Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dp_sqrt.c
Go to the documentation of this file.
1 /* IEEE754 floating point arithmetic
2  * double precision square root
3  */
4 /*
5  * MIPS floating point support
6  * Copyright (C) 1994-2000 Algorithmics Ltd.
7  *
8  * ########################################################################
9  *
10  * This program is free software; you can distribute it and/or modify it
11  * under the terms of the GNU General Public License (Version 2) as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17  * for more details.
18  *
19  * You should have received a copy of the GNU General Public License along
20  * with this program; if not, write to the Free Software Foundation, Inc.,
21  * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
22  *
23  * ########################################################################
24  */
25 
26 
27 #include "ieee754dp.h"
28 
29 static const unsigned table[] = {
30  0, 1204, 3062, 5746, 9193, 13348, 18162, 23592,
31  29598, 36145, 43202, 50740, 58733, 67158, 75992,
32  85215, 83599, 71378, 60428, 50647, 41945, 34246,
33  27478, 21581, 16499, 12183, 8588, 5674, 3403,
34  1742, 661, 130
35 };
36 
37 ieee754dp ieee754dp_sqrt(ieee754dp x)
38 {
39  struct _ieee754_csr oldcsr;
40  ieee754dp y, z, t;
41  unsigned scalx, yh;
42  COMPXDP;
43 
44  EXPLODEXDP;
45  CLEARCX;
46  FLUSHXDP;
47 
48  /* x == INF or NAN? */
49  switch (xc) {
50  case IEEE754_CLASS_QNAN:
51  /* sqrt(Nan) = Nan */
52  return ieee754dp_nanxcpt(x, "sqrt");
53  case IEEE754_CLASS_SNAN:
55  return ieee754dp_nanxcpt(ieee754dp_indef(), "sqrt");
56  case IEEE754_CLASS_ZERO:
57  /* sqrt(0) = 0 */
58  return x;
59  case IEEE754_CLASS_INF:
60  if (xs) {
61  /* sqrt(-Inf) = Nan */
63  return ieee754dp_nanxcpt(ieee754dp_indef(), "sqrt");
64  }
65  /* sqrt(+Inf) = Inf */
66  return x;
68  DPDNORMX;
69  /* fall through */
70  case IEEE754_CLASS_NORM:
71  if (xs) {
72  /* sqrt(-x) = Nan */
74  return ieee754dp_nanxcpt(ieee754dp_indef(), "sqrt");
75  }
76  break;
77  }
78 
79  /* save old csr; switch off INX enable & flag; set RN rounding */
80  oldcsr = ieee754_csr;
84 
85  /* adjust exponent to prevent overflow */
86  scalx = 0;
87  if (xe > 512) { /* x > 2**-512? */
88  xe -= 512; /* x = x / 2**512 */
89  scalx += 256;
90  } else if (xe < -512) { /* x < 2**-512? */
91  xe += 512; /* x = x * 2**512 */
92  scalx -= 256;
93  }
94 
95  y = x = builddp(0, xe + DP_EBIAS, xm & ~DP_HIDDEN_BIT);
96 
97  /* magic initial approximation to almost 8 sig. bits */
98  yh = y.bits >> 32;
99  yh = (yh >> 1) + 0x1ff80000;
100  yh = yh - table[(yh >> 15) & 31];
101  y.bits = ((u64) yh << 32) | (y.bits & 0xffffffff);
102 
103  /* Heron's rule once with correction to improve to ~18 sig. bits */
104  /* t=x/y; y=y+t; py[n0]=py[n0]-0x00100006; py[n1]=0; */
105  t = ieee754dp_div(x, y);
106  y = ieee754dp_add(y, t);
107  y.bits -= 0x0010000600000000LL;
108  y.bits &= 0xffffffff00000000LL;
109 
110  /* triple to almost 56 sig. bits: y ~= sqrt(x) to within 1 ulp */
111  /* t=y*y; z=t; pt[n0]+=0x00100000; t+=z; z=(x-z)*y; */
112  z = t = ieee754dp_mul(y, y);
113  t.parts.bexp += 0x001;
114  t = ieee754dp_add(t, z);
115  z = ieee754dp_mul(ieee754dp_sub(x, z), y);
116 
117  /* t=z/(t+x) ; pt[n0]+=0x00100000; y+=t; */
118  t = ieee754dp_div(z, ieee754dp_add(t, x));
119  t.parts.bexp += 0x001;
120  y = ieee754dp_add(y, t);
121 
122  /* twiddle last bit to force y correctly rounded */
123 
124  /* set RZ, clear INEX flag */
125  ieee754_csr.rm = IEEE754_RZ;
127 
128  /* t=x/y; ...chopped quotient, possibly inexact */
129  t = ieee754dp_div(x, y);
130 
131  if (ieee754_csr.sx & IEEE754_INEXACT || t.bits != y.bits) {
132 
133  if (!(ieee754_csr.sx & IEEE754_INEXACT))
134  /* t = t-ulp */
135  t.bits -= 1;
136 
137  /* add inexact to result status */
138  oldcsr.cx |= IEEE754_INEXACT;
139  oldcsr.sx |= IEEE754_INEXACT;
140 
141  switch (oldcsr.rm) {
142  case IEEE754_RP:
143  y.bits += 1;
144  /* drop through */
145  case IEEE754_RN:
146  t.bits += 1;
147  break;
148  }
149 
150  /* y=y+t; ...chopped sum */
151  y = ieee754dp_add(y, t);
152 
153  /* adjust scalx for correctly rounded sqrt(x) */
154  scalx -= 1;
155  }
156 
157  /* py[n0]=py[n0]+scalx; ...scale back y */
158  y.parts.bexp += scalx;
159 
160  /* restore rounding mode, possibly set inexact */
161  ieee754_csr = oldcsr;
162 
163  return y;
164 }