Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
fsync.c
Go to the documentation of this file.
1 /*
2  * linux/fs/ext4/fsync.c
3  *
4  * Copyright (C) 1993 Stephen Tweedie ([email protected])
5  * from
6  * Copyright (C) 1992 Remy Card ([email protected])
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  * from
10  * linux/fs/minix/truncate.c Copyright (C) 1991, 1992 Linus Torvalds
11  *
12  * ext4fs fsync primitive
13  *
14  * Big-endian to little-endian byte-swapping/bitmaps by
15  * David S. Miller ([email protected]), 1995
16  *
17  * Removed unnecessary code duplication for little endian machines
18  * and excessive __inline__s.
19  * Andi Kleen, 1997
20  *
21  * Major simplications and cleanup - we only need to do the metadata, because
22  * we can depend on generic_block_fdatasync() to sync the data blocks.
23  */
24 
25 #include <linux/time.h>
26 #include <linux/fs.h>
27 #include <linux/sched.h>
28 #include <linux/writeback.h>
29 #include <linux/jbd2.h>
30 #include <linux/blkdev.h>
31 
32 #include "ext4.h"
33 #include "ext4_jbd2.h"
34 
35 #include <trace/events/ext4.h>
36 
37 /*
38  * If we're not journaling and this is a just-created file, we have to
39  * sync our parent directory (if it was freshly created) since
40  * otherwise it will only be written by writeback, leaving a huge
41  * window during which a crash may lose the file. This may apply for
42  * the parent directory's parent as well, and so on recursively, if
43  * they are also freshly created.
44  */
45 static int ext4_sync_parent(struct inode *inode)
46 {
47  struct writeback_control wbc;
48  struct dentry *dentry = NULL;
49  struct inode *next;
50  int ret = 0;
51 
52  if (!ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY))
53  return 0;
54  inode = igrab(inode);
55  while (ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY)) {
56  ext4_clear_inode_state(inode, EXT4_STATE_NEWENTRY);
57  dentry = d_find_any_alias(inode);
58  if (!dentry)
59  break;
60  next = igrab(dentry->d_parent->d_inode);
61  dput(dentry);
62  if (!next)
63  break;
64  iput(inode);
65  inode = next;
66  ret = sync_mapping_buffers(inode->i_mapping);
67  if (ret)
68  break;
69  memset(&wbc, 0, sizeof(wbc));
70  wbc.sync_mode = WB_SYNC_ALL;
71  wbc.nr_to_write = 0; /* only write out the inode */
72  ret = sync_inode(inode, &wbc);
73  if (ret)
74  break;
75  }
76  iput(inode);
77  return ret;
78 }
79 
89 static int __sync_inode(struct inode *inode, int datasync)
90 {
91  int err;
92  int ret;
93 
94  ret = sync_mapping_buffers(inode->i_mapping);
95  if (!(inode->i_state & I_DIRTY))
96  return ret;
97  if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
98  return ret;
99 
100  err = sync_inode_metadata(inode, 1);
101  if (ret == 0)
102  ret = err;
103  return ret;
104 }
105 
106 /*
107  * akpm: A new design for ext4_sync_file().
108  *
109  * This is only called from sys_fsync(), sys_fdatasync() and sys_msync().
110  * There cannot be a transaction open by this task.
111  * Another task could have dirtied this inode. Its data can be in any
112  * state in the journalling system.
113  *
114  * What we do is just kick off a commit and wait on it. This will snapshot the
115  * inode to disk.
116  *
117  * i_mutex lock is held when entering and exiting this function
118  */
119 
120 int ext4_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
121 {
122  struct inode *inode = file->f_mapping->host;
123  struct ext4_inode_info *ei = EXT4_I(inode);
124  journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
125  int ret, err;
126  tid_t commit_tid;
127  bool needs_barrier = false;
128 
129  J_ASSERT(ext4_journal_current_handle() == NULL);
130 
131  trace_ext4_sync_file_enter(file, datasync);
132 
133  ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
134  if (ret)
135  return ret;
136  mutex_lock(&inode->i_mutex);
137 
138  if (inode->i_sb->s_flags & MS_RDONLY)
139  goto out;
140 
141  ret = ext4_flush_unwritten_io(inode);
142  if (ret < 0)
143  goto out;
144 
145  if (!journal) {
146  ret = __sync_inode(inode, datasync);
147  if (!ret && !hlist_empty(&inode->i_dentry))
148  ret = ext4_sync_parent(inode);
149  goto out;
150  }
151 
152  /*
153  * data=writeback,ordered:
154  * The caller's filemap_fdatawrite()/wait will sync the data.
155  * Metadata is in the journal, we wait for proper transaction to
156  * commit here.
157  *
158  * data=journal:
159  * filemap_fdatawrite won't do anything (the buffers are clean).
160  * ext4_force_commit will write the file data into the journal and
161  * will wait on that.
162  * filemap_fdatawait() will encounter a ton of newly-dirtied pages
163  * (they were dirtied by commit). But that's OK - the blocks are
164  * safe in-journal, which is all fsync() needs to ensure.
165  */
166  if (ext4_should_journal_data(inode)) {
167  ret = ext4_force_commit(inode->i_sb);
168  goto out;
169  }
170 
171  commit_tid = datasync ? ei->i_datasync_tid : ei->i_sync_tid;
172  if (journal->j_flags & JBD2_BARRIER &&
173  !jbd2_trans_will_send_data_barrier(journal, commit_tid))
174  needs_barrier = true;
175  jbd2_log_start_commit(journal, commit_tid);
176  ret = jbd2_log_wait_commit(journal, commit_tid);
177  if (needs_barrier) {
178  err = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
179  if (!ret)
180  ret = err;
181  }
182  out:
183  mutex_unlock(&inode->i_mutex);
184  trace_ext4_sync_file_exit(inode, ret);
185  return ret;
186 }