Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
lart.c
Go to the documentation of this file.
1 
2 /*
3  * MTD driver for the 28F160F3 Flash Memory (non-CFI) on LART.
4  *
5  * Author: Abraham vd Merwe <[email protected]>
6  *
7  * Copyright (c) 2001, 2d3D, Inc.
8  *
9  * This code is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * References:
14  *
15  * [1] 3 Volt Fast Boot Block Flash Memory" Intel Datasheet
16  * - Order Number: 290644-005
17  * - January 2000
18  *
19  * [2] MTD internal API documentation
20  * - http://www.linux-mtd.infradead.org/
21  *
22  * Limitations:
23  *
24  * Even though this driver is written for 3 Volt Fast Boot
25  * Block Flash Memory, it is rather specific to LART. With
26  * Minor modifications, notably the without data/address line
27  * mangling and different bus settings, etc. it should be
28  * trivial to adapt to other platforms.
29  *
30  * If somebody would sponsor me a different board, I'll
31  * adapt the driver (:
32  */
33 
34 /* debugging */
35 //#define LART_DEBUG
36 
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/types.h>
40 #include <linux/init.h>
41 #include <linux/errno.h>
42 #include <linux/string.h>
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/partitions.h>
45 
46 #ifndef CONFIG_SA1100_LART
47 #error This is for LART architecture only
48 #endif
49 
50 static char module_name[] = "lart";
51 
52 /*
53  * These values is specific to 28Fxxxx3 flash memory.
54  * See section 2.3.1 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
55  */
56 #define FLASH_BLOCKSIZE_PARAM (4096 * BUSWIDTH)
57 #define FLASH_NUMBLOCKS_16m_PARAM 8
58 #define FLASH_NUMBLOCKS_8m_PARAM 8
59 
60 /*
61  * These values is specific to 28Fxxxx3 flash memory.
62  * See section 2.3.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
63  */
64 #define FLASH_BLOCKSIZE_MAIN (32768 * BUSWIDTH)
65 #define FLASH_NUMBLOCKS_16m_MAIN 31
66 #define FLASH_NUMBLOCKS_8m_MAIN 15
67 
68 /*
69  * These values are specific to LART
70  */
71 
72 /* general */
73 #define BUSWIDTH 4 /* don't change this - a lot of the code _will_ break if you change this */
74 #define FLASH_OFFSET 0xe8000000 /* see linux/arch/arm/mach-sa1100/lart.c */
75 
76 /* blob */
77 #define NUM_BLOB_BLOCKS FLASH_NUMBLOCKS_16m_PARAM
78 #define BLOB_START 0x00000000
79 #define BLOB_LEN (NUM_BLOB_BLOCKS * FLASH_BLOCKSIZE_PARAM)
80 
81 /* kernel */
82 #define NUM_KERNEL_BLOCKS 7
83 #define KERNEL_START (BLOB_START + BLOB_LEN)
84 #define KERNEL_LEN (NUM_KERNEL_BLOCKS * FLASH_BLOCKSIZE_MAIN)
85 
86 /* initial ramdisk */
87 #define NUM_INITRD_BLOCKS 24
88 #define INITRD_START (KERNEL_START + KERNEL_LEN)
89 #define INITRD_LEN (NUM_INITRD_BLOCKS * FLASH_BLOCKSIZE_MAIN)
90 
91 /*
92  * See section 4.0 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
93  */
94 #define READ_ARRAY 0x00FF00FF /* Read Array/Reset */
95 #define READ_ID_CODES 0x00900090 /* Read Identifier Codes */
96 #define ERASE_SETUP 0x00200020 /* Block Erase */
97 #define ERASE_CONFIRM 0x00D000D0 /* Block Erase and Program Resume */
98 #define PGM_SETUP 0x00400040 /* Program */
99 #define STATUS_READ 0x00700070 /* Read Status Register */
100 #define STATUS_CLEAR 0x00500050 /* Clear Status Register */
101 #define STATUS_BUSY 0x00800080 /* Write State Machine Status (WSMS) */
102 #define STATUS_ERASE_ERR 0x00200020 /* Erase Status (ES) */
103 #define STATUS_PGM_ERR 0x00100010 /* Program Status (PS) */
104 
105 /*
106  * See section 4.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
107  */
108 #define FLASH_MANUFACTURER 0x00890089
109 #define FLASH_DEVICE_8mbit_TOP 0x88f188f1
110 #define FLASH_DEVICE_8mbit_BOTTOM 0x88f288f2
111 #define FLASH_DEVICE_16mbit_TOP 0x88f388f3
112 #define FLASH_DEVICE_16mbit_BOTTOM 0x88f488f4
113 
114 /***************************************************************************************************/
115 
116 /*
117  * The data line mapping on LART is as follows:
118  *
119  * U2 CPU | U3 CPU
120  * -------------------
121  * 0 20 | 0 12
122  * 1 22 | 1 14
123  * 2 19 | 2 11
124  * 3 17 | 3 9
125  * 4 24 | 4 0
126  * 5 26 | 5 2
127  * 6 31 | 6 7
128  * 7 29 | 7 5
129  * 8 21 | 8 13
130  * 9 23 | 9 15
131  * 10 18 | 10 10
132  * 11 16 | 11 8
133  * 12 25 | 12 1
134  * 13 27 | 13 3
135  * 14 30 | 14 6
136  * 15 28 | 15 4
137  */
138 
139 /* Mangle data (x) */
140 #define DATA_TO_FLASH(x) \
141  ( \
142  (((x) & 0x08009000) >> 11) + \
143  (((x) & 0x00002000) >> 10) + \
144  (((x) & 0x04004000) >> 8) + \
145  (((x) & 0x00000010) >> 4) + \
146  (((x) & 0x91000820) >> 3) + \
147  (((x) & 0x22080080) >> 2) + \
148  ((x) & 0x40000400) + \
149  (((x) & 0x00040040) << 1) + \
150  (((x) & 0x00110000) << 4) + \
151  (((x) & 0x00220100) << 5) + \
152  (((x) & 0x00800208) << 6) + \
153  (((x) & 0x00400004) << 9) + \
154  (((x) & 0x00000001) << 12) + \
155  (((x) & 0x00000002) << 13) \
156  )
157 
158 /* Unmangle data (x) */
159 #define FLASH_TO_DATA(x) \
160  ( \
161  (((x) & 0x00010012) << 11) + \
162  (((x) & 0x00000008) << 10) + \
163  (((x) & 0x00040040) << 8) + \
164  (((x) & 0x00000001) << 4) + \
165  (((x) & 0x12200104) << 3) + \
166  (((x) & 0x08820020) << 2) + \
167  ((x) & 0x40000400) + \
168  (((x) & 0x00080080) >> 1) + \
169  (((x) & 0x01100000) >> 4) + \
170  (((x) & 0x04402000) >> 5) + \
171  (((x) & 0x20008200) >> 6) + \
172  (((x) & 0x80000800) >> 9) + \
173  (((x) & 0x00001000) >> 12) + \
174  (((x) & 0x00004000) >> 13) \
175  )
176 
177 /*
178  * The address line mapping on LART is as follows:
179  *
180  * U3 CPU | U2 CPU
181  * -------------------
182  * 0 2 | 0 2
183  * 1 3 | 1 3
184  * 2 9 | 2 9
185  * 3 13 | 3 8
186  * 4 8 | 4 7
187  * 5 12 | 5 6
188  * 6 11 | 6 5
189  * 7 10 | 7 4
190  * 8 4 | 8 10
191  * 9 5 | 9 11
192  * 10 6 | 10 12
193  * 11 7 | 11 13
194  *
195  * BOOT BLOCK BOUNDARY
196  *
197  * 12 15 | 12 15
198  * 13 14 | 13 14
199  * 14 16 | 14 16
200  *
201  * MAIN BLOCK BOUNDARY
202  *
203  * 15 17 | 15 18
204  * 16 18 | 16 17
205  * 17 20 | 17 20
206  * 18 19 | 18 19
207  * 19 21 | 19 21
208  *
209  * As we can see from above, the addresses aren't mangled across
210  * block boundaries, so we don't need to worry about address
211  * translations except for sending/reading commands during
212  * initialization
213  */
214 
215 /* Mangle address (x) on chip U2 */
216 #define ADDR_TO_FLASH_U2(x) \
217  ( \
218  (((x) & 0x00000f00) >> 4) + \
219  (((x) & 0x00042000) << 1) + \
220  (((x) & 0x0009c003) << 2) + \
221  (((x) & 0x00021080) << 3) + \
222  (((x) & 0x00000010) << 4) + \
223  (((x) & 0x00000040) << 5) + \
224  (((x) & 0x00000024) << 7) + \
225  (((x) & 0x00000008) << 10) \
226  )
227 
228 /* Unmangle address (x) on chip U2 */
229 #define FLASH_U2_TO_ADDR(x) \
230  ( \
231  (((x) << 4) & 0x00000f00) + \
232  (((x) >> 1) & 0x00042000) + \
233  (((x) >> 2) & 0x0009c003) + \
234  (((x) >> 3) & 0x00021080) + \
235  (((x) >> 4) & 0x00000010) + \
236  (((x) >> 5) & 0x00000040) + \
237  (((x) >> 7) & 0x00000024) + \
238  (((x) >> 10) & 0x00000008) \
239  )
240 
241 /* Mangle address (x) on chip U3 */
242 #define ADDR_TO_FLASH_U3(x) \
243  ( \
244  (((x) & 0x00000080) >> 3) + \
245  (((x) & 0x00000040) >> 1) + \
246  (((x) & 0x00052020) << 1) + \
247  (((x) & 0x00084f03) << 2) + \
248  (((x) & 0x00029010) << 3) + \
249  (((x) & 0x00000008) << 5) + \
250  (((x) & 0x00000004) << 7) \
251  )
252 
253 /* Unmangle address (x) on chip U3 */
254 #define FLASH_U3_TO_ADDR(x) \
255  ( \
256  (((x) << 3) & 0x00000080) + \
257  (((x) << 1) & 0x00000040) + \
258  (((x) >> 1) & 0x00052020) + \
259  (((x) >> 2) & 0x00084f03) + \
260  (((x) >> 3) & 0x00029010) + \
261  (((x) >> 5) & 0x00000008) + \
262  (((x) >> 7) & 0x00000004) \
263  )
264 
265 /***************************************************************************************************/
266 
267 static __u8 read8 (__u32 offset)
268 {
269  volatile __u8 *data = (__u8 *) (FLASH_OFFSET + offset);
270 #ifdef LART_DEBUG
271  printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.2x\n", __func__, offset, *data);
272 #endif
273  return (*data);
274 }
275 
276 static __u32 read32 (__u32 offset)
277 {
278  volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
279 #ifdef LART_DEBUG
280  printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.8x\n", __func__, offset, *data);
281 #endif
282  return (*data);
283 }
284 
285 static void write32 (__u32 x,__u32 offset)
286 {
287  volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
288  *data = x;
289 #ifdef LART_DEBUG
290  printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, *data);
291 #endif
292 }
293 
294 /***************************************************************************************************/
295 
296 /*
297  * Probe for 16mbit flash memory on a LART board without doing
298  * too much damage. Since we need to write 1 dword to memory,
299  * we're f**cked if this happens to be DRAM since we can't
300  * restore the memory (otherwise we might exit Read Array mode).
301  *
302  * Returns 1 if we found 16mbit flash memory on LART, 0 otherwise.
303  */
304 static int flash_probe (void)
305 {
306  __u32 manufacturer,devtype;
307 
308  /* setup "Read Identifier Codes" mode */
309  write32 (DATA_TO_FLASH (READ_ID_CODES),0x00000000);
310 
311  /* probe U2. U2/U3 returns the same data since the first 3
312  * address lines is mangled in the same way */
313  manufacturer = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000000)));
314  devtype = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000001)));
315 
316  /* put the flash back into command mode */
317  write32 (DATA_TO_FLASH (READ_ARRAY),0x00000000);
318 
319  return (manufacturer == FLASH_MANUFACTURER && (devtype == FLASH_DEVICE_16mbit_TOP || devtype == FLASH_DEVICE_16mbit_BOTTOM));
320 }
321 
322 /*
323  * Erase one block of flash memory at offset ``offset'' which is any
324  * address within the block which should be erased.
325  *
326  * Returns 1 if successful, 0 otherwise.
327  */
328 static inline int erase_block (__u32 offset)
329 {
330  __u32 status;
331 
332 #ifdef LART_DEBUG
333  printk (KERN_DEBUG "%s(): 0x%.8x\n", __func__, offset);
334 #endif
335 
336  /* erase and confirm */
337  write32 (DATA_TO_FLASH (ERASE_SETUP),offset);
338  write32 (DATA_TO_FLASH (ERASE_CONFIRM),offset);
339 
340  /* wait for block erase to finish */
341  do
342  {
343  write32 (DATA_TO_FLASH (STATUS_READ),offset);
344  status = FLASH_TO_DATA (read32 (offset));
345  }
346  while ((~status & STATUS_BUSY) != 0);
347 
348  /* put the flash back into command mode */
349  write32 (DATA_TO_FLASH (READ_ARRAY),offset);
350 
351  /* was the erase successful? */
352  if ((status & STATUS_ERASE_ERR))
353  {
354  printk (KERN_WARNING "%s: erase error at address 0x%.8x.\n",module_name,offset);
355  return (0);
356  }
357 
358  return (1);
359 }
360 
361 static int flash_erase (struct mtd_info *mtd,struct erase_info *instr)
362 {
363  __u32 addr,len;
364  int i,first;
365 
366 #ifdef LART_DEBUG
367  printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n", __func__, instr->addr, instr->len);
368 #endif
369 
370  /*
371  * check that both start and end of the requested erase are
372  * aligned with the erasesize at the appropriate addresses.
373  *
374  * skip all erase regions which are ended before the start of
375  * the requested erase. Actually, to save on the calculations,
376  * we skip to the first erase region which starts after the
377  * start of the requested erase, and then go back one.
378  */
379  for (i = 0; i < mtd->numeraseregions && instr->addr >= mtd->eraseregions[i].offset; i++) ;
380  i--;
381 
382  /*
383  * ok, now i is pointing at the erase region in which this
384  * erase request starts. Check the start of the requested
385  * erase range is aligned with the erase size which is in
386  * effect here.
387  */
388  if (i < 0 || (instr->addr & (mtd->eraseregions[i].erasesize - 1)))
389  return -EINVAL;
390 
391  /* Remember the erase region we start on */
392  first = i;
393 
394  /*
395  * next, check that the end of the requested erase is aligned
396  * with the erase region at that address.
397  *
398  * as before, drop back one to point at the region in which
399  * the address actually falls
400  */
401  for (; i < mtd->numeraseregions && instr->addr + instr->len >= mtd->eraseregions[i].offset; i++) ;
402  i--;
403 
404  /* is the end aligned on a block boundary? */
405  if (i < 0 || ((instr->addr + instr->len) & (mtd->eraseregions[i].erasesize - 1)))
406  return -EINVAL;
407 
408  addr = instr->addr;
409  len = instr->len;
410 
411  i = first;
412 
413  /* now erase those blocks */
414  while (len)
415  {
416  if (!erase_block (addr))
417  {
418  instr->state = MTD_ERASE_FAILED;
419  return (-EIO);
420  }
421 
422  addr += mtd->eraseregions[i].erasesize;
423  len -= mtd->eraseregions[i].erasesize;
424 
425  if (addr == mtd->eraseregions[i].offset + (mtd->eraseregions[i].erasesize * mtd->eraseregions[i].numblocks)) i++;
426  }
427 
428  instr->state = MTD_ERASE_DONE;
429  mtd_erase_callback(instr);
430 
431  return (0);
432 }
433 
434 static int flash_read (struct mtd_info *mtd,loff_t from,size_t len,size_t *retlen,u_char *buf)
435 {
436 #ifdef LART_DEBUG
437  printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n", __func__, (__u32)from, len);
438 #endif
439 
440  /* we always read len bytes */
441  *retlen = len;
442 
443  /* first, we read bytes until we reach a dword boundary */
444  if (from & (BUSWIDTH - 1))
445  {
446  int gap = BUSWIDTH - (from & (BUSWIDTH - 1));
447 
448  while (len && gap--) *buf++ = read8 (from++), len--;
449  }
450 
451  /* now we read dwords until we reach a non-dword boundary */
452  while (len >= BUSWIDTH)
453  {
454  *((__u32 *) buf) = read32 (from);
455 
456  buf += BUSWIDTH;
457  from += BUSWIDTH;
458  len -= BUSWIDTH;
459  }
460 
461  /* top up the last unaligned bytes */
462  if (len & (BUSWIDTH - 1))
463  while (len--) *buf++ = read8 (from++);
464 
465  return (0);
466 }
467 
468 /*
469  * Write one dword ``x'' to flash memory at offset ``offset''. ``offset''
470  * must be 32 bits, i.e. it must be on a dword boundary.
471  *
472  * Returns 1 if successful, 0 otherwise.
473  */
474 static inline int write_dword (__u32 offset,__u32 x)
475 {
476  __u32 status;
477 
478 #ifdef LART_DEBUG
479  printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, x);
480 #endif
481 
482  /* setup writing */
483  write32 (DATA_TO_FLASH (PGM_SETUP),offset);
484 
485  /* write the data */
486  write32 (x,offset);
487 
488  /* wait for the write to finish */
489  do
490  {
491  write32 (DATA_TO_FLASH (STATUS_READ),offset);
492  status = FLASH_TO_DATA (read32 (offset));
493  }
494  while ((~status & STATUS_BUSY) != 0);
495 
496  /* put the flash back into command mode */
497  write32 (DATA_TO_FLASH (READ_ARRAY),offset);
498 
499  /* was the write successful? */
500  if ((status & STATUS_PGM_ERR) || read32 (offset) != x)
501  {
502  printk (KERN_WARNING "%s: write error at address 0x%.8x.\n",module_name,offset);
503  return (0);
504  }
505 
506  return (1);
507 }
508 
509 static int flash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf)
510 {
511  __u8 tmp[4];
512  int i,n;
513 
514 #ifdef LART_DEBUG
515  printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n", __func__, (__u32)to, len);
516 #endif
517 
518  /* sanity checks */
519  if (!len) return (0);
520 
521  /* first, we write a 0xFF.... padded byte until we reach a dword boundary */
522  if (to & (BUSWIDTH - 1))
523  {
524  __u32 aligned = to & ~(BUSWIDTH - 1);
525  int gap = to - aligned;
526 
527  i = n = 0;
528 
529  while (gap--) tmp[i++] = 0xFF;
530  while (len && i < BUSWIDTH) tmp[i++] = buf[n++], len--;
531  while (i < BUSWIDTH) tmp[i++] = 0xFF;
532 
533  if (!write_dword (aligned,*((__u32 *) tmp))) return (-EIO);
534 
535  to += n;
536  buf += n;
537  *retlen += n;
538  }
539 
540  /* now we write dwords until we reach a non-dword boundary */
541  while (len >= BUSWIDTH)
542  {
543  if (!write_dword (to,*((__u32 *) buf))) return (-EIO);
544 
545  to += BUSWIDTH;
546  buf += BUSWIDTH;
547  *retlen += BUSWIDTH;
548  len -= BUSWIDTH;
549  }
550 
551  /* top up the last unaligned bytes, padded with 0xFF.... */
552  if (len & (BUSWIDTH - 1))
553  {
554  i = n = 0;
555 
556  while (len--) tmp[i++] = buf[n++];
557  while (i < BUSWIDTH) tmp[i++] = 0xFF;
558 
559  if (!write_dword (to,*((__u32 *) tmp))) return (-EIO);
560 
561  *retlen += n;
562  }
563 
564  return (0);
565 }
566 
567 /***************************************************************************************************/
568 
569 static struct mtd_info mtd;
570 
571 static struct mtd_erase_region_info erase_regions[] = {
572  /* parameter blocks */
573  {
574  .offset = 0x00000000,
575  .erasesize = FLASH_BLOCKSIZE_PARAM,
576  .numblocks = FLASH_NUMBLOCKS_16m_PARAM,
577  },
578  /* main blocks */
579  {
581  .erasesize = FLASH_BLOCKSIZE_MAIN,
582  .numblocks = FLASH_NUMBLOCKS_16m_MAIN,
583  }
584 };
585 
586 static struct mtd_partition lart_partitions[] = {
587  /* blob */
588  {
589  .name = "blob",
590  .offset = BLOB_START,
591  .size = BLOB_LEN,
592  },
593  /* kernel */
594  {
595  .name = "kernel",
596  .offset = KERNEL_START, /* MTDPART_OFS_APPEND */
597  .size = KERNEL_LEN,
598  },
599  /* initial ramdisk / file system */
600  {
601  .name = "file system",
602  .offset = INITRD_START, /* MTDPART_OFS_APPEND */
603  .size = INITRD_LEN, /* MTDPART_SIZ_FULL */
604  }
605 };
606 #define NUM_PARTITIONS ARRAY_SIZE(lart_partitions)
607 
608 static int __init lart_flash_init (void)
609 {
610  int result;
611  memset (&mtd,0,sizeof (mtd));
612  printk ("MTD driver for LART. Written by Abraham vd Merwe <[email protected]>\n");
613  printk ("%s: Probing for 28F160x3 flash on LART...\n",module_name);
614  if (!flash_probe ())
615  {
616  printk (KERN_WARNING "%s: Found no LART compatible flash device\n",module_name);
617  return (-ENXIO);
618  }
619  printk ("%s: This looks like a LART board to me.\n",module_name);
620  mtd.name = module_name;
621  mtd.type = MTD_NORFLASH;
622  mtd.writesize = 1;
623  mtd.writebufsize = 4;
624  mtd.flags = MTD_CAP_NORFLASH;
627  mtd.numeraseregions = ARRAY_SIZE(erase_regions);
628  mtd.eraseregions = erase_regions;
629  mtd._erase = flash_erase;
630  mtd._read = flash_read;
631  mtd._write = flash_write;
632  mtd.owner = THIS_MODULE;
633 
634 #ifdef LART_DEBUG
636  "mtd.name = %s\n"
637  "mtd.size = 0x%.8x (%uM)\n"
638  "mtd.erasesize = 0x%.8x (%uK)\n"
639  "mtd.numeraseregions = %d\n",
640  mtd.name,
641  mtd.size,mtd.size / (1024*1024),
642  mtd.erasesize,mtd.erasesize / 1024,
643  mtd.numeraseregions);
644 
645  if (mtd.numeraseregions)
646  for (result = 0; result < mtd.numeraseregions; result++)
648  "\n\n"
649  "mtd.eraseregions[%d].offset = 0x%.8x\n"
650  "mtd.eraseregions[%d].erasesize = 0x%.8x (%uK)\n"
651  "mtd.eraseregions[%d].numblocks = %d\n",
652  result,mtd.eraseregions[result].offset,
653  result,mtd.eraseregions[result].erasesize,mtd.eraseregions[result].erasesize / 1024,
654  result,mtd.eraseregions[result].numblocks);
655 
656  printk ("\npartitions = %d\n", ARRAY_SIZE(lart_partitions));
657 
658  for (result = 0; result < ARRAY_SIZE(lart_partitions); result++)
660  "\n\n"
661  "lart_partitions[%d].name = %s\n"
662  "lart_partitions[%d].offset = 0x%.8x\n"
663  "lart_partitions[%d].size = 0x%.8x (%uK)\n",
664  result,lart_partitions[result].name,
665  result,lart_partitions[result].offset,
666  result,lart_partitions[result].size,lart_partitions[result].size / 1024);
667 #endif
668 
669  result = mtd_device_register(&mtd, lart_partitions,
670  ARRAY_SIZE(lart_partitions));
671 
672  return (result);
673 }
674 
675 static void __exit lart_flash_exit (void)
676 {
677  mtd_device_unregister(&mtd);
678 }
679 
680 module_init (lart_flash_init);
681 module_exit (lart_flash_exit);
682 
683 MODULE_LICENSE("GPL");
684 MODULE_AUTHOR("Abraham vd Merwe <[email protected]>");
685 MODULE_DESCRIPTION("MTD driver for Intel 28F160F3 on LART board");