Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hypercalls.c
Go to the documentation of this file.
1 /*P:500
2  * Just as userspace programs request kernel operations through a system
3  * call, the Guest requests Host operations through a "hypercall". You might
4  * notice this nomenclature doesn't really follow any logic, but the name has
5  * been around for long enough that we're stuck with it. As you'd expect, this
6  * code is basically a one big switch statement.
7 :*/
8 
9 /* Copyright (C) 2006 Rusty Russell IBM Corporation
10 
11  This program is free software; you can redistribute it and/or modify
12  it under the terms of the GNU General Public License as published by
13  the Free Software Foundation; either version 2 of the License, or
14  (at your option) any later version.
15 
16  This program is distributed in the hope that it will be useful,
17  but WITHOUT ANY WARRANTY; without even the implied warranty of
18  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19  GNU General Public License for more details.
20 
21  You should have received a copy of the GNU General Public License
22  along with this program; if not, write to the Free Software
23  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 */
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/mm.h>
28 #include <linux/ktime.h>
29 #include <asm/page.h>
30 #include <asm/pgtable.h>
31 #include "lg.h"
32 
33 /*H:120
34  * This is the core hypercall routine: where the Guest gets what it wants.
35  * Or gets killed. Or, in the case of LHCALL_SHUTDOWN, both.
36  */
37 static void do_hcall(struct lg_cpu *cpu, struct hcall_args *args)
38 {
39  switch (args->arg0) {
40  case LHCALL_FLUSH_ASYNC:
41  /*
42  * This call does nothing, except by breaking out of the Guest
43  * it makes us process all the asynchronous hypercalls.
44  */
45  break;
47  /*
48  * This call does nothing too, but by breaking out of the Guest
49  * it makes us process any pending interrupts.
50  */
51  break;
52  case LHCALL_LGUEST_INIT:
53  /*
54  * You can't get here unless you're already initialized. Don't
55  * do that.
56  */
57  kill_guest(cpu, "already have lguest_data");
58  break;
59  case LHCALL_SHUTDOWN: {
60  char msg[128];
61  /*
62  * Shutdown is such a trivial hypercall that we do it in five
63  * lines right here.
64  *
65  * If the lgread fails, it will call kill_guest() itself; the
66  * kill_guest() with the message will be ignored.
67  */
68  __lgread(cpu, msg, args->arg1, sizeof(msg));
69  msg[sizeof(msg)-1] = '\0';
70  kill_guest(cpu, "CRASH: %s", msg);
71  if (args->arg2 == LGUEST_SHUTDOWN_RESTART)
72  cpu->lg->dead = ERR_PTR(-ERESTART);
73  break;
74  }
75  case LHCALL_FLUSH_TLB:
76  /* FLUSH_TLB comes in two flavors, depending on the argument: */
77  if (args->arg1)
79  else
81  break;
82 
83  /*
84  * All these calls simply pass the arguments through to the right
85  * routines.
86  */
87  case LHCALL_NEW_PGTABLE:
88  guest_new_pagetable(cpu, args->arg1);
89  break;
90  case LHCALL_SET_STACK:
91  guest_set_stack(cpu, args->arg1, args->arg2, args->arg3);
92  break;
93  case LHCALL_SET_PTE:
94 #ifdef CONFIG_X86_PAE
95  guest_set_pte(cpu, args->arg1, args->arg2,
96  __pte(args->arg3 | (u64)args->arg4 << 32));
97 #else
98  guest_set_pte(cpu, args->arg1, args->arg2, __pte(args->arg3));
99 #endif
100  break;
101  case LHCALL_SET_PGD:
102  guest_set_pgd(cpu->lg, args->arg1, args->arg2);
103  break;
104 #ifdef CONFIG_X86_PAE
105  case LHCALL_SET_PMD:
106  guest_set_pmd(cpu->lg, args->arg1, args->arg2);
107  break;
108 #endif
110  guest_set_clockevent(cpu, args->arg1);
111  break;
112  case LHCALL_TS:
113  /* This sets the TS flag, as we saw used in run_guest(). */
114  cpu->ts = args->arg1;
115  break;
116  case LHCALL_HALT:
117  /* Similarly, this sets the halted flag for run_guest(). */
118  cpu->halted = 1;
119  break;
120  case LHCALL_NOTIFY:
121  cpu->pending_notify = args->arg1;
122  break;
123  default:
124  /* It should be an architecture-specific hypercall. */
125  if (lguest_arch_do_hcall(cpu, args))
126  kill_guest(cpu, "Bad hypercall %li\n", args->arg0);
127  }
128 }
129 
130 /*H:124
131  * Asynchronous hypercalls are easy: we just look in the array in the
132  * Guest's "struct lguest_data" to see if any new ones are marked "ready".
133  *
134  * We are careful to do these in order: obviously we respect the order the
135  * Guest put them in the ring, but we also promise the Guest that they will
136  * happen before any normal hypercall (which is why we check this before
137  * checking for a normal hcall).
138  */
139 static void do_async_hcalls(struct lg_cpu *cpu)
140 {
141  unsigned int i;
143 
144  /* For simplicity, we copy the entire call status array in at once. */
145  if (copy_from_user(&st, &cpu->lg->lguest_data->hcall_status, sizeof(st)))
146  return;
147 
148  /* We process "struct lguest_data"s hcalls[] ring once. */
149  for (i = 0; i < ARRAY_SIZE(st); i++) {
150  struct hcall_args args;
151  /*
152  * We remember where we were up to from last time. This makes
153  * sure that the hypercalls are done in the order the Guest
154  * places them in the ring.
155  */
156  unsigned int n = cpu->next_hcall;
157 
158  /* 0xFF means there's no call here (yet). */
159  if (st[n] == 0xFF)
160  break;
161 
162  /*
163  * OK, we have hypercall. Increment the "next_hcall" cursor,
164  * and wrap back to 0 if we reach the end.
165  */
166  if (++cpu->next_hcall == LHCALL_RING_SIZE)
167  cpu->next_hcall = 0;
168 
169  /*
170  * Copy the hypercall arguments into a local copy of the
171  * hcall_args struct.
172  */
173  if (copy_from_user(&args, &cpu->lg->lguest_data->hcalls[n],
174  sizeof(struct hcall_args))) {
175  kill_guest(cpu, "Fetching async hypercalls");
176  break;
177  }
178 
179  /* Do the hypercall, same as a normal one. */
180  do_hcall(cpu, &args);
181 
182  /* Mark the hypercall done. */
183  if (put_user(0xFF, &cpu->lg->lguest_data->hcall_status[n])) {
184  kill_guest(cpu, "Writing result for async hypercall");
185  break;
186  }
187 
188  /*
189  * Stop doing hypercalls if they want to notify the Launcher:
190  * it needs to service this first.
191  */
192  if (cpu->pending_notify)
193  break;
194  }
195 }
196 
197 /*
198  * Last of all, we look at what happens first of all. The very first time the
199  * Guest makes a hypercall, we end up here to set things up:
200  */
201 static void initialize(struct lg_cpu *cpu)
202 {
203  /*
204  * You can't do anything until you're initialized. The Guest knows the
205  * rules, so we're unforgiving here.
206  */
207  if (cpu->hcall->arg0 != LHCALL_LGUEST_INIT) {
208  kill_guest(cpu, "hypercall %li before INIT", cpu->hcall->arg0);
209  return;
210  }
211 
213  kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
214 
215  /*
216  * The Guest tells us where we're not to deliver interrupts by putting
217  * the range of addresses into "struct lguest_data".
218  */
219  if (get_user(cpu->lg->noirq_start, &cpu->lg->lguest_data->noirq_start)
220  || get_user(cpu->lg->noirq_end, &cpu->lg->lguest_data->noirq_end))
221  kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
222 
223  /*
224  * We write the current time into the Guest's data page once so it can
225  * set its clock.
226  */
227  write_timestamp(cpu);
228 
229  /* page_tables.c will also do some setup. */
231 
232  /*
233  * This is the one case where the above accesses might have been the
234  * first write to a Guest page. This may have caused a copy-on-write
235  * fault, but the old page might be (read-only) in the Guest
236  * pagetable.
237  */
239 }
240 /*:*/
241 
242 /*M:013
243  * If a Guest reads from a page (so creates a mapping) that it has never
244  * written to, and then the Launcher writes to it (ie. the output of a virtual
245  * device), the Guest will still see the old page. In practice, this never
246  * happens: why would the Guest read a page which it has never written to? But
247  * a similar scenario might one day bite us, so it's worth mentioning.
248  *
249  * Note that if we used a shared anonymous mapping in the Launcher instead of
250  * mapping /dev/zero private, we wouldn't worry about cop-on-write. And we
251  * need that to switch the Launcher to processes (away from threads) anyway.
252 :*/
253 
254 /*H:100
255  * Hypercalls
256  *
257  * Remember from the Guest, hypercalls come in two flavors: normal and
258  * asynchronous. This file handles both of types.
259  */
260 void do_hypercalls(struct lg_cpu *cpu)
261 {
262  /* Not initialized yet? This hypercall must do it. */
263  if (unlikely(!cpu->lg->lguest_data)) {
264  /* Set up the "struct lguest_data" */
265  initialize(cpu);
266  /* Hcall is done. */
267  cpu->hcall = NULL;
268  return;
269  }
270 
271  /*
272  * The Guest has initialized.
273  *
274  * Look in the hypercall ring for the async hypercalls:
275  */
276  do_async_hcalls(cpu);
277 
278  /*
279  * If we stopped reading the hypercall ring because the Guest did a
280  * NOTIFY to the Launcher, we want to return now. Otherwise we do
281  * the hypercall.
282  */
283  if (!cpu->pending_notify) {
284  do_hcall(cpu, cpu->hcall);
285  /*
286  * Tricky point: we reset the hcall pointer to mark the
287  * hypercall as "done". We use the hcall pointer rather than
288  * the trap number to indicate a hypercall is pending.
289  * Normally it doesn't matter: the Guest will run again and
290  * update the trap number before we come back here.
291  *
292  * However, if we are signalled or the Guest sends I/O to the
293  * Launcher, the run_guest() loop will exit without running the
294  * Guest. When it comes back it would try to re-run the
295  * hypercall. Finding that bug sucked.
296  */
297  cpu->hcall = NULL;
298  }
299 }
300 
301 /*
302  * This routine supplies the Guest with time: it's used for wallclock time at
303  * initial boot and as a rough time source if the TSC isn't available.
304  */
305 void write_timestamp(struct lg_cpu *cpu)
306 {
307  struct timespec now;
308  ktime_get_real_ts(&now);
309  if (copy_to_user(&cpu->lg->lguest_data->time,
310  &now, sizeof(struct timespec)))
311  kill_guest(cpu, "Writing timestamp");
312 }