Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
encrypted.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2010 IBM Corporation
3  * Copyright (C) 2010 Politecnico di Torino, Italy
4  * TORSEC group -- http://security.polito.it
5  *
6  * Authors:
7  * Mimi Zohar <[email protected]>
8  * Roberto Sassu <[email protected]>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation, version 2 of the License.
13  *
14  * See Documentation/security/keys-trusted-encrypted.txt
15  */
16 
17 #include <linux/uaccess.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/slab.h>
21 #include <linux/parser.h>
22 #include <linux/string.h>
23 #include <linux/err.h>
24 #include <keys/user-type.h>
25 #include <keys/trusted-type.h>
26 #include <keys/encrypted-type.h>
27 #include <linux/key-type.h>
28 #include <linux/random.h>
29 #include <linux/rcupdate.h>
30 #include <linux/scatterlist.h>
31 #include <linux/crypto.h>
32 #include <linux/ctype.h>
33 #include <crypto/hash.h>
34 #include <crypto/sha.h>
35 #include <crypto/aes.h>
36 
37 #include "encrypted.h"
38 #include "ecryptfs_format.h"
39 
40 static const char KEY_TRUSTED_PREFIX[] = "trusted:";
41 static const char KEY_USER_PREFIX[] = "user:";
42 static const char hash_alg[] = "sha256";
43 static const char hmac_alg[] = "hmac(sha256)";
44 static const char blkcipher_alg[] = "cbc(aes)";
45 static const char key_format_default[] = "default";
46 static const char key_format_ecryptfs[] = "ecryptfs";
47 static unsigned int ivsize;
48 static int blksize;
49 
50 #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
51 #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
52 #define KEY_ECRYPTFS_DESC_LEN 16
53 #define HASH_SIZE SHA256_DIGEST_SIZE
54 #define MAX_DATA_SIZE 4096
55 #define MIN_DATA_SIZE 20
56 
57 struct sdesc {
58  struct shash_desc shash;
59  char ctx[];
60 };
61 
62 static struct crypto_shash *hashalg;
63 static struct crypto_shash *hmacalg;
64 
65 enum {
67 };
68 
69 enum {
71 };
72 
73 static const match_table_t key_format_tokens = {
74  {Opt_default, "default"},
75  {Opt_ecryptfs, "ecryptfs"},
76  {Opt_error, NULL}
77 };
78 
79 static const match_table_t key_tokens = {
80  {Opt_new, "new"},
81  {Opt_load, "load"},
82  {Opt_update, "update"},
83  {Opt_err, NULL}
84 };
85 
86 static int aes_get_sizes(void)
87 {
88  struct crypto_blkcipher *tfm;
89 
90  tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
91  if (IS_ERR(tfm)) {
92  pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
93  PTR_ERR(tfm));
94  return PTR_ERR(tfm);
95  }
96  ivsize = crypto_blkcipher_ivsize(tfm);
97  blksize = crypto_blkcipher_blocksize(tfm);
98  crypto_free_blkcipher(tfm);
99  return 0;
100 }
101 
102 /*
103  * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
104  *
105  * The description of a encrypted key with format 'ecryptfs' must contain
106  * exactly 16 hexadecimal characters.
107  *
108  */
109 static int valid_ecryptfs_desc(const char *ecryptfs_desc)
110 {
111  int i;
112 
113  if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
114  pr_err("encrypted_key: key description must be %d hexadecimal "
115  "characters long\n", KEY_ECRYPTFS_DESC_LEN);
116  return -EINVAL;
117  }
118 
119  for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
120  if (!isxdigit(ecryptfs_desc[i])) {
121  pr_err("encrypted_key: key description must contain "
122  "only hexadecimal characters\n");
123  return -EINVAL;
124  }
125  }
126 
127  return 0;
128 }
129 
130 /*
131  * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
132  *
133  * key-type:= "trusted:" | "user:"
134  * desc:= master-key description
135  *
136  * Verify that 'key-type' is valid and that 'desc' exists. On key update,
137  * only the master key description is permitted to change, not the key-type.
138  * The key-type remains constant.
139  *
140  * On success returns 0, otherwise -EINVAL.
141  */
142 static int valid_master_desc(const char *new_desc, const char *orig_desc)
143 {
144  if (!memcmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) {
145  if (strlen(new_desc) == KEY_TRUSTED_PREFIX_LEN)
146  goto out;
147  if (orig_desc)
148  if (memcmp(new_desc, orig_desc, KEY_TRUSTED_PREFIX_LEN))
149  goto out;
150  } else if (!memcmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) {
151  if (strlen(new_desc) == KEY_USER_PREFIX_LEN)
152  goto out;
153  if (orig_desc)
154  if (memcmp(new_desc, orig_desc, KEY_USER_PREFIX_LEN))
155  goto out;
156  } else
157  goto out;
158  return 0;
159 out:
160  return -EINVAL;
161 }
162 
163 /*
164  * datablob_parse - parse the keyctl data
165  *
166  * datablob format:
167  * new [<format>] <master-key name> <decrypted data length>
168  * load [<format>] <master-key name> <decrypted data length>
169  * <encrypted iv + data>
170  * update <new-master-key name>
171  *
172  * Tokenizes a copy of the keyctl data, returning a pointer to each token,
173  * which is null terminated.
174  *
175  * On success returns 0, otherwise -EINVAL.
176  */
177 static int datablob_parse(char *datablob, const char **format,
178  char **master_desc, char **decrypted_datalen,
179  char **hex_encoded_iv)
180 {
182  int ret = -EINVAL;
183  int key_cmd;
184  int key_format;
185  char *p, *keyword;
186 
187  keyword = strsep(&datablob, " \t");
188  if (!keyword) {
189  pr_info("encrypted_key: insufficient parameters specified\n");
190  return ret;
191  }
192  key_cmd = match_token(keyword, key_tokens, args);
193 
194  /* Get optional format: default | ecryptfs */
195  p = strsep(&datablob, " \t");
196  if (!p) {
197  pr_err("encrypted_key: insufficient parameters specified\n");
198  return ret;
199  }
200 
201  key_format = match_token(p, key_format_tokens, args);
202  switch (key_format) {
203  case Opt_ecryptfs:
204  case Opt_default:
205  *format = p;
206  *master_desc = strsep(&datablob, " \t");
207  break;
208  case Opt_error:
209  *master_desc = p;
210  break;
211  }
212 
213  if (!*master_desc) {
214  pr_info("encrypted_key: master key parameter is missing\n");
215  goto out;
216  }
217 
218  if (valid_master_desc(*master_desc, NULL) < 0) {
219  pr_info("encrypted_key: master key parameter \'%s\' "
220  "is invalid\n", *master_desc);
221  goto out;
222  }
223 
224  if (decrypted_datalen) {
225  *decrypted_datalen = strsep(&datablob, " \t");
226  if (!*decrypted_datalen) {
227  pr_info("encrypted_key: keylen parameter is missing\n");
228  goto out;
229  }
230  }
231 
232  switch (key_cmd) {
233  case Opt_new:
234  if (!decrypted_datalen) {
235  pr_info("encrypted_key: keyword \'%s\' not allowed "
236  "when called from .update method\n", keyword);
237  break;
238  }
239  ret = 0;
240  break;
241  case Opt_load:
242  if (!decrypted_datalen) {
243  pr_info("encrypted_key: keyword \'%s\' not allowed "
244  "when called from .update method\n", keyword);
245  break;
246  }
247  *hex_encoded_iv = strsep(&datablob, " \t");
248  if (!*hex_encoded_iv) {
249  pr_info("encrypted_key: hex blob is missing\n");
250  break;
251  }
252  ret = 0;
253  break;
254  case Opt_update:
255  if (decrypted_datalen) {
256  pr_info("encrypted_key: keyword \'%s\' not allowed "
257  "when called from .instantiate method\n",
258  keyword);
259  break;
260  }
261  ret = 0;
262  break;
263  case Opt_err:
264  pr_info("encrypted_key: keyword \'%s\' not recognized\n",
265  keyword);
266  break;
267  }
268 out:
269  return ret;
270 }
271 
272 /*
273  * datablob_format - format as an ascii string, before copying to userspace
274  */
275 static char *datablob_format(struct encrypted_key_payload *epayload,
276  size_t asciiblob_len)
277 {
278  char *ascii_buf, *bufp;
279  u8 *iv = epayload->iv;
280  int len;
281  int i;
282 
283  ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
284  if (!ascii_buf)
285  goto out;
286 
287  ascii_buf[asciiblob_len] = '\0';
288 
289  /* copy datablob master_desc and datalen strings */
290  len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
291  epayload->master_desc, epayload->datalen);
292 
293  /* convert the hex encoded iv, encrypted-data and HMAC to ascii */
294  bufp = &ascii_buf[len];
295  for (i = 0; i < (asciiblob_len - len) / 2; i++)
296  bufp = hex_byte_pack(bufp, iv[i]);
297 out:
298  return ascii_buf;
299 }
300 
301 /*
302  * request_user_key - request the user key
303  *
304  * Use a user provided key to encrypt/decrypt an encrypted-key.
305  */
306 static struct key *request_user_key(const char *master_desc, u8 **master_key,
307  size_t *master_keylen)
308 {
309  struct user_key_payload *upayload;
310  struct key *ukey;
311 
312  ukey = request_key(&key_type_user, master_desc, NULL);
313  if (IS_ERR(ukey))
314  goto error;
315 
316  down_read(&ukey->sem);
317  upayload = ukey->payload.data;
318  *master_key = upayload->data;
319  *master_keylen = upayload->datalen;
320 error:
321  return ukey;
322 }
323 
324 static struct sdesc *alloc_sdesc(struct crypto_shash *alg)
325 {
326  struct sdesc *sdesc;
327  int size;
328 
329  size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
330  sdesc = kmalloc(size, GFP_KERNEL);
331  if (!sdesc)
332  return ERR_PTR(-ENOMEM);
333  sdesc->shash.tfm = alg;
334  sdesc->shash.flags = 0x0;
335  return sdesc;
336 }
337 
338 static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
339  const u8 *buf, unsigned int buflen)
340 {
341  struct sdesc *sdesc;
342  int ret;
343 
344  sdesc = alloc_sdesc(hmacalg);
345  if (IS_ERR(sdesc)) {
346  pr_info("encrypted_key: can't alloc %s\n", hmac_alg);
347  return PTR_ERR(sdesc);
348  }
349 
350  ret = crypto_shash_setkey(hmacalg, key, keylen);
351  if (!ret)
352  ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
353  kfree(sdesc);
354  return ret;
355 }
356 
357 static int calc_hash(u8 *digest, const u8 *buf, unsigned int buflen)
358 {
359  struct sdesc *sdesc;
360  int ret;
361 
362  sdesc = alloc_sdesc(hashalg);
363  if (IS_ERR(sdesc)) {
364  pr_info("encrypted_key: can't alloc %s\n", hash_alg);
365  return PTR_ERR(sdesc);
366  }
367 
368  ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
369  kfree(sdesc);
370  return ret;
371 }
372 
374 
375 /* Derive authentication/encryption key from trusted key */
376 static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
377  const u8 *master_key, size_t master_keylen)
378 {
379  u8 *derived_buf;
380  unsigned int derived_buf_len;
381  int ret;
382 
383  derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
384  if (derived_buf_len < HASH_SIZE)
385  derived_buf_len = HASH_SIZE;
386 
387  derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
388  if (!derived_buf) {
389  pr_err("encrypted_key: out of memory\n");
390  return -ENOMEM;
391  }
392  if (key_type)
393  strcpy(derived_buf, "AUTH_KEY");
394  else
395  strcpy(derived_buf, "ENC_KEY");
396 
397  memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
398  master_keylen);
399  ret = calc_hash(derived_key, derived_buf, derived_buf_len);
400  kfree(derived_buf);
401  return ret;
402 }
403 
404 static int init_blkcipher_desc(struct blkcipher_desc *desc, const u8 *key,
405  unsigned int key_len, const u8 *iv,
406  unsigned int ivsize)
407 {
408  int ret;
409 
410  desc->tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
411  if (IS_ERR(desc->tfm)) {
412  pr_err("encrypted_key: failed to load %s transform (%ld)\n",
413  blkcipher_alg, PTR_ERR(desc->tfm));
414  return PTR_ERR(desc->tfm);
415  }
416  desc->flags = 0;
417 
418  ret = crypto_blkcipher_setkey(desc->tfm, key, key_len);
419  if (ret < 0) {
420  pr_err("encrypted_key: failed to setkey (%d)\n", ret);
421  crypto_free_blkcipher(desc->tfm);
422  return ret;
423  }
424  crypto_blkcipher_set_iv(desc->tfm, iv, ivsize);
425  return 0;
426 }
427 
428 static struct key *request_master_key(struct encrypted_key_payload *epayload,
429  u8 **master_key, size_t *master_keylen)
430 {
431  struct key *mkey = NULL;
432 
433  if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
435  mkey = request_trusted_key(epayload->master_desc +
437  master_key, master_keylen);
438  } else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
440  mkey = request_user_key(epayload->master_desc +
442  master_key, master_keylen);
443  } else
444  goto out;
445 
446  if (IS_ERR(mkey)) {
447  int ret = PTR_ERR(mkey);
448 
449  if (ret == -ENOTSUPP)
450  pr_info("encrypted_key: key %s not supported",
451  epayload->master_desc);
452  else
453  pr_info("encrypted_key: key %s not found",
454  epayload->master_desc);
455  goto out;
456  }
457 
458  dump_master_key(*master_key, *master_keylen);
459 out:
460  return mkey;
461 }
462 
463 /* Before returning data to userspace, encrypt decrypted data. */
464 static int derived_key_encrypt(struct encrypted_key_payload *epayload,
465  const u8 *derived_key,
466  unsigned int derived_keylen)
467 {
468  struct scatterlist sg_in[2];
469  struct scatterlist sg_out[1];
470  struct blkcipher_desc desc;
471  unsigned int encrypted_datalen;
472  unsigned int padlen;
473  char pad[16];
474  int ret;
475 
476  encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
477  padlen = encrypted_datalen - epayload->decrypted_datalen;
478 
479  ret = init_blkcipher_desc(&desc, derived_key, derived_keylen,
480  epayload->iv, ivsize);
481  if (ret < 0)
482  goto out;
483  dump_decrypted_data(epayload);
484 
485  memset(pad, 0, sizeof pad);
486  sg_init_table(sg_in, 2);
487  sg_set_buf(&sg_in[0], epayload->decrypted_data,
488  epayload->decrypted_datalen);
489  sg_set_buf(&sg_in[1], pad, padlen);
490 
491  sg_init_table(sg_out, 1);
492  sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
493 
494  ret = crypto_blkcipher_encrypt(&desc, sg_out, sg_in, encrypted_datalen);
495  crypto_free_blkcipher(desc.tfm);
496  if (ret < 0)
497  pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
498  else
499  dump_encrypted_data(epayload, encrypted_datalen);
500 out:
501  return ret;
502 }
503 
504 static int datablob_hmac_append(struct encrypted_key_payload *epayload,
505  const u8 *master_key, size_t master_keylen)
506 {
507  u8 derived_key[HASH_SIZE];
508  u8 *digest;
509  int ret;
510 
511  ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
512  if (ret < 0)
513  goto out;
514 
515  digest = epayload->format + epayload->datablob_len;
516  ret = calc_hmac(digest, derived_key, sizeof derived_key,
517  epayload->format, epayload->datablob_len);
518  if (!ret)
519  dump_hmac(NULL, digest, HASH_SIZE);
520 out:
521  return ret;
522 }
523 
524 /* verify HMAC before decrypting encrypted key */
525 static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
526  const u8 *format, const u8 *master_key,
527  size_t master_keylen)
528 {
529  u8 derived_key[HASH_SIZE];
530  u8 digest[HASH_SIZE];
531  int ret;
532  char *p;
533  unsigned short len;
534 
535  ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
536  if (ret < 0)
537  goto out;
538 
539  len = epayload->datablob_len;
540  if (!format) {
541  p = epayload->master_desc;
542  len -= strlen(epayload->format) + 1;
543  } else
544  p = epayload->format;
545 
546  ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len);
547  if (ret < 0)
548  goto out;
549  ret = memcmp(digest, epayload->format + epayload->datablob_len,
550  sizeof digest);
551  if (ret) {
552  ret = -EINVAL;
553  dump_hmac("datablob",
554  epayload->format + epayload->datablob_len,
555  HASH_SIZE);
556  dump_hmac("calc", digest, HASH_SIZE);
557  }
558 out:
559  return ret;
560 }
561 
562 static int derived_key_decrypt(struct encrypted_key_payload *epayload,
563  const u8 *derived_key,
564  unsigned int derived_keylen)
565 {
566  struct scatterlist sg_in[1];
567  struct scatterlist sg_out[2];
568  struct blkcipher_desc desc;
569  unsigned int encrypted_datalen;
570  char pad[16];
571  int ret;
572 
573  encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
574  ret = init_blkcipher_desc(&desc, derived_key, derived_keylen,
575  epayload->iv, ivsize);
576  if (ret < 0)
577  goto out;
578  dump_encrypted_data(epayload, encrypted_datalen);
579 
580  memset(pad, 0, sizeof pad);
581  sg_init_table(sg_in, 1);
582  sg_init_table(sg_out, 2);
583  sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
584  sg_set_buf(&sg_out[0], epayload->decrypted_data,
585  epayload->decrypted_datalen);
586  sg_set_buf(&sg_out[1], pad, sizeof pad);
587 
588  ret = crypto_blkcipher_decrypt(&desc, sg_out, sg_in, encrypted_datalen);
589  crypto_free_blkcipher(desc.tfm);
590  if (ret < 0)
591  goto out;
592  dump_decrypted_data(epayload);
593 out:
594  return ret;
595 }
596 
597 /* Allocate memory for decrypted key and datablob. */
598 static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
599  const char *format,
600  const char *master_desc,
601  const char *datalen)
602 {
603  struct encrypted_key_payload *epayload = NULL;
604  unsigned short datablob_len;
605  unsigned short decrypted_datalen;
606  unsigned short payload_datalen;
607  unsigned int encrypted_datalen;
608  unsigned int format_len;
609  long dlen;
610  int ret;
611 
612  ret = strict_strtol(datalen, 10, &dlen);
613  if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
614  return ERR_PTR(-EINVAL);
615 
616  format_len = (!format) ? strlen(key_format_default) : strlen(format);
617  decrypted_datalen = dlen;
618  payload_datalen = decrypted_datalen;
619  if (format && !strcmp(format, key_format_ecryptfs)) {
620  if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
621  pr_err("encrypted_key: keylen for the ecryptfs format "
622  "must be equal to %d bytes\n",
624  return ERR_PTR(-EINVAL);
625  }
626  decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
627  payload_datalen = sizeof(struct ecryptfs_auth_tok);
628  }
629 
630  encrypted_datalen = roundup(decrypted_datalen, blksize);
631 
632  datablob_len = format_len + 1 + strlen(master_desc) + 1
633  + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
634 
635  ret = key_payload_reserve(key, payload_datalen + datablob_len
636  + HASH_SIZE + 1);
637  if (ret < 0)
638  return ERR_PTR(ret);
639 
640  epayload = kzalloc(sizeof(*epayload) + payload_datalen +
641  datablob_len + HASH_SIZE + 1, GFP_KERNEL);
642  if (!epayload)
643  return ERR_PTR(-ENOMEM);
644 
645  epayload->payload_datalen = payload_datalen;
646  epayload->decrypted_datalen = decrypted_datalen;
647  epayload->datablob_len = datablob_len;
648  return epayload;
649 }
650 
651 static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
652  const char *format, const char *hex_encoded_iv)
653 {
654  struct key *mkey;
655  u8 derived_key[HASH_SIZE];
656  u8 *master_key;
657  u8 *hmac;
658  const char *hex_encoded_data;
659  unsigned int encrypted_datalen;
660  size_t master_keylen;
661  size_t asciilen;
662  int ret;
663 
664  encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
665  asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
666  if (strlen(hex_encoded_iv) != asciilen)
667  return -EINVAL;
668 
669  hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
670  ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
671  if (ret < 0)
672  return -EINVAL;
673  ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
674  encrypted_datalen);
675  if (ret < 0)
676  return -EINVAL;
677 
678  hmac = epayload->format + epayload->datablob_len;
679  ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
680  HASH_SIZE);
681  if (ret < 0)
682  return -EINVAL;
683 
684  mkey = request_master_key(epayload, &master_key, &master_keylen);
685  if (IS_ERR(mkey))
686  return PTR_ERR(mkey);
687 
688  ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
689  if (ret < 0) {
690  pr_err("encrypted_key: bad hmac (%d)\n", ret);
691  goto out;
692  }
693 
694  ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
695  if (ret < 0)
696  goto out;
697 
698  ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
699  if (ret < 0)
700  pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
701 out:
702  up_read(&mkey->sem);
703  key_put(mkey);
704  return ret;
705 }
706 
707 static void __ekey_init(struct encrypted_key_payload *epayload,
708  const char *format, const char *master_desc,
709  const char *datalen)
710 {
711  unsigned int format_len;
712 
713  format_len = (!format) ? strlen(key_format_default) : strlen(format);
714  epayload->format = epayload->payload_data + epayload->payload_datalen;
715  epayload->master_desc = epayload->format + format_len + 1;
716  epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
717  epayload->iv = epayload->datalen + strlen(datalen) + 1;
718  epayload->encrypted_data = epayload->iv + ivsize + 1;
719  epayload->decrypted_data = epayload->payload_data;
720 
721  if (!format)
722  memcpy(epayload->format, key_format_default, format_len);
723  else {
724  if (!strcmp(format, key_format_ecryptfs))
725  epayload->decrypted_data =
727 
728  memcpy(epayload->format, format, format_len);
729  }
730 
731  memcpy(epayload->master_desc, master_desc, strlen(master_desc));
732  memcpy(epayload->datalen, datalen, strlen(datalen));
733 }
734 
735 /*
736  * encrypted_init - initialize an encrypted key
737  *
738  * For a new key, use a random number for both the iv and data
739  * itself. For an old key, decrypt the hex encoded data.
740  */
741 static int encrypted_init(struct encrypted_key_payload *epayload,
742  const char *key_desc, const char *format,
743  const char *master_desc, const char *datalen,
744  const char *hex_encoded_iv)
745 {
746  int ret = 0;
747 
748  if (format && !strcmp(format, key_format_ecryptfs)) {
749  ret = valid_ecryptfs_desc(key_desc);
750  if (ret < 0)
751  return ret;
752 
754  key_desc);
755  }
756 
757  __ekey_init(epayload, format, master_desc, datalen);
758  if (!hex_encoded_iv) {
759  get_random_bytes(epayload->iv, ivsize);
760 
762  epayload->decrypted_datalen);
763  } else
764  ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
765  return ret;
766 }
767 
768 /*
769  * encrypted_instantiate - instantiate an encrypted key
770  *
771  * Decrypt an existing encrypted datablob or create a new encrypted key
772  * based on a kernel random number.
773  *
774  * On success, return 0. Otherwise return errno.
775  */
776 static int encrypted_instantiate(struct key *key,
777  struct key_preparsed_payload *prep)
778 {
779  struct encrypted_key_payload *epayload = NULL;
780  char *datablob = NULL;
781  const char *format = NULL;
782  char *master_desc = NULL;
783  char *decrypted_datalen = NULL;
784  char *hex_encoded_iv = NULL;
785  size_t datalen = prep->datalen;
786  int ret;
787 
788  if (datalen <= 0 || datalen > 32767 || !prep->data)
789  return -EINVAL;
790 
791  datablob = kmalloc(datalen + 1, GFP_KERNEL);
792  if (!datablob)
793  return -ENOMEM;
794  datablob[datalen] = 0;
795  memcpy(datablob, prep->data, datalen);
796  ret = datablob_parse(datablob, &format, &master_desc,
797  &decrypted_datalen, &hex_encoded_iv);
798  if (ret < 0)
799  goto out;
800 
801  epayload = encrypted_key_alloc(key, format, master_desc,
802  decrypted_datalen);
803  if (IS_ERR(epayload)) {
804  ret = PTR_ERR(epayload);
805  goto out;
806  }
807  ret = encrypted_init(epayload, key->description, format, master_desc,
808  decrypted_datalen, hex_encoded_iv);
809  if (ret < 0) {
810  kfree(epayload);
811  goto out;
812  }
813 
814  rcu_assign_keypointer(key, epayload);
815 out:
816  kfree(datablob);
817  return ret;
818 }
819 
820 static void encrypted_rcu_free(struct rcu_head *rcu)
821 {
822  struct encrypted_key_payload *epayload;
823 
824  epayload = container_of(rcu, struct encrypted_key_payload, rcu);
825  memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
826  kfree(epayload);
827 }
828 
829 /*
830  * encrypted_update - update the master key description
831  *
832  * Change the master key description for an existing encrypted key.
833  * The next read will return an encrypted datablob using the new
834  * master key description.
835  *
836  * On success, return 0. Otherwise return errno.
837  */
838 static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
839 {
840  struct encrypted_key_payload *epayload = key->payload.data;
841  struct encrypted_key_payload *new_epayload;
842  char *buf;
843  char *new_master_desc = NULL;
844  const char *format = NULL;
845  size_t datalen = prep->datalen;
846  int ret = 0;
847 
848  if (datalen <= 0 || datalen > 32767 || !prep->data)
849  return -EINVAL;
850 
851  buf = kmalloc(datalen + 1, GFP_KERNEL);
852  if (!buf)
853  return -ENOMEM;
854 
855  buf[datalen] = 0;
856  memcpy(buf, prep->data, datalen);
857  ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL);
858  if (ret < 0)
859  goto out;
860 
861  ret = valid_master_desc(new_master_desc, epayload->master_desc);
862  if (ret < 0)
863  goto out;
864 
865  new_epayload = encrypted_key_alloc(key, epayload->format,
866  new_master_desc, epayload->datalen);
867  if (IS_ERR(new_epayload)) {
868  ret = PTR_ERR(new_epayload);
869  goto out;
870  }
871 
872  __ekey_init(new_epayload, epayload->format, new_master_desc,
873  epayload->datalen);
874 
875  memcpy(new_epayload->iv, epayload->iv, ivsize);
876  memcpy(new_epayload->payload_data, epayload->payload_data,
877  epayload->payload_datalen);
878 
879  rcu_assign_keypointer(key, new_epayload);
880  call_rcu(&epayload->rcu, encrypted_rcu_free);
881 out:
882  kfree(buf);
883  return ret;
884 }
885 
886 /*
887  * encrypted_read - format and copy the encrypted data to userspace
888  *
889  * The resulting datablob format is:
890  * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
891  *
892  * On success, return to userspace the encrypted key datablob size.
893  */
894 static long encrypted_read(const struct key *key, char __user *buffer,
895  size_t buflen)
896 {
897  struct encrypted_key_payload *epayload;
898  struct key *mkey;
899  u8 *master_key;
900  size_t master_keylen;
901  char derived_key[HASH_SIZE];
902  char *ascii_buf;
903  size_t asciiblob_len;
904  int ret;
905 
906  epayload = rcu_dereference_key(key);
907 
908  /* returns the hex encoded iv, encrypted-data, and hmac as ascii */
909  asciiblob_len = epayload->datablob_len + ivsize + 1
910  + roundup(epayload->decrypted_datalen, blksize)
911  + (HASH_SIZE * 2);
912 
913  if (!buffer || buflen < asciiblob_len)
914  return asciiblob_len;
915 
916  mkey = request_master_key(epayload, &master_key, &master_keylen);
917  if (IS_ERR(mkey))
918  return PTR_ERR(mkey);
919 
920  ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
921  if (ret < 0)
922  goto out;
923 
924  ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
925  if (ret < 0)
926  goto out;
927 
928  ret = datablob_hmac_append(epayload, master_key, master_keylen);
929  if (ret < 0)
930  goto out;
931 
932  ascii_buf = datablob_format(epayload, asciiblob_len);
933  if (!ascii_buf) {
934  ret = -ENOMEM;
935  goto out;
936  }
937 
938  up_read(&mkey->sem);
939  key_put(mkey);
940 
941  if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0)
942  ret = -EFAULT;
943  kfree(ascii_buf);
944 
945  return asciiblob_len;
946 out:
947  up_read(&mkey->sem);
948  key_put(mkey);
949  return ret;
950 }
951 
952 /*
953  * encrypted_destroy - before freeing the key, clear the decrypted data
954  *
955  * Before freeing the key, clear the memory containing the decrypted
956  * key data.
957  */
958 static void encrypted_destroy(struct key *key)
959 {
960  struct encrypted_key_payload *epayload = key->payload.data;
961 
962  if (!epayload)
963  return;
964 
965  memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
966  kfree(key->payload.data);
967 }
968 
969 struct key_type key_type_encrypted = {
970  .name = "encrypted",
971  .instantiate = encrypted_instantiate,
972  .update = encrypted_update,
973  .match = user_match,
974  .destroy = encrypted_destroy,
975  .describe = user_describe,
976  .read = encrypted_read,
977 };
978 EXPORT_SYMBOL_GPL(key_type_encrypted);
979 
980 static void encrypted_shash_release(void)
981 {
982  if (hashalg)
983  crypto_free_shash(hashalg);
984  if (hmacalg)
985  crypto_free_shash(hmacalg);
986 }
987 
988 static int __init encrypted_shash_alloc(void)
989 {
990  int ret;
991 
992  hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
993  if (IS_ERR(hmacalg)) {
994  pr_info("encrypted_key: could not allocate crypto %s\n",
995  hmac_alg);
996  return PTR_ERR(hmacalg);
997  }
998 
1000  if (IS_ERR(hashalg)) {
1001  pr_info("encrypted_key: could not allocate crypto %s\n",
1002  hash_alg);
1003  ret = PTR_ERR(hashalg);
1004  goto hashalg_fail;
1005  }
1006 
1007  return 0;
1008 
1009 hashalg_fail:
1010  crypto_free_shash(hmacalg);
1011  return ret;
1012 }
1013 
1014 static int __init init_encrypted(void)
1015 {
1016  int ret;
1017 
1018  ret = encrypted_shash_alloc();
1019  if (ret < 0)
1020  return ret;
1021  ret = register_key_type(&key_type_encrypted);
1022  if (ret < 0)
1023  goto out;
1024  return aes_get_sizes();
1025 out:
1026  encrypted_shash_release();
1027  return ret;
1028 
1029 }
1030 
1031 static void __exit cleanup_encrypted(void)
1032 {
1033  encrypted_shash_release();
1034  unregister_key_type(&key_type_encrypted);
1035 }
1036 
1037 late_initcall(init_encrypted);
1038 module_exit(cleanup_encrypted);
1039 
1040 MODULE_LICENSE("GPL");