Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hci_h5.c
Go to the documentation of this file.
1 /*
2  *
3  * Bluetooth HCI Three-wire UART driver
4  *
5  * Copyright (C) 2012 Intel Corporation
6  *
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21  *
22  */
23 
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/skbuff.h>
27 
29 #include <net/bluetooth/hci_core.h>
30 
31 #include "hci_uart.h"
32 
33 #define HCI_3WIRE_ACK_PKT 0
34 #define HCI_3WIRE_LINK_PKT 15
35 
36 /* Sliding window size */
37 #define H5_TX_WIN_MAX 4
38 
39 #define H5_ACK_TIMEOUT msecs_to_jiffies(250)
40 #define H5_SYNC_TIMEOUT msecs_to_jiffies(100)
41 
42 /*
43  * Maximum Three-wire packet:
44  * 4 byte header + max value for 12-bit length + 2 bytes for CRC
45  */
46 #define H5_MAX_LEN (4 + 0xfff + 2)
47 
48 /* Convenience macros for reading Three-wire header values */
49 #define H5_HDR_SEQ(hdr) ((hdr)[0] & 0x07)
50 #define H5_HDR_ACK(hdr) (((hdr)[0] >> 3) & 0x07)
51 #define H5_HDR_CRC(hdr) (((hdr)[0] >> 6) & 0x01)
52 #define H5_HDR_RELIABLE(hdr) (((hdr)[0] >> 7) & 0x01)
53 #define H5_HDR_PKT_TYPE(hdr) ((hdr)[1] & 0x0f)
54 #define H5_HDR_LEN(hdr) ((((hdr)[1] >> 4) & 0xff) + ((hdr)[2] << 4))
55 
56 #define SLIP_DELIMITER 0xc0
57 #define SLIP_ESC 0xdb
58 #define SLIP_ESC_DELIM 0xdc
59 #define SLIP_ESC_ESC 0xdd
60 
61 /* H5 state flags */
62 enum {
63  H5_RX_ESC, /* SLIP escape mode */
64  H5_TX_ACK_REQ, /* Pending ack to send */
65 };
66 
67 struct h5 {
68  struct sk_buff_head unack; /* Unack'ed packets queue */
69  struct sk_buff_head rel; /* Reliable packets queue */
70  struct sk_buff_head unrel; /* Unreliable packets queue */
71 
72  unsigned long flags;
73 
74  struct sk_buff *rx_skb; /* Receive buffer */
75  size_t rx_pending; /* Expecting more bytes */
76  u8 rx_ack; /* Last ack number received */
77 
78  int (*rx_func) (struct hci_uart *hu, u8 c);
79 
80  struct timer_list timer; /* Retransmission timer */
81 
82  u8 tx_seq; /* Next seq number to send */
83  u8 tx_ack; /* Next ack number to send */
84  u8 tx_win; /* Sliding window size */
85 
86  enum {
90  } state;
91 
92  enum {
96  } sleep;
97 };
98 
99 static void h5_reset_rx(struct h5 *h5);
100 
101 static void h5_link_control(struct hci_uart *hu, const void *data, size_t len)
102 {
103  struct h5 *h5 = hu->priv;
104  struct sk_buff *nskb;
105 
106  nskb = alloc_skb(3, GFP_ATOMIC);
107  if (!nskb)
108  return;
109 
110  bt_cb(nskb)->pkt_type = HCI_3WIRE_LINK_PKT;
111 
112  memcpy(skb_put(nskb, len), data, len);
113 
114  skb_queue_tail(&h5->unrel, nskb);
115 }
116 
117 static u8 h5_cfg_field(struct h5 *h5)
118 {
119  u8 field = 0;
120 
121  /* Sliding window size (first 3 bits) */
122  field |= (h5->tx_win & 7);
123 
124  return field;
125 }
126 
127 static void h5_timed_event(unsigned long arg)
128 {
129  const unsigned char sync_req[] = { 0x01, 0x7e };
130  unsigned char conf_req[] = { 0x03, 0xfc, 0x01 };
131  struct hci_uart *hu = (struct hci_uart *) arg;
132  struct h5 *h5 = hu->priv;
133  struct sk_buff *skb;
134  unsigned long flags;
135 
136  BT_DBG("%s", hu->hdev->name);
137 
138  if (h5->state == H5_UNINITIALIZED)
139  h5_link_control(hu, sync_req, sizeof(sync_req));
140 
141  if (h5->state == H5_INITIALIZED) {
142  conf_req[2] = h5_cfg_field(h5);
143  h5_link_control(hu, conf_req, sizeof(conf_req));
144  }
145 
146  if (h5->state != H5_ACTIVE) {
147  mod_timer(&h5->timer, jiffies + H5_SYNC_TIMEOUT);
148  goto wakeup;
149  }
150 
151  if (h5->sleep != H5_AWAKE) {
152  h5->sleep = H5_SLEEPING;
153  goto wakeup;
154  }
155 
156  BT_DBG("hu %p retransmitting %u pkts", hu, h5->unack.qlen);
157 
159 
160  while ((skb = __skb_dequeue_tail(&h5->unack)) != NULL) {
161  h5->tx_seq = (h5->tx_seq - 1) & 0x07;
162  skb_queue_head(&h5->rel, skb);
163  }
164 
165  spin_unlock_irqrestore(&h5->unack.lock, flags);
166 
167 wakeup:
168  hci_uart_tx_wakeup(hu);
169 }
170 
171 static int h5_open(struct hci_uart *hu)
172 {
173  struct h5 *h5;
174  const unsigned char sync[] = { 0x01, 0x7e };
175 
176  BT_DBG("hu %p", hu);
177 
178  h5 = kzalloc(sizeof(*h5), GFP_KERNEL);
179  if (!h5)
180  return -ENOMEM;
181 
182  hu->priv = h5;
183 
184  skb_queue_head_init(&h5->unack);
185  skb_queue_head_init(&h5->rel);
186  skb_queue_head_init(&h5->unrel);
187 
188  h5_reset_rx(h5);
189 
190  init_timer(&h5->timer);
191  h5->timer.function = h5_timed_event;
192  h5->timer.data = (unsigned long) hu;
193 
194  h5->tx_win = H5_TX_WIN_MAX;
195 
197 
198  /* Send initial sync request */
199  h5_link_control(hu, sync, sizeof(sync));
200  mod_timer(&h5->timer, jiffies + H5_SYNC_TIMEOUT);
201 
202  return 0;
203 }
204 
205 static int h5_close(struct hci_uart *hu)
206 {
207  struct h5 *h5 = hu->priv;
208 
209  skb_queue_purge(&h5->unack);
210  skb_queue_purge(&h5->rel);
211  skb_queue_purge(&h5->unrel);
212 
213  del_timer(&h5->timer);
214 
215  kfree(h5);
216 
217  return 0;
218 }
219 
220 static void h5_pkt_cull(struct h5 *h5)
221 {
222  struct sk_buff *skb, *tmp;
223  unsigned long flags;
224  int i, to_remove;
225  u8 seq;
226 
227  spin_lock_irqsave(&h5->unack.lock, flags);
228 
229  to_remove = skb_queue_len(&h5->unack);
230  if (to_remove == 0)
231  goto unlock;
232 
233  seq = h5->tx_seq;
234 
235  while (to_remove > 0) {
236  if (h5->rx_ack == seq)
237  break;
238 
239  to_remove--;
240  seq = (seq - 1) % 8;
241  }
242 
243  if (seq != h5->rx_ack)
244  BT_ERR("Controller acked invalid packet");
245 
246  i = 0;
247  skb_queue_walk_safe(&h5->unack, skb, tmp) {
248  if (i++ >= to_remove)
249  break;
250 
251  __skb_unlink(skb, &h5->unack);
252  kfree_skb(skb);
253  }
254 
255  if (skb_queue_empty(&h5->unack))
256  del_timer(&h5->timer);
257 
258 unlock:
259  spin_unlock_irqrestore(&h5->unack.lock, flags);
260 }
261 
262 static void h5_handle_internal_rx(struct hci_uart *hu)
263 {
264  struct h5 *h5 = hu->priv;
265  const unsigned char sync_req[] = { 0x01, 0x7e };
266  const unsigned char sync_rsp[] = { 0x02, 0x7d };
267  unsigned char conf_req[] = { 0x03, 0xfc, 0x01 };
268  const unsigned char conf_rsp[] = { 0x04, 0x7b };
269  const unsigned char wakeup_req[] = { 0x05, 0xfa };
270  const unsigned char woken_req[] = { 0x06, 0xf9 };
271  const unsigned char sleep_req[] = { 0x07, 0x78 };
272  const unsigned char *hdr = h5->rx_skb->data;
273  const unsigned char *data = &h5->rx_skb->data[4];
274 
275  BT_DBG("%s", hu->hdev->name);
276 
278  return;
279 
280  if (H5_HDR_LEN(hdr) < 2)
281  return;
282 
283  conf_req[2] = h5_cfg_field(h5);
284 
285  if (memcmp(data, sync_req, 2) == 0) {
286  h5_link_control(hu, sync_rsp, 2);
287  } else if (memcmp(data, sync_rsp, 2) == 0) {
288  h5->state = H5_INITIALIZED;
289  h5_link_control(hu, conf_req, 3);
290  } else if (memcmp(data, conf_req, 2) == 0) {
291  h5_link_control(hu, conf_rsp, 2);
292  h5_link_control(hu, conf_req, 3);
293  } else if (memcmp(data, conf_rsp, 2) == 0) {
294  if (H5_HDR_LEN(hdr) > 2)
295  h5->tx_win = (data[2] & 7);
296  BT_DBG("Three-wire init complete. tx_win %u", h5->tx_win);
297  h5->state = H5_ACTIVE;
299  return;
300  } else if (memcmp(data, sleep_req, 2) == 0) {
301  BT_DBG("Peer went to sleep");
302  h5->sleep = H5_SLEEPING;
303  return;
304  } else if (memcmp(data, woken_req, 2) == 0) {
305  BT_DBG("Peer woke up");
306  h5->sleep = H5_AWAKE;
307  } else if (memcmp(data, wakeup_req, 2) == 0) {
308  BT_DBG("Peer requested wakeup");
309  h5_link_control(hu, woken_req, 2);
310  h5->sleep = H5_AWAKE;
311  } else {
312  BT_DBG("Link Control: 0x%02hhx 0x%02hhx", data[0], data[1]);
313  return;
314  }
315 
316  hci_uart_tx_wakeup(hu);
317 }
318 
319 static void h5_complete_rx_pkt(struct hci_uart *hu)
320 {
321  struct h5 *h5 = hu->priv;
322  const unsigned char *hdr = h5->rx_skb->data;
323 
324  if (H5_HDR_RELIABLE(hdr)) {
325  h5->tx_ack = (h5->tx_ack + 1) % 8;
326  set_bit(H5_TX_ACK_REQ, &h5->flags);
327  hci_uart_tx_wakeup(hu);
328  }
329 
330  h5->rx_ack = H5_HDR_ACK(hdr);
331 
332  h5_pkt_cull(h5);
333 
334  switch (H5_HDR_PKT_TYPE(hdr)) {
335  case HCI_EVENT_PKT:
336  case HCI_ACLDATA_PKT:
337  case HCI_SCODATA_PKT:
338  bt_cb(h5->rx_skb)->pkt_type = H5_HDR_PKT_TYPE(hdr);
339 
340  /* Remove Three-wire header */
341  skb_pull(h5->rx_skb, 4);
342 
343  hci_recv_frame(h5->rx_skb);
344  h5->rx_skb = NULL;
345 
346  break;
347 
348  default:
349  h5_handle_internal_rx(hu);
350  break;
351  }
352 
353  h5_reset_rx(h5);
354 }
355 
356 static int h5_rx_crc(struct hci_uart *hu, unsigned char c)
357 {
358  struct h5 *h5 = hu->priv;
359 
360  h5_complete_rx_pkt(hu);
361  h5_reset_rx(h5);
362 
363  return 0;
364 }
365 
366 static int h5_rx_payload(struct hci_uart *hu, unsigned char c)
367 {
368  struct h5 *h5 = hu->priv;
369  const unsigned char *hdr = h5->rx_skb->data;
370 
371  if (H5_HDR_CRC(hdr)) {
372  h5->rx_func = h5_rx_crc;
373  h5->rx_pending = 2;
374  } else {
375  h5_complete_rx_pkt(hu);
376  h5_reset_rx(h5);
377  }
378 
379  return 0;
380 }
381 
382 static int h5_rx_3wire_hdr(struct hci_uart *hu, unsigned char c)
383 {
384  struct h5 *h5 = hu->priv;
385  const unsigned char *hdr = h5->rx_skb->data;
386 
387  BT_DBG("%s rx: seq %u ack %u crc %u rel %u type %u len %u",
388  hu->hdev->name, H5_HDR_SEQ(hdr), H5_HDR_ACK(hdr),
389  H5_HDR_CRC(hdr), H5_HDR_RELIABLE(hdr), H5_HDR_PKT_TYPE(hdr),
390  H5_HDR_LEN(hdr));
391 
392  if (((hdr[0] + hdr[1] + hdr[2] + hdr[3]) & 0xff) != 0xff) {
393  BT_ERR("Invalid header checksum");
394  h5_reset_rx(h5);
395  return 0;
396  }
397 
398  if (H5_HDR_RELIABLE(hdr) && H5_HDR_SEQ(hdr) != h5->tx_ack) {
399  BT_ERR("Out-of-order packet arrived (%u != %u)",
400  H5_HDR_SEQ(hdr), h5->tx_ack);
401  h5_reset_rx(h5);
402  return 0;
403  }
404 
405  if (h5->state != H5_ACTIVE &&
407  BT_ERR("Non-link packet received in non-active state");
408  h5_reset_rx(h5);
409  }
410 
411  h5->rx_func = h5_rx_payload;
412  h5->rx_pending = H5_HDR_LEN(hdr);
413 
414  return 0;
415 }
416 
417 static int h5_rx_pkt_start(struct hci_uart *hu, unsigned char c)
418 {
419  struct h5 *h5 = hu->priv;
420 
421  if (c == SLIP_DELIMITER)
422  return 1;
423 
424  h5->rx_func = h5_rx_3wire_hdr;
425  h5->rx_pending = 4;
426 
427  h5->rx_skb = bt_skb_alloc(H5_MAX_LEN, GFP_ATOMIC);
428  if (!h5->rx_skb) {
429  BT_ERR("Can't allocate mem for new packet");
430  h5_reset_rx(h5);
431  return -ENOMEM;
432  }
433 
434  h5->rx_skb->dev = (void *) hu->hdev;
435 
436  return 0;
437 }
438 
439 static int h5_rx_delimiter(struct hci_uart *hu, unsigned char c)
440 {
441  struct h5 *h5 = hu->priv;
442 
443  if (c == SLIP_DELIMITER)
444  h5->rx_func = h5_rx_pkt_start;
445 
446  return 1;
447 }
448 
449 static void h5_unslip_one_byte(struct h5 *h5, unsigned char c)
450 {
451  const u8 delim = SLIP_DELIMITER, esc = SLIP_ESC;
452  const u8 *byte = &c;
453 
454  if (!test_bit(H5_RX_ESC, &h5->flags) && c == SLIP_ESC) {
455  set_bit(H5_RX_ESC, &h5->flags);
456  return;
457  }
458 
459  if (test_and_clear_bit(H5_RX_ESC, &h5->flags)) {
460  switch (c) {
461  case SLIP_ESC_DELIM:
462  byte = &delim;
463  break;
464  case SLIP_ESC_ESC:
465  byte = &esc;
466  break;
467  default:
468  BT_ERR("Invalid esc byte 0x%02hhx", c);
469  h5_reset_rx(h5);
470  return;
471  }
472  }
473 
474  memcpy(skb_put(h5->rx_skb, 1), byte, 1);
475  h5->rx_pending--;
476 
477  BT_DBG("unsliped 0x%02hhx, rx_pending %zu", *byte, h5->rx_pending);
478 }
479 
480 static void h5_reset_rx(struct h5 *h5)
481 {
482  if (h5->rx_skb) {
483  kfree_skb(h5->rx_skb);
484  h5->rx_skb = NULL;
485  }
486 
487  h5->rx_func = h5_rx_delimiter;
488  h5->rx_pending = 0;
489  clear_bit(H5_RX_ESC, &h5->flags);
490 }
491 
492 static int h5_recv(struct hci_uart *hu, void *data, int count)
493 {
494  struct h5 *h5 = hu->priv;
495  unsigned char *ptr = data;
496 
497  BT_DBG("%s pending %zu count %d", hu->hdev->name, h5->rx_pending,
498  count);
499 
500  while (count > 0) {
501  int processed;
502 
503  if (h5->rx_pending > 0) {
504  if (*ptr == SLIP_DELIMITER) {
505  BT_ERR("Too short H5 packet");
506  h5_reset_rx(h5);
507  continue;
508  }
509 
510  h5_unslip_one_byte(h5, *ptr);
511 
512  ptr++; count--;
513  continue;
514  }
515 
516  processed = h5->rx_func(hu, *ptr);
517  if (processed < 0)
518  return processed;
519 
520  ptr += processed;
521  count -= processed;
522  }
523 
524  return 0;
525 }
526 
527 static int h5_enqueue(struct hci_uart *hu, struct sk_buff *skb)
528 {
529  struct h5 *h5 = hu->priv;
530 
531  if (skb->len > 0xfff) {
532  BT_ERR("Packet too long (%u bytes)", skb->len);
533  kfree_skb(skb);
534  return 0;
535  }
536 
537  if (h5->state != H5_ACTIVE) {
538  BT_ERR("Ignoring HCI data in non-active state");
539  kfree_skb(skb);
540  return 0;
541  }
542 
543  switch (bt_cb(skb)->pkt_type) {
544  case HCI_ACLDATA_PKT:
545  case HCI_COMMAND_PKT:
546  skb_queue_tail(&h5->rel, skb);
547  break;
548 
549  case HCI_SCODATA_PKT:
550  skb_queue_tail(&h5->unrel, skb);
551  break;
552 
553  default:
554  BT_ERR("Unknown packet type %u", bt_cb(skb)->pkt_type);
555  kfree_skb(skb);
556  break;
557  }
558 
559  return 0;
560 }
561 
562 static void h5_slip_delim(struct sk_buff *skb)
563 {
564  const char delim = SLIP_DELIMITER;
565 
566  memcpy(skb_put(skb, 1), &delim, 1);
567 }
568 
569 static void h5_slip_one_byte(struct sk_buff *skb, u8 c)
570 {
571  const char esc_delim[2] = { SLIP_ESC, SLIP_ESC_DELIM };
572  const char esc_esc[2] = { SLIP_ESC, SLIP_ESC_ESC };
573 
574  switch (c) {
575  case SLIP_DELIMITER:
576  memcpy(skb_put(skb, 2), &esc_delim, 2);
577  break;
578  case SLIP_ESC:
579  memcpy(skb_put(skb, 2), &esc_esc, 2);
580  break;
581  default:
582  memcpy(skb_put(skb, 1), &c, 1);
583  }
584 }
585 
586 static bool valid_packet_type(u8 type)
587 {
588  switch (type) {
589  case HCI_ACLDATA_PKT:
590  case HCI_COMMAND_PKT:
591  case HCI_SCODATA_PKT:
592  case HCI_3WIRE_LINK_PKT:
593  case HCI_3WIRE_ACK_PKT:
594  return true;
595  default:
596  return false;
597  }
598 }
599 
600 static struct sk_buff *h5_prepare_pkt(struct hci_uart *hu, u8 pkt_type,
601  const u8 *data, size_t len)
602 {
603  struct h5 *h5 = hu->priv;
604  struct sk_buff *nskb;
605  u8 hdr[4];
606  int i;
607 
608  if (!valid_packet_type(pkt_type)) {
609  BT_ERR("Unknown packet type %u", pkt_type);
610  return NULL;
611  }
612 
613  /*
614  * Max len of packet: (original len + 4 (H5 hdr) + 2 (crc)) * 2
615  * (because bytes 0xc0 and 0xdb are escaped, worst case is when
616  * the packet is all made of 0xc0 and 0xdb) + 2 (0xc0
617  * delimiters at start and end).
618  */
619  nskb = alloc_skb((len + 6) * 2 + 2, GFP_ATOMIC);
620  if (!nskb)
621  return NULL;
622 
623  bt_cb(nskb)->pkt_type = pkt_type;
624 
625  h5_slip_delim(nskb);
626 
627  hdr[0] = h5->tx_ack << 3;
629 
630  /* Reliable packet? */
631  if (pkt_type == HCI_ACLDATA_PKT || pkt_type == HCI_COMMAND_PKT) {
632  hdr[0] |= 1 << 7;
633  hdr[0] |= h5->tx_seq;
634  h5->tx_seq = (h5->tx_seq + 1) % 8;
635  }
636 
637  hdr[1] = pkt_type | ((len & 0x0f) << 4);
638  hdr[2] = len >> 4;
639  hdr[3] = ~((hdr[0] + hdr[1] + hdr[2]) & 0xff);
640 
641  BT_DBG("%s tx: seq %u ack %u crc %u rel %u type %u len %u",
642  hu->hdev->name, H5_HDR_SEQ(hdr), H5_HDR_ACK(hdr),
643  H5_HDR_CRC(hdr), H5_HDR_RELIABLE(hdr), H5_HDR_PKT_TYPE(hdr),
644  H5_HDR_LEN(hdr));
645 
646  for (i = 0; i < 4; i++)
647  h5_slip_one_byte(nskb, hdr[i]);
648 
649  for (i = 0; i < len; i++)
650  h5_slip_one_byte(nskb, data[i]);
651 
652  h5_slip_delim(nskb);
653 
654  return nskb;
655 }
656 
657 static struct sk_buff *h5_dequeue(struct hci_uart *hu)
658 {
659  struct h5 *h5 = hu->priv;
660  unsigned long flags;
661  struct sk_buff *skb, *nskb;
662 
663  if (h5->sleep != H5_AWAKE) {
664  const unsigned char wakeup_req[] = { 0x05, 0xfa };
665 
666  if (h5->sleep == H5_WAKING_UP)
667  return NULL;
668 
669  h5->sleep = H5_WAKING_UP;
670  BT_DBG("Sending wakeup request");
671 
672  mod_timer(&h5->timer, jiffies + HZ / 100);
673  return h5_prepare_pkt(hu, HCI_3WIRE_LINK_PKT, wakeup_req, 2);
674  }
675 
676  if ((skb = skb_dequeue(&h5->unrel)) != NULL) {
677  nskb = h5_prepare_pkt(hu, bt_cb(skb)->pkt_type,
678  skb->data, skb->len);
679  if (nskb) {
680  kfree_skb(skb);
681  return nskb;
682  }
683 
684  skb_queue_head(&h5->unrel, skb);
685  BT_ERR("Could not dequeue pkt because alloc_skb failed");
686  }
687 
689 
690  if (h5->unack.qlen >= h5->tx_win)
691  goto unlock;
692 
693  if ((skb = skb_dequeue(&h5->rel)) != NULL) {
694  nskb = h5_prepare_pkt(hu, bt_cb(skb)->pkt_type,
695  skb->data, skb->len);
696  if (nskb) {
697  __skb_queue_tail(&h5->unack, skb);
698  mod_timer(&h5->timer, jiffies + H5_ACK_TIMEOUT);
699  spin_unlock_irqrestore(&h5->unack.lock, flags);
700  return nskb;
701  }
702 
703  skb_queue_head(&h5->rel, skb);
704  BT_ERR("Could not dequeue pkt because alloc_skb failed");
705  }
706 
707 unlock:
708  spin_unlock_irqrestore(&h5->unack.lock, flags);
709 
710  if (test_bit(H5_TX_ACK_REQ, &h5->flags))
711  return h5_prepare_pkt(hu, HCI_3WIRE_ACK_PKT, NULL, 0);
712 
713  return NULL;
714 }
715 
716 static int h5_flush(struct hci_uart *hu)
717 {
718  BT_DBG("hu %p", hu);
719  return 0;
720 }
721 
722 static struct hci_uart_proto h5p = {
723  .id = HCI_UART_3WIRE,
724  .open = h5_open,
725  .close = h5_close,
726  .recv = h5_recv,
727  .enqueue = h5_enqueue,
728  .dequeue = h5_dequeue,
729  .flush = h5_flush,
730 };
731 
732 int __init h5_init(void)
733 {
734  int err = hci_uart_register_proto(&h5p);
735 
736  if (!err)
737  BT_INFO("HCI Three-wire UART (H5) protocol initialized");
738  else
739  BT_ERR("HCI Three-wire UART (H5) protocol init failed");
740 
741  return err;
742 }
743 
744 int __exit h5_deinit(void)
745 {
746  return hci_uart_unregister_proto(&h5p);
747 }