Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
flex_array.c
Go to the documentation of this file.
1 /*
2  * Flexible array managed in PAGE_SIZE parts
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright IBM Corporation, 2009
19  *
20  * Author: Dave Hansen <[email protected]>
21  */
22 
23 #include <linux/flex_array.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/reciprocal_div.h>
28 
31 };
32 
33 /*
34  * If a user requests an allocation which is small
35  * enough, we may simply use the space in the
36  * flex_array->parts[] array to store the user
37  * data.
38  */
39 static inline int elements_fit_in_base(struct flex_array *fa)
40 {
42  if (data_size <= FLEX_ARRAY_BASE_BYTES_LEFT)
43  return 1;
44  return 0;
45 }
46 
88 struct flex_array *flex_array_alloc(int element_size, unsigned int total,
89  gfp_t flags)
90 {
91  struct flex_array *ret;
92  int elems_per_part = 0;
93  int reciprocal_elems = 0;
94  int max_size = 0;
95 
96  if (element_size) {
97  elems_per_part = FLEX_ARRAY_ELEMENTS_PER_PART(element_size);
98  reciprocal_elems = reciprocal_value(elems_per_part);
100  }
101 
102  /* max_size will end up 0 if element_size > PAGE_SIZE */
103  if (total > max_size)
104  return NULL;
105  ret = kzalloc(sizeof(struct flex_array), flags);
106  if (!ret)
107  return NULL;
108  ret->element_size = element_size;
109  ret->total_nr_elements = total;
112  if (elements_fit_in_base(ret) && !(flags & __GFP_ZERO))
113  memset(&ret->parts[0], FLEX_ARRAY_FREE,
115  return ret;
116 }
118 
119 static int fa_element_to_part_nr(struct flex_array *fa,
120  unsigned int element_nr)
121 {
122  return reciprocal_divide(element_nr, fa->reciprocal_elems);
123 }
124 
133 {
134  int part_nr;
135 
136  if (elements_fit_in_base(fa))
137  return;
138  for (part_nr = 0; part_nr < FLEX_ARRAY_NR_BASE_PTRS; part_nr++)
139  kfree(fa->parts[part_nr]);
140 }
142 
144 {
146  kfree(fa);
147 }
149 
150 static unsigned int index_inside_part(struct flex_array *fa,
151  unsigned int element_nr,
152  unsigned int part_nr)
153 {
154  unsigned int part_offset;
155 
156  part_offset = element_nr - part_nr * fa->elems_per_part;
157  return part_offset * fa->element_size;
158 }
159 
160 static struct flex_array_part *
161 __fa_get_part(struct flex_array *fa, int part_nr, gfp_t flags)
162 {
163  struct flex_array_part *part = fa->parts[part_nr];
164  if (!part) {
165  part = kmalloc(sizeof(struct flex_array_part), flags);
166  if (!part)
167  return NULL;
168  if (!(flags & __GFP_ZERO))
169  memset(part, FLEX_ARRAY_FREE,
170  sizeof(struct flex_array_part));
171  fa->parts[part_nr] = part;
172  }
173  return part;
174 }
175 
193 int flex_array_put(struct flex_array *fa, unsigned int element_nr, void *src,
194  gfp_t flags)
195 {
196  int part_nr = 0;
197  struct flex_array_part *part;
198  void *dst;
199 
200  if (element_nr >= fa->total_nr_elements)
201  return -ENOSPC;
202  if (!fa->element_size)
203  return 0;
204  if (elements_fit_in_base(fa))
205  part = (struct flex_array_part *)&fa->parts[0];
206  else {
207  part_nr = fa_element_to_part_nr(fa, element_nr);
208  part = __fa_get_part(fa, part_nr, flags);
209  if (!part)
210  return -ENOMEM;
211  }
212  dst = &part->elements[index_inside_part(fa, element_nr, part_nr)];
213  memcpy(dst, src, fa->element_size);
214  return 0;
215 }
217 
225 int flex_array_clear(struct flex_array *fa, unsigned int element_nr)
226 {
227  int part_nr = 0;
228  struct flex_array_part *part;
229  void *dst;
230 
231  if (element_nr >= fa->total_nr_elements)
232  return -ENOSPC;
233  if (!fa->element_size)
234  return 0;
235  if (elements_fit_in_base(fa))
236  part = (struct flex_array_part *)&fa->parts[0];
237  else {
238  part_nr = fa_element_to_part_nr(fa, element_nr);
239  part = fa->parts[part_nr];
240  if (!part)
241  return -EINVAL;
242  }
243  dst = &part->elements[index_inside_part(fa, element_nr, part_nr)];
245  return 0;
246 }
248 
263 int flex_array_prealloc(struct flex_array *fa, unsigned int start,
264  unsigned int nr_elements, gfp_t flags)
265 {
266  int start_part;
267  int end_part;
268  int part_nr;
269  unsigned int end;
270  struct flex_array_part *part;
271 
272  if (!start && !nr_elements)
273  return 0;
274  if (start >= fa->total_nr_elements)
275  return -ENOSPC;
276  if (!nr_elements)
277  return 0;
278 
279  end = start + nr_elements - 1;
280 
281  if (end >= fa->total_nr_elements)
282  return -ENOSPC;
283  if (!fa->element_size)
284  return 0;
285  if (elements_fit_in_base(fa))
286  return 0;
287  start_part = fa_element_to_part_nr(fa, start);
288  end_part = fa_element_to_part_nr(fa, end);
289  for (part_nr = start_part; part_nr <= end_part; part_nr++) {
290  part = __fa_get_part(fa, part_nr, flags);
291  if (!part)
292  return -ENOMEM;
293  }
294  return 0;
295 }
297 
310 void *flex_array_get(struct flex_array *fa, unsigned int element_nr)
311 {
312  int part_nr = 0;
313  struct flex_array_part *part;
314 
315  if (!fa->element_size)
316  return NULL;
317  if (element_nr >= fa->total_nr_elements)
318  return NULL;
319  if (elements_fit_in_base(fa))
320  part = (struct flex_array_part *)&fa->parts[0];
321  else {
322  part_nr = fa_element_to_part_nr(fa, element_nr);
323  part = fa->parts[part_nr];
324  if (!part)
325  return NULL;
326  }
327  return &part->elements[index_inside_part(fa, element_nr, part_nr)];
328 }
330 
340 void *flex_array_get_ptr(struct flex_array *fa, unsigned int element_nr)
341 {
342  void **tmp;
343 
344  tmp = flex_array_get(fa, element_nr);
345  if (!tmp)
346  return NULL;
347 
348  return *tmp;
349 }
351 
352 static int part_is_free(struct flex_array_part *part)
353 {
354  int i;
355 
356  for (i = 0; i < sizeof(struct flex_array_part); i++)
357  if (part->elements[i] != FLEX_ARRAY_FREE)
358  return 0;
359  return 1;
360 }
361 
372 {
373  struct flex_array_part *part;
374  int part_nr;
375  int ret = 0;
376 
377  if (!fa->total_nr_elements || !fa->element_size)
378  return 0;
379  if (elements_fit_in_base(fa))
380  return ret;
381  for (part_nr = 0; part_nr < FLEX_ARRAY_NR_BASE_PTRS; part_nr++) {
382  part = fa->parts[part_nr];
383  if (!part)
384  continue;
385  if (part_is_free(part)) {
386  fa->parts[part_nr] = NULL;
387  kfree(part);
388  ret++;
389  }
390  }
391  return ret;
392 }