static void compress_block (deflate_state *s, ct_data *ltree,
147  ct_data *dtree);
148 static void set_data_type (deflate_state *s);
149 static unsigned bi_reverse (unsigned value, int length);
150 static void bi_windup (deflate_state *s);
151 static void bi_flush (deflate_state *s);
152 static void copy_block (deflate_state *s, char *buf, unsigned len,
153  int header);
154 
155 #ifndef DEBUG_ZLIB
156 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
157  /* Send a code of the given tree. c and tree must not have side effects */
158 
159 #else /* DEBUG_ZLIB */
160 # define send_code(s, c, tree) \
161  { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
162  send_bits(s, tree[c].Code, tree[c].Len); }
163 #endif
164 
165 #define d_code(dist) \
166  ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
167 /* Mapping from a distance to a distance code. dist is the distance - 1 and
168  * must not have side effects. dist_code[256] and dist_code[257] are never
169  * used.
170  */
171 
172 /* ===========================================================================
173  * Send a value on a given number of bits.
174  * IN assertion: length <= 16 and value fits in length bits.
175  */
176 #ifdef DEBUG_ZLIB
177 static void send_bits (deflate_state *s, int value, int length);
178 
179 static void send_bits(
180  deflate_state *s,
181  int value, /* value to send */
182  int length /* number of bits */
183 )
184 {
185  Tracevv((stderr," l %2d v %4x ", length, value));
186  Assert(length > 0 && length <= 15, "invalid length");
187  s->bits_sent += (ulg)length;
188 
189  /* If not enough room in bi_buf, use (valid) bits from bi_buf and
190  * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
191  * unused bits in value.
192  */
193  if (s->bi_valid > (int)Buf_size - length) {
194  s->bi_buf |= (value << s->bi_valid);
195  put_short(s, s->bi_buf);
196  s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
197  s->bi_valid += length - Buf_size;
198  } else {
199  s->bi_buf |= value << s->bi_valid;
200  s->bi_valid += length;
201  }
202 }
203 #else /* !DEBUG_ZLIB */
204 
205 #define send_bits(s, value, length) \
206 { int len = length;\
207  if (s->bi_valid > (int)Buf_size - len) {\
208  int val = value;\
209  s->bi_buf |= (val << s->bi_valid);\
210  put_short(s, s->bi_buf);\
211  s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
212  s->bi_valid += len - Buf_size;\
213  } else {\
214  s->bi_buf |= (value) << s->bi_valid;\
215  s->bi_valid += len;\
216  }\
217 }
218 #endif /* DEBUG_ZLIB */
219 
220 /* ===========================================================================
221  * Initialize the various 'constant' tables. In a multi-threaded environment,
222  * this function may be called by two threads concurrently, but this is
223  * harmless since both invocations do exactly the same thing.
224  */
225 static void tr_static_init(void)
226 {
227  static int static_init_done;
228  int n; /* iterates over tree elements */
229  int bits; /* bit counter */
230  int length; /* length value */
231  int code; /* code value */
232  int dist; /* distance index */
233  ush bl_count[MAX_BITS+1];
234  /* number of codes at each bit length for an optimal tree */
235 
236  if (static_init_done) return;
237 
238  /* Initialize the mapping length (0..255) -> length code (0..28) */
239  length = 0;
240  for (code = 0; code < LENGTH_CODES-1; code++) {
241  base_length[code] = length;
242  for (n = 0; n < (1<<extra_lbits[code]); n++) {
243  length_code[length++] = (uch)code;
244  }
245  }
246  Assert (length == 256, "tr_static_init: length != 256");
247  /* Note that the length 255 (match length 258) can be represented
248  * in two different ways: code 284 + 5 bits or code 285, so we
249  * overwrite length_code[255] to use the best encoding:
250  */
251  length_code[length-1] = (uch)code;
252 
253  /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
254  dist = 0;
255  for (code = 0 ; code < 16; code++) {
256  base_dist[code] = dist;
257  for (n = 0; n < (1<<extra_dbits[code]); n++) {
258  dist_code[dist++] = (uch)code;
259  }
260  }
261  Assert (dist == 256, "tr_static_init: dist != 256");
262  dist >>= 7; /* from now on, all distances are divided by 128 */
263  for ( ; code < D_CODES; code++) {
264  base_dist[code] = dist << 7;
265  for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
266  dist_code[256 + dist++] = (uch)code;
267  }
268  }
269  Assert (dist == 256, "tr_static_init: 256+dist != 512");
270 
271  /* Construct the codes of the static literal tree */
272  for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
273  n = 0;
274  while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
275  while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
276  while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
277  while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
278  /* Codes 286 and 287 do not exist, but we must include them in the
279  * tree construction to get a canonical Huffman tree (longest code
280  * all ones)
281  */
282  gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
283 
284  /* The static distance tree is trivial: */
285  for (n = 0; n < D_CODES; n++) {
286  static_dtree[n].Len = 5;
287  static_dtree[n].Code = bi_reverse((unsigned)n, 5);
288  }
289  static_init_done = 1;
290 }
291 
292 /* ===========================================================================
293  * Initialize the tree data structures for a new zlib stream.
294  */
296  deflate_state *s
297 )
298 {
299  tr_static_init();
300 
301  s->compressed_len = 0L;
302 
303  s->l_desc.dyn_tree = s->dyn_ltree;
304  s->l_desc.stat_desc = &static_l_desc;
305 
306  s->d_desc.dyn_tree = s->dyn_dtree;
307  s->d_desc.stat_desc = &static_d_desc;
308 
309  s->bl_desc.dyn_tree = s->bl_tree;
310  s->bl_desc.stat_desc = &static_bl_desc;
311 
312  s->bi_buf = 0;
313  s->bi_valid = 0;
314  s->last_eob_len = 8; /* enough lookahead for inflate */
315 #ifdef DEBUG_ZLIB
316  s->bits_sent = 0L;
317 #endif
318 
319  /* Initialize the first block of the first file: */
320  init_block(s);
321 }
322 
323 /* ===========================================================================
324  * Initialize a new block.
325  */
326 static void init_block(
327  deflate_state *s
328 )
329 {
330  int n; /* iterates over tree elements */
331 
332  /* Initialize the trees. */
333  for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
334  for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
335  for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
336 
337  s->dyn_ltree[END_BLOCK].Freq = 1;
338  s->opt_len = s->static_len = 0L;
339  s->last_lit = s->matches = 0;
340 }
341 
342 #define SMALLEST 1
343 /* Index within the heap array of least frequent node in the Huffman tree */
344 
345 
346 /* ===========================================================================
347  * Remove the smallest element from the heap and recreate the heap with
348  * one less element. Updates heap and heap_len.
349  */
350 #define pqremove(s, tree, top) \
351 {\
352  top = s->heap[SMALLEST]; \
353  s->heap[SMALLEST] = s->heap[s->heap_len--]; \
354  pqdownheap(s, tree, SMALLEST); \
355 }
356 
357 /* ===========================================================================
358  * Compares to subtrees, using the tree depth as tie breaker when
359  * the subtrees have equal frequency. This minimizes the worst case length.
360  */
361 #define smaller(tree, n, m, depth) \
362  (tree[n].Freq < tree[m].Freq || \
363  (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
364 
365 /* ===========================================================================
366  * Restore the heap property by moving down the tree starting at node k,
367  * exchanging a node with the smallest of its two sons if necessary, stopping
368  * when the heap property is re-established (each father smaller than its
369  * two sons).
370  */
371 static void pqdownheap(
372  deflate_state *s,
373  ct_data *tree, /* the tree to restore */
374  int k /* node to move down */
375 )
376 {
377  int v = s->heap[k];
378  int j = k << 1; /* left son of k */
379  while (j <= s->heap_len) {
380  /* Set j to the smallest of the two sons: */
381  if (j < s->heap_len &&
382  smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
383  j++;
384  }
385  /* Exit if v is smaller than both sons */
386  if (smaller(tree, v, s->heap[j], s->depth)) break;
387 
388  /* Exchange v with the smallest son */
389  s->heap[k] = s->heap[j]; k = j;
390 
391  /* And continue down the tree, setting j to the left son of k */
392  j <<= 1;
393  }
394  s->heap[k] = v;
395 }
396 
397 /* ===========================================================================
398  * Compute the optimal bit lengths for a tree and update the total bit length
399  * for the current block.
400  * IN assertion: the fields freq and dad are set, heap[heap_max] and
401  * above are the tree nodes sorted by increasing frequency.
402  * OUT assertions: the field len is set to the optimal bit length, the
403  * array bl_count contains the frequencies for each bit length.
404  * The length opt_len is updated; static_len is also updated if stree is
405  * not null.
406  */
407 static void gen_bitlen(
408  deflate_state *s,
409  tree_desc *desc /* the tree descriptor */
410 )
411 {
412  ct_data *tree = desc->dyn_tree;
413  int max_code = desc->max_code;
414  const ct_data *stree = desc->stat_desc->static_tree;
415  const int *extra = desc->stat_desc->extra_bits;
416  int base = desc->stat_desc->extra_base;
417  int max_length = desc->stat_desc->max_length;
418  int h; /* heap index */
419  int n, m; /* iterate over the tree elements */
420  int bits; /* bit length */
421  int xbits; /* extra bits */
422  ush f; /* frequency */
423  int overflow = 0; /* number of elements with bit length too large */
424 
425  for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
426 
427  /* In a first pass, compute the optimal bit lengths (which may
428  * overflow in the case of the bit length tree).
429  */
430  tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
431 
432  for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
433  n = s->heap[h];
434  bits = tree[tree[n].Dad].Len + 1;
435  if (bits > max_length) bits = max_length, overflow++;
436  tree[n].Len = (ush)bits;
437  /* We overwrite tree[n].Dad which is no longer needed */
438 
439  if (n > max_code) continue; /* not a leaf node */
440 
441  s->bl_count[bits]++;
442  xbits = 0;
443  if (n >= base) xbits = extra[n-base];
444  f = tree[n].Freq;
445  s->opt_len += (ulg)f * (bits + xbits);
446  if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
447  }
448  if (overflow == 0) return;
449 
450  Trace((stderr,"\nbit length overflow\n"));
451  /* This happens for example on obj2 and pic of the Calgary corpus */
452 
453  /* Find the first bit length which could increase: */
454  do {
455  bits = max_length-1;
456  while (s->bl_count[bits] == 0) bits--;
457  s->bl_count[bits]--; /* move one leaf down the tree */
458  s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
459  s->bl_count[max_length]--;
460  /* The brother of the overflow item also moves one step up,
461  * but this does not affect bl_count[max_length]
462  */
463  overflow -= 2;
464  } while (overflow > 0);
465 
466  /* Now recompute all bit lengths, scanning in increasing frequency.
467  * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
468  * lengths instead of fixing only the wrong ones. This idea is taken
469  * from 'ar' written by Haruhiko Okumura.)
470  */
471  for (bits = max_length; bits != 0; bits--) {
472  n = s->bl_count[bits];
473  while (n != 0) {
474  m = s->heap[--h];
475  if (m > max_code) continue;
476  if (tree[m].Len != (unsigned) bits) {
477  Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
478  s->opt_len += ((long)bits - (long)tree[m].Len)
479  *(long)tree[m].Freq;
480  tree[m].Len = (ush)bits;
481  }
482  n--;
483  }
484  }
485 }
486 
487 /* ===========================================================================
488  * Generate the codes for a given tree and bit counts (which need not be
489  * optimal).
490  * IN assertion: the array bl_count contains the bit length statistics for
491  * the given tree and the field len is set for all tree elements.
492  * OUT assertion: the field code is set for all tree elements of non
493  * zero code length.
494  */
495 static void gen_codes(
496  ct_data *tree, /* the tree to decorate */
497  int max_code, /* largest code with non zero frequency */
498  ush *bl_count /* number of codes at each bit length */
499 )
500 {
501  ush next_code[MAX_BITS+1]; /* next code value for each bit length */
502  ush code = 0; /* running code value */
503  int bits; /* bit index */
504  int n; /* code index */
505 
506  /* The distribution counts are first used to generate the code values
507  * without bit reversal.
508  */
509  for (bits = 1; bits <= MAX_BITS; bits++) {
510  next_code[bits] = code = (code + bl_count[bits-1]) << 1;
511  }
512  /* Check that the bit counts in bl_count are consistent. The last code
513  * must be all ones.
514  */
515  Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
516  "inconsistent bit counts");
517  Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
518 
519  for (n = 0; n <= max_code; n++) {
520  int len = tree[n].Len;
521  if (len == 0) continue;
522  /* Now reverse the bits */
523  tree[n].Code = bi_reverse(next_code[len]++, len);
524 
525  Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
526  n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
527  }
528 }
529 
530 /* ===========================================================================
531  * Construct one Huffman tree and assigns the code bit strings and lengths.
532  * Update the total bit length for the current block.
533  * IN assertion: the field freq is set for all tree elements.
534  * OUT assertions: the fields len and code are set to the optimal bit length
535  * and corresponding code. The length opt_len is updated; static_len is
536  * also updated if stree is not null. The field max_code is set.
537  */
538 static void build_tree(
539  deflate_state *s,
540  tree_desc *desc /* the tree descriptor */
541 )
542 {
543  ct_data *tree = desc->dyn_tree;
544  const ct_data *stree = desc->stat_desc->static_tree;
545  int elems = desc->stat_desc->elems;
546  int n, m; /* iterate over heap elements */
547  int max_code = -1; /* largest code with non zero frequency */
548  int node; /* new node being created */
549 
550  /* Construct the initial heap, with least frequent element in
551  * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
552  * heap[0] is not used.
553  */
554  s->heap_len = 0, s->heap_max = HEAP_SIZE;
555 
556  for (n = 0; n < elems; n++) {
557  if (tree[n].Freq != 0) {
558  s->heap[++(s->heap_len)] = max_code = n;
559  s->depth[n] = 0;
560  } else {
561  tree[n].Len = 0;
562  }
563  }
564 
565  /* The pkzip format requires that at least one distance code exists,
566  * and that at least one bit should be sent even if there is only one
567  * possible code. So to avoid special checks later on we force at least
568  * two codes of non zero frequency.
569  */
570  while (s->heap_len < 2) {
571  node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
572  tree[node].Freq = 1;
573  s->depth[node] = 0;
574  s->opt_len--; if (stree) s->static_len -= stree[node].Len;
575  /* node is 0 or 1 so it does not have extra bits */
576  }
577  desc->max_code = max_code;
578 
579  /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
580  * establish sub-heaps of increasing lengths:
581  */
582  for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
583 
584  /* Construct the Huffman tree by repeatedly combining the least two
585  * frequent nodes.
586  */
587  node = elems; /* next internal node of the tree */
588  do {
589  pqremove(s, tree, n); /* n = node of least frequency */
590  m = s->heap[SMALLEST]; /* m = node of next least frequency */
591 
592  s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
593  s->heap[--(s->heap_max)] = m;
594 
595  /* Create a new node father of n and m */
596  tree[node].Freq = tree[n].Freq + tree[m].Freq;
597  s->depth[node] = (uch) (max(s->depth[n], s->depth[m]) + 1);
598  tree[n].Dad = tree[m].Dad = (ush)node;
599 #ifdef DUMP_BL_TREE
600  if (tree == s->bl_tree) {
601  fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
602  node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
603  }
604 #endif
605  /* and insert the new node in the heap */
606  s->heap[SMALLEST] = node++;
607  pqdownheap(s, tree, SMALLEST);
608 
609  } while (s->heap_len >= 2);
610 
611  s->heap[--(s->heap_max)] = s->heap[SMALLEST];
612 
613  /* At this point, the fields freq and dad are set. We can now
614  * generate the bit lengths.
615  */
616  gen_bitlen(s, (tree_desc *)desc);
617 
618  /* The field len is now set, we can generate the bit codes */
619  gen_codes ((ct_data *)tree, max_code, s->bl_count);
620 }
621 
622 /* ===========================================================================
623  * Scan a literal or distance tree to determine the frequencies of the codes
624  * in the bit length tree.
625  */
626 static void scan_tree(
627  deflate_state *s,
628  ct_data *tree, /* the tree to be scanned */
629  int max_code /* and its largest code of non zero frequency */
630 )
631 {
632  int n; /* iterates over all tree elements */
633  int prevlen = -1; /* last emitted length */
634  int curlen; /* length of current code */
635  int nextlen = tree[0].Len; /* length of next code */
636  int count = 0; /* repeat count of the current code */
637  int max_count = 7; /* max repeat count */
638  int min_count = 4; /* min repeat count */
639 
640  if (nextlen == 0) max_count = 138, min_count = 3;
641  tree[max_code+1].Len = (ush)0xffff; /* guard */
642 
643  for (n = 0; n <= max_code; n++) {
644  curlen = nextlen; nextlen = tree[n+1].Len;
645  if (++count < max_count && curlen == nextlen) {
646  continue;
647  } else if (count < min_count) {
648  s->bl_tree[curlen].Freq += count;
649  } else if (curlen != 0) {
650  if (curlen != prevlen) s->bl_tree[curlen].Freq++;
651  s->bl_tree[REP_3_6].Freq++;
652  } else if (count <= 10) {
653  s->bl_tree[REPZ_3_10].Freq++;
654  } else {
655  s->bl_tree[REPZ_11_138].Freq++;
656  }
657  count = 0; prevlen = curlen;
658  if (nextlen == 0) {
659  max_count = 138, min_count = 3;
660  } else if (curlen == nextlen) {
661  max_count = 6, min_count = 3;
662  } else {
663  max_count = 7, min_count = 4;
664  }
665  }
666 }
667 
668 /* ===========================================================================
669  * Send a literal or distance tree in compressed form, using the codes in
670  * bl_tree.
671  */
672 static void send_tree(
673  deflate_state *s,
674  ct_data *tree, /* the tree to be scanned */
675  int max_code /* and its largest code of non zero frequency */
676 )
677 {
678  int n; /* iterates over all tree elements */
679  int prevlen = -1; /* last emitted length */
680  int curlen; /* length of current code */
681  int nextlen = tree[0].Len; /* length of next code */
682  int count = 0; /* repeat count of the current code */
683  int max_count = 7; /* max repeat count */
684  int min_count = 4; /* min repeat count */
685 
686  /* tree[max_code+1].Len = -1; */ /* guard already set */
687  if (nextlen == 0) max_count = 138, min_count = 3;
688 
689  for (n = 0; n <= max_code; n++) {
690  curlen = nextlen; nextlen = tree[n+1].Len;
691  if (++count < max_count && curlen == nextlen) {
692  continue;
693  } else if (count < min_count) {
694  do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
695 
696  } else if (curlen != 0) {
697  if (curlen != prevlen) {
698  send_code(s, curlen, s->bl_tree); count--;
699  }
700  Assert(count >= 3 && count <= 6, " 3_6?");
701  send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
702 
703  } else if (count <= 10) {
704  send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
705 
706  } else {
707  send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
708  }
709  count = 0; prevlen = curlen;
710  if (nextlen == 0) {
711  max_count = 138, min_count = 3;
712  } else if (curlen == nextlen) {
713  max_count = 6, min_count = 3;
714  } else {
715  max_count = 7, min_count = 4;
716  }
717  }
718 }
719 
720 /* ===========================================================================
721  * Construct the Huffman tree for the bit lengths and return the index in
722  * bl_order of the last bit length code to send.
723  */
724 static int build_bl_tree(
725  deflate_state *s
726 )
727 {
728  int max_blindex; /* index of last bit length code of non zero freq */
729 
730  /* Determine the bit length frequencies for literal and distance trees */
731  scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
732  scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
733 
734  /* Build the bit length tree: */
735  build_tree(s, (tree_desc *)(&(s->bl_desc)));
736  /* opt_len now includes the length of the tree representations, except
737  * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
738  */
739 
740  /* Determine the number of bit length codes to send. The pkzip format
741  * requires that at least 4 bit length codes be sent. (appnote.txt says
742  * 3 but the actual value used is 4.)
743  */
744  for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
745  if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
746  }
747  /* Update opt_len to include the bit length tree and counts */
748  s->opt_len += 3*(max_blindex+1) + 5+5+4;
749  Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
750  s->opt_len, s->static_len));
751 
752  return max_blindex;
753 }
754 
755 /* ===========================================================================
756  * Send the header for a block using dynamic Huffman trees: the counts, the
757  * lengths of the bit length codes, the literal tree and the distance tree.
758  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
759  */
760 static void send_all_trees(
761  deflate_state *s,
762  int lcodes, /* number of codes for each tree */
763  int dcodes, /* number of codes for each tree */
764  int blcodes /* number of codes for each tree */
765 )
766 {
767  int rank; /* index in bl_order */
768 
769  Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
770  Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
771  "too many codes");
772  Tracev((stderr, "\nbl counts: "));
773  send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
774  send_bits(s, dcodes-1, 5);
775  send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
776  for (rank = 0; rank < blcodes; rank++) {
777  Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
778  send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
779  }
780  Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
781 
782  send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
783  Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
784 
785  send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
786  Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
787 }
788 
789 /* ===========================================================================
790  * Send a stored block
791  */
793  deflate_state *s,
794  char *buf, /* input block */
795  ulg stored_len, /* length of input block */
796  int eof /* true if this is the last block for a file */
797 )
798 {
799  send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
800  s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
801  s->compressed_len += (stored_len + 4) << 3;
802 
803  copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
804 }
805 
806 /* Send just the `stored block' type code without any length bytes or data.
807  */
809  deflate_state *s
810 )
811 {
812  send_bits(s, (STORED_BLOCK << 1), 3);
813  bi_windup(s);
814  s->compressed_len = (s->compressed_len + 3) & ~7L;
815 }
816 
817 
818 /* ===========================================================================
819  * Send one empty static block to give enough lookahead for inflate.
820  * This takes 10 bits, of which 7 may remain in the bit buffer.
821  * The current inflate code requires 9 bits of lookahead. If the
822  * last two codes for the previous block (real code plus EOB) were coded
823  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
824  * the last real code. In this case we send two empty static blocks instead
825  * of one. (There are no problems if the previous block is stored or fixed.)
826  * To simplify the code, we assume the worst case of last real code encoded
827  * on one bit only.
828  */
830  deflate_state *s
831 )
832 {
833  send_bits(s, STATIC_TREES<<1, 3);
834  send_code(s, END_BLOCK, static_ltree);
835  s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
836  bi_flush(s);
837  /* Of the 10 bits for the empty block, we have already sent
838  * (10 - bi_valid) bits. The lookahead for the last real code (before
839  * the EOB of the previous block) was thus at least one plus the length
840  * of the EOB plus what we have just sent of the empty static block.
841  */
842  if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
843  send_bits(s, STATIC_TREES<<1, 3);
844  send_code(s, END_BLOCK, static_ltree);
845  s->compressed_len += 10L;
846  bi_flush(s);
847  }
848  s->last_eob_len = 7;
849 }
850 
851 /* ===========================================================================
852  * Determine the best encoding for the current block: dynamic trees, static
853  * trees or store, and output the encoded block to the zip file. This function
854  * returns the total compressed length for the file so far.
855  */
857  deflate_state *s,
858  char *buf, /* input block, or NULL if too old */
859  ulg stored_len, /* length of input block */
860  int eof /* true if this is the last block for a file */
861 )
862 {
863  ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
864  int max_blindex = 0; /* index of last bit length code of non zero freq */
865 
866  /* Build the Huffman trees unless a stored block is forced */
867  if (s->level > 0) {
868 
869  /* Check if the file is ascii or binary */
870  if (s->data_type == Z_UNKNOWN) set_data_type(s);
871 
872  /* Construct the literal and distance trees */
873  build_tree(s, (tree_desc *)(&(s->l_desc)));
874  Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
875  s->static_len));
876 
877  build_tree(s, (tree_desc *)(&(s->d_desc)));
878  Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
879  s->static_len));
880  /* At this point, opt_len and static_len are the total bit lengths of
881  * the compressed block data, excluding the tree representations.
882  */
883 
884  /* Build the bit length tree for the above two trees, and get the index
885  * in bl_order of the last bit length code to send.
886  */
887  max_blindex = build_bl_tree(s);
888 
889  /* Determine the best encoding. Compute first the block length in bytes*/
890  opt_lenb = (s->opt_len+3+7)>>3;
891  static_lenb = (s->static_len+3+7)>>3;
892 
893  Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
894  opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
895  s->last_lit));
896 
897  if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
898 
899  } else {
900  Assert(buf != (char*)0, "lost buf");
901  opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
902  }
903 
904  /* If compression failed and this is the first and last block,
905  * and if the .zip file can be seeked (to rewrite the local header),
906  * the whole file is transformed into a stored file:
907  */
908 #ifdef STORED_FILE_OK
909 # ifdef FORCE_STORED_FILE
910  if (eof && s->compressed_len == 0L) { /* force stored file */
911 # else
912  if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
913 # endif
914  /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
915  if (buf == (char*)0) error ("block vanished");
916 
917  copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
918  s->compressed_len = stored_len << 3;
919  s->method = STORED;
920  } else
921 #endif /* STORED_FILE_OK */
922 
923 #ifdef FORCE_STORED
924  if (buf != (char*)0) { /* force stored block */
925 #else
926  if (stored_len+4 <= opt_lenb && buf != (char*)0) {
927  /* 4: two words for the lengths */
928 #endif
929  /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
930  * Otherwise we can't have processed more than WSIZE input bytes since
931  * the last block flush, because compression would have been
932  * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
933  * transform a block into a stored block.
934  */
935  zlib_tr_stored_block(s, buf, stored_len, eof);
936 
937 #ifdef FORCE_STATIC
938  } else if (static_lenb >= 0) { /* force static trees */
939 #else
940  } else if (static_lenb == opt_lenb) {
941 #endif
942  send_bits(s, (STATIC_TREES<<1)+eof, 3);
943  compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
944  s->compressed_len += 3 + s->static_len;
945  } else {
946  send_bits(s, (DYN_TREES<<1)+eof, 3);
947  send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
948  max_blindex+1);
949  compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
950  s->compressed_len += 3 + s->opt_len;
951  }
952  Assert (s->compressed_len == s->bits_sent, "bad compressed size");
953  init_block(s);
954 
955  if (eof) {
956  bi_windup(s);
957  s->compressed_len += 7; /* align on byte boundary */
958  }
959  Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
960  s->compressed_len-7*eof));
961 
962  return s->compressed_len >> 3;
963 }
964 
965 /* ===========================================================================
966  * Save the match info and tally the frequency counts. Return true if
967  * the current block must be flushed.
968  */
970  deflate_state *s,
971  unsigned dist, /* distance of matched string */
972  unsigned lc /* match length-MIN_MATCH or unmatched char (if dist==0) */
973 )
974 {
975  s->d_buf[s->last_lit] = (ush)dist;
976  s->l_buf[s->last_lit++] = (uch)lc;
977  if (dist == 0) {
978  /* lc is the unmatched char */
979  s->dyn_ltree[lc].Freq++;
980  } else {
981  s->matches++;
982  /* Here, lc is the match length - MIN_MATCH */
983  dist--; /* dist = match distance - 1 */
984  Assert((ush)dist < (ush)MAX_DIST(s) &&
985  (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
986  (ush)d_code(dist) < (ush)D_CODES, "zlib_tr_tally: bad match");
987 
988  s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
989  s->dyn_dtree[d_code(dist)].Freq++;
990  }
991 
992  /* Try to guess if it is profitable to stop the current block here */
993  if ((s->last_lit & 0xfff) == 0 && s->level > 2) {
994  /* Compute an upper bound for the compressed length */
995  ulg out_length = (ulg)s->last_lit*8L;
996  ulg in_length = (ulg)((long)s->strstart - s->block_start);
997  int dcode;
998  for (dcode = 0; dcode < D_CODES; dcode++) {
999  out_length += (ulg)s->dyn_dtree[dcode].Freq *
1000  (5L+extra_dbits[dcode]);
1001  }
1002  out_length >>= 3;
1003  Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1004  s->last_lit, in_length, out_length,
1005  100L - out_length*100L/in_length));
1006  if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1007  }
1008  return (s->last_lit == s->lit_bufsize-1);
1009  /* We avoid equality with lit_bufsize because of wraparound at 64K
1010  * on 16 bit machines and because stored blocks are restricted to
1011  * 64K-1 bytes.
1012  */
1013 }
1014 
1015 /* ===========================================================================
1016  * Send the block data compressed using the given Huffman trees
1017  */
1018 static void compress_block(
1019  deflate_state *s,
1020  ct_data *ltree, /* literal tree */
1021  ct_data *dtree /* distance tree */
1022 )
1023 {
1024  unsigned dist; /* distance of matched string */
1025  int lc; /* match length or unmatched char (if dist == 0) */
1026  unsigned lx = 0; /* running index in l_buf */
1027  unsigned code; /* the code to send */
1028  int extra; /* number of extra bits to send */
1029 
1030  if (s->last_lit != 0) do {
1031  dist = s->d_buf[lx];
1032  lc = s->l_buf[lx++];
1033  if (dist == 0) {
1034  send_code(s, lc, ltree); /* send a literal byte */
1035  Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1036  } else {
1037  /* Here, lc is the match length - MIN_MATCH */
1038  code = length_code[lc];
1039  send_code(s, code+LITERALS+1, ltree); /* send the length code */
1040  extra = extra_lbits[code];
1041  if (extra != 0) {
1042  lc -= base_length[code];
1043  send_bits(s, lc, extra); /* send the extra length bits */
1044  }
1045  dist--; /* dist is now the match distance - 1 */
1046  code = d_code(dist);
1047  Assert (code < D_CODES, "bad d_code");
1048 
1049  send_code(s, code, dtree); /* send the distance code */
1050  extra = extra_dbits[code];
1051  if (extra != 0) {
1052  dist -= base_dist[code];
1053  send_bits(s, dist, extra); /* send the extra distance bits */
1054  }
1055  } /* literal or match pair ? */
1056 
1057  /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1058  Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
1059 
1060  } while (lx < s->last_lit);
1061 
1062  send_code(s, END_BLOCK, ltree);
1063  s->last_eob_len = ltree[END_BLOCK].Len;
1064 }
1065 
1066 /* ===========================================================================
1067  * Set the data type to ASCII or BINARY, using a crude approximation:
1068  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
1069  * IN assertion: the fields freq of dyn_ltree are set and the total of all
1070  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
1071  */
1072 static void set_data_type(
1073  deflate_state *s
1074 )
1075 {
1076  int n = 0;
1077  unsigned ascii_freq = 0;
1078  unsigned bin_freq = 0;
1079  while (n < 7) bin_freq += s->dyn_ltree[n++].Freq;
1080  while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq;
1081  while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
1082  s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
1083 }
1084 
1085 /* ===========================================================================
1086  * Copy a stored block, storing first the length and its
1087  * one's complement if requested.
1088  */
1089 static void copy_block(
1090  deflate_state *s,
1091  char *buf, /* the input data */
1092  unsigned len, /* its length */
1093  int header /* true if block header must be written */
1094 )
1095 {
1096  bi_windup(s); /* align on byte boundary */
1097  s->last_eob_len = 8; /* enough lookahead for inflate */
1098 
1099  if (header) {
1100  put_short(s, (ush)len);
1101  put_short(s, (ush)~len);
1102 #ifdef DEBUG_ZLIB
1103  s->bits_sent += 2*16;
1104 #endif
1105  }
1106 #ifdef DEBUG_ZLIB
1107  s->bits_sent += (ulg)len<<3;
1108 #endif
1109  /* bundle up the put_byte(s, *buf++) calls */
1110  memcpy(&s->pending_buf[s->pending], buf, len);
1111  s->pending += len;
1112 }
1113