Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ibalance.c
Go to the documentation of this file.
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 #include <asm/uaccess.h>
6 #include <linux/string.h>
7 #include <linux/time.h>
8 #include "reiserfs.h"
9 #include <linux/buffer_head.h>
10 
11 /* this is one and only function that is used outside (do_balance.c) */
12 int balance_internal(struct tree_balance *,
13  int, int, struct item_head *, struct buffer_head **);
14 
15 /* modes of internal_shift_left, internal_shift_right and internal_insert_childs */
16 #define INTERNAL_SHIFT_FROM_S_TO_L 0
17 #define INTERNAL_SHIFT_FROM_R_TO_S 1
18 #define INTERNAL_SHIFT_FROM_L_TO_S 2
19 #define INTERNAL_SHIFT_FROM_S_TO_R 3
20 #define INTERNAL_INSERT_TO_S 4
21 #define INTERNAL_INSERT_TO_L 5
22 #define INTERNAL_INSERT_TO_R 6
23 
24 static void internal_define_dest_src_infos(int shift_mode,
25  struct tree_balance *tb,
26  int h,
27  struct buffer_info *dest_bi,
28  struct buffer_info *src_bi,
29  int *d_key, struct buffer_head **cf)
30 {
31  memset(dest_bi, 0, sizeof(struct buffer_info));
32  memset(src_bi, 0, sizeof(struct buffer_info));
33  /* define dest, src, dest parent, dest position */
34  switch (shift_mode) {
35  case INTERNAL_SHIFT_FROM_S_TO_L: /* used in internal_shift_left */
36  src_bi->tb = tb;
37  src_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
38  src_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
39  src_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
40  dest_bi->tb = tb;
41  dest_bi->bi_bh = tb->L[h];
42  dest_bi->bi_parent = tb->FL[h];
43  dest_bi->bi_position = get_left_neighbor_position(tb, h);
44  *d_key = tb->lkey[h];
45  *cf = tb->CFL[h];
46  break;
48  src_bi->tb = tb;
49  src_bi->bi_bh = tb->L[h];
50  src_bi->bi_parent = tb->FL[h];
51  src_bi->bi_position = get_left_neighbor_position(tb, h);
52  dest_bi->tb = tb;
53  dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
54  dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
55  dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1); /* dest position is analog of dest->b_item_order */
56  *d_key = tb->lkey[h];
57  *cf = tb->CFL[h];
58  break;
59 
60  case INTERNAL_SHIFT_FROM_R_TO_S: /* used in internal_shift_left */
61  src_bi->tb = tb;
62  src_bi->bi_bh = tb->R[h];
63  src_bi->bi_parent = tb->FR[h];
65  dest_bi->tb = tb;
66  dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
67  dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
68  dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
69  *d_key = tb->rkey[h];
70  *cf = tb->CFR[h];
71  break;
72 
74  src_bi->tb = tb;
75  src_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
76  src_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
77  src_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
78  dest_bi->tb = tb;
79  dest_bi->bi_bh = tb->R[h];
80  dest_bi->bi_parent = tb->FR[h];
81  dest_bi->bi_position = get_right_neighbor_position(tb, h);
82  *d_key = tb->rkey[h];
83  *cf = tb->CFR[h];
84  break;
85 
87  dest_bi->tb = tb;
88  dest_bi->bi_bh = tb->L[h];
89  dest_bi->bi_parent = tb->FL[h];
90  dest_bi->bi_position = get_left_neighbor_position(tb, h);
91  break;
92 
94  dest_bi->tb = tb;
95  dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
96  dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
97  dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
98  break;
99 
101  dest_bi->tb = tb;
102  dest_bi->bi_bh = tb->R[h];
103  dest_bi->bi_parent = tb->FR[h];
104  dest_bi->bi_position = get_right_neighbor_position(tb, h);
105  break;
106 
107  default:
108  reiserfs_panic(tb->tb_sb, "ibalance-1",
109  "shift type is unknown (%d)",
110  shift_mode);
111  }
112 }
113 
114 /* Insert count node pointers into buffer cur before position to + 1.
115  * Insert count items into buffer cur before position to.
116  * Items and node pointers are specified by inserted and bh respectively.
117  */
118 static void internal_insert_childs(struct buffer_info *cur_bi,
119  int to, int count,
120  struct item_head *inserted,
121  struct buffer_head **bh)
122 {
123  struct buffer_head *cur = cur_bi->bi_bh;
124  struct block_head *blkh;
125  int nr;
126  struct reiserfs_key *ih;
127  struct disk_child new_dc[2];
128  struct disk_child *dc;
129  int i;
130 
131  if (count <= 0)
132  return;
133 
134  blkh = B_BLK_HEAD(cur);
135  nr = blkh_nr_item(blkh);
136 
137  RFALSE(count > 2, "too many children (%d) are to be inserted", count);
138  RFALSE(B_FREE_SPACE(cur) < count * (KEY_SIZE + DC_SIZE),
139  "no enough free space (%d), needed %d bytes",
140  B_FREE_SPACE(cur), count * (KEY_SIZE + DC_SIZE));
141 
142  /* prepare space for count disk_child */
143  dc = B_N_CHILD(cur, to + 1);
144 
145  memmove(dc + count, dc, (nr + 1 - (to + 1)) * DC_SIZE);
146 
147  /* copy to_be_insert disk children */
148  for (i = 0; i < count; i++) {
149  put_dc_size(&(new_dc[i]),
150  MAX_CHILD_SIZE(bh[i]) - B_FREE_SPACE(bh[i]));
151  put_dc_block_number(&(new_dc[i]), bh[i]->b_blocknr);
152  }
153  memcpy(dc, new_dc, DC_SIZE * count);
154 
155  /* prepare space for count items */
156  ih = B_N_PDELIM_KEY(cur, ((to == -1) ? 0 : to));
157 
158  memmove(ih + count, ih,
159  (nr - to) * KEY_SIZE + (nr + 1 + count) * DC_SIZE);
160 
161  /* copy item headers (keys) */
162  memcpy(ih, inserted, KEY_SIZE);
163  if (count > 1)
164  memcpy(ih + 1, inserted + 1, KEY_SIZE);
165 
166  /* sizes, item number */
167  set_blkh_nr_item(blkh, blkh_nr_item(blkh) + count);
168  set_blkh_free_space(blkh,
169  blkh_free_space(blkh) - count * (DC_SIZE +
170  KEY_SIZE));
171 
172  do_balance_mark_internal_dirty(cur_bi->tb, cur, 0);
173 
174  /*&&&&&&&&&&&&&&&&&&&&&&&& */
175  check_internal(cur);
176  /*&&&&&&&&&&&&&&&&&&&&&&&& */
177 
178  if (cur_bi->bi_parent) {
179  struct disk_child *t_dc =
180  B_N_CHILD(cur_bi->bi_parent, cur_bi->bi_position);
181  put_dc_size(t_dc,
182  dc_size(t_dc) + (count * (DC_SIZE + KEY_SIZE)));
184  0);
185 
186  /*&&&&&&&&&&&&&&&&&&&&&&&& */
187  check_internal(cur_bi->bi_parent);
188  /*&&&&&&&&&&&&&&&&&&&&&&&& */
189  }
190 
191 }
192 
193 /* Delete del_num items and node pointers from buffer cur starting from *
194  * the first_i'th item and first_p'th pointers respectively. */
195 static void internal_delete_pointers_items(struct buffer_info *cur_bi,
196  int first_p,
197  int first_i, int del_num)
198 {
199  struct buffer_head *cur = cur_bi->bi_bh;
200  int nr;
201  struct block_head *blkh;
202  struct reiserfs_key *key;
203  struct disk_child *dc;
204 
205  RFALSE(cur == NULL, "buffer is 0");
206  RFALSE(del_num < 0,
207  "negative number of items (%d) can not be deleted", del_num);
208  RFALSE(first_p < 0 || first_p + del_num > B_NR_ITEMS(cur) + 1
209  || first_i < 0,
210  "first pointer order (%d) < 0 or "
211  "no so many pointers (%d), only (%d) or "
212  "first key order %d < 0", first_p, first_p + del_num,
213  B_NR_ITEMS(cur) + 1, first_i);
214  if (del_num == 0)
215  return;
216 
217  blkh = B_BLK_HEAD(cur);
218  nr = blkh_nr_item(blkh);
219 
220  if (first_p == 0 && del_num == nr + 1) {
221  RFALSE(first_i != 0,
222  "1st deleted key must have order 0, not %d", first_i);
223  make_empty_node(cur_bi);
224  return;
225  }
226 
227  RFALSE(first_i + del_num > B_NR_ITEMS(cur),
228  "first_i = %d del_num = %d "
229  "no so many keys (%d) in the node (%b)(%z)",
230  first_i, del_num, first_i + del_num, cur, cur);
231 
232  /* deleting */
233  dc = B_N_CHILD(cur, first_p);
234 
235  memmove(dc, dc + del_num, (nr + 1 - first_p - del_num) * DC_SIZE);
236  key = B_N_PDELIM_KEY(cur, first_i);
237  memmove(key, key + del_num,
238  (nr - first_i - del_num) * KEY_SIZE + (nr + 1 -
239  del_num) * DC_SIZE);
240 
241  /* sizes, item number */
242  set_blkh_nr_item(blkh, blkh_nr_item(blkh) - del_num);
243  set_blkh_free_space(blkh,
244  blkh_free_space(blkh) +
245  (del_num * (KEY_SIZE + DC_SIZE)));
246 
247  do_balance_mark_internal_dirty(cur_bi->tb, cur, 0);
248  /*&&&&&&&&&&&&&&&&&&&&&&& */
249  check_internal(cur);
250  /*&&&&&&&&&&&&&&&&&&&&&&& */
251 
252  if (cur_bi->bi_parent) {
253  struct disk_child *t_dc;
254  t_dc = B_N_CHILD(cur_bi->bi_parent, cur_bi->bi_position);
255  put_dc_size(t_dc,
256  dc_size(t_dc) - (del_num * (KEY_SIZE + DC_SIZE)));
257 
259  0);
260  /*&&&&&&&&&&&&&&&&&&&&&&&& */
261  check_internal(cur_bi->bi_parent);
262  /*&&&&&&&&&&&&&&&&&&&&&&&& */
263  }
264 }
265 
266 /* delete n node pointers and items starting from given position */
267 static void internal_delete_childs(struct buffer_info *cur_bi, int from, int n)
268 {
269  int i_from;
270 
271  i_from = (from == 0) ? from : from - 1;
272 
273  /* delete n pointers starting from `from' position in CUR;
274  delete n keys starting from 'i_from' position in CUR;
275  */
276  internal_delete_pointers_items(cur_bi, from, i_from, n);
277 }
278 
279 /* copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest
280 * last_first == FIRST_TO_LAST means, that we copy first items from src to tail of dest
281  * last_first == LAST_TO_FIRST means, that we copy last items from src to head of dest
282  */
283 static void internal_copy_pointers_items(struct buffer_info *dest_bi,
284  struct buffer_head *src,
285  int last_first, int cpy_num)
286 {
287  /* ATTENTION! Number of node pointers in DEST is equal to number of items in DEST *
288  * as delimiting key have already inserted to buffer dest.*/
289  struct buffer_head *dest = dest_bi->bi_bh;
290  int nr_dest, nr_src;
291  int dest_order, src_order;
292  struct block_head *blkh;
293  struct reiserfs_key *key;
294  struct disk_child *dc;
295 
296  nr_src = B_NR_ITEMS(src);
297 
298  RFALSE(dest == NULL || src == NULL,
299  "src (%p) or dest (%p) buffer is 0", src, dest);
300  RFALSE(last_first != FIRST_TO_LAST && last_first != LAST_TO_FIRST,
301  "invalid last_first parameter (%d)", last_first);
302  RFALSE(nr_src < cpy_num - 1,
303  "no so many items (%d) in src (%d)", cpy_num, nr_src);
304  RFALSE(cpy_num < 0, "cpy_num less than 0 (%d)", cpy_num);
305  RFALSE(cpy_num - 1 + B_NR_ITEMS(dest) > (int)MAX_NR_KEY(dest),
306  "cpy_num (%d) + item number in dest (%d) can not be > MAX_NR_KEY(%d)",
307  cpy_num, B_NR_ITEMS(dest), MAX_NR_KEY(dest));
308 
309  if (cpy_num == 0)
310  return;
311 
312  /* coping */
313  blkh = B_BLK_HEAD(dest);
314  nr_dest = blkh_nr_item(blkh);
315 
316  /*dest_order = (last_first == LAST_TO_FIRST) ? 0 : nr_dest; */
317  /*src_order = (last_first == LAST_TO_FIRST) ? (nr_src - cpy_num + 1) : 0; */
318  (last_first == LAST_TO_FIRST) ? (dest_order = 0, src_order =
319  nr_src - cpy_num + 1) : (dest_order =
320  nr_dest,
321  src_order =
322  0);
323 
324  /* prepare space for cpy_num pointers */
325  dc = B_N_CHILD(dest, dest_order);
326 
327  memmove(dc + cpy_num, dc, (nr_dest - dest_order) * DC_SIZE);
328 
329  /* insert pointers */
330  memcpy(dc, B_N_CHILD(src, src_order), DC_SIZE * cpy_num);
331 
332  /* prepare space for cpy_num - 1 item headers */
333  key = B_N_PDELIM_KEY(dest, dest_order);
334  memmove(key + cpy_num - 1, key,
335  KEY_SIZE * (nr_dest - dest_order) + DC_SIZE * (nr_dest +
336  cpy_num));
337 
338  /* insert headers */
339  memcpy(key, B_N_PDELIM_KEY(src, src_order), KEY_SIZE * (cpy_num - 1));
340 
341  /* sizes, item number */
342  set_blkh_nr_item(blkh, blkh_nr_item(blkh) + (cpy_num - 1));
343  set_blkh_free_space(blkh,
344  blkh_free_space(blkh) - (KEY_SIZE * (cpy_num - 1) +
345  DC_SIZE * cpy_num));
346 
347  do_balance_mark_internal_dirty(dest_bi->tb, dest, 0);
348 
349  /*&&&&&&&&&&&&&&&&&&&&&&&& */
350  check_internal(dest);
351  /*&&&&&&&&&&&&&&&&&&&&&&&& */
352 
353  if (dest_bi->bi_parent) {
354  struct disk_child *t_dc;
355  t_dc = B_N_CHILD(dest_bi->bi_parent, dest_bi->bi_position);
356  put_dc_size(t_dc,
357  dc_size(t_dc) + (KEY_SIZE * (cpy_num - 1) +
358  DC_SIZE * cpy_num));
359 
360  do_balance_mark_internal_dirty(dest_bi->tb, dest_bi->bi_parent,
361  0);
362  /*&&&&&&&&&&&&&&&&&&&&&&&& */
363  check_internal(dest_bi->bi_parent);
364  /*&&&&&&&&&&&&&&&&&&&&&&&& */
365  }
366 
367 }
368 
369 /* Copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest.
370  * Delete cpy_num - del_par items and node pointers from buffer src.
371  * last_first == FIRST_TO_LAST means, that we copy/delete first items from src.
372  * last_first == LAST_TO_FIRST means, that we copy/delete last items from src.
373  */
374 static void internal_move_pointers_items(struct buffer_info *dest_bi,
375  struct buffer_info *src_bi,
376  int last_first, int cpy_num,
377  int del_par)
378 {
379  int first_pointer;
380  int first_item;
381 
382  internal_copy_pointers_items(dest_bi, src_bi->bi_bh, last_first,
383  cpy_num);
384 
385  if (last_first == FIRST_TO_LAST) { /* shift_left occurs */
386  first_pointer = 0;
387  first_item = 0;
388  /* delete cpy_num - del_par pointers and keys starting for pointers with first_pointer,
389  for key - with first_item */
390  internal_delete_pointers_items(src_bi, first_pointer,
391  first_item, cpy_num - del_par);
392  } else { /* shift_right occurs */
393  int i, j;
394 
395  i = (cpy_num - del_par ==
396  (j =
397  B_NR_ITEMS(src_bi->bi_bh)) + 1) ? 0 : j - cpy_num +
398  del_par;
399 
400  internal_delete_pointers_items(src_bi,
401  j + 1 - cpy_num + del_par, i,
402  cpy_num - del_par);
403  }
404 }
405 
406 /* Insert n_src'th key of buffer src before n_dest'th key of buffer dest. */
407 static void internal_insert_key(struct buffer_info *dest_bi, int dest_position_before, /* insert key before key with n_dest number */
408  struct buffer_head *src, int src_position)
409 {
410  struct buffer_head *dest = dest_bi->bi_bh;
411  int nr;
412  struct block_head *blkh;
413  struct reiserfs_key *key;
414 
415  RFALSE(dest == NULL || src == NULL,
416  "source(%p) or dest(%p) buffer is 0", src, dest);
417  RFALSE(dest_position_before < 0 || src_position < 0,
418  "source(%d) or dest(%d) key number less than 0",
419  src_position, dest_position_before);
420  RFALSE(dest_position_before > B_NR_ITEMS(dest) ||
421  src_position >= B_NR_ITEMS(src),
422  "invalid position in dest (%d (key number %d)) or in src (%d (key number %d))",
423  dest_position_before, B_NR_ITEMS(dest),
424  src_position, B_NR_ITEMS(src));
425  RFALSE(B_FREE_SPACE(dest) < KEY_SIZE,
426  "no enough free space (%d) in dest buffer", B_FREE_SPACE(dest));
427 
428  blkh = B_BLK_HEAD(dest);
429  nr = blkh_nr_item(blkh);
430 
431  /* prepare space for inserting key */
432  key = B_N_PDELIM_KEY(dest, dest_position_before);
433  memmove(key + 1, key,
434  (nr - dest_position_before) * KEY_SIZE + (nr + 1) * DC_SIZE);
435 
436  /* insert key */
437  memcpy(key, B_N_PDELIM_KEY(src, src_position), KEY_SIZE);
438 
439  /* Change dirt, free space, item number fields. */
440 
441  set_blkh_nr_item(blkh, blkh_nr_item(blkh) + 1);
443 
444  do_balance_mark_internal_dirty(dest_bi->tb, dest, 0);
445 
446  if (dest_bi->bi_parent) {
447  struct disk_child *t_dc;
448  t_dc = B_N_CHILD(dest_bi->bi_parent, dest_bi->bi_position);
449  put_dc_size(t_dc, dc_size(t_dc) + KEY_SIZE);
450 
451  do_balance_mark_internal_dirty(dest_bi->tb, dest_bi->bi_parent,
452  0);
453  }
454 }
455 
456 /* Insert d_key'th (delimiting) key from buffer cfl to tail of dest.
457  * Copy pointer_amount node pointers and pointer_amount - 1 items from buffer src to buffer dest.
458  * Replace d_key'th key in buffer cfl.
459  * Delete pointer_amount items and node pointers from buffer src.
460  */
461 /* this can be invoked both to shift from S to L and from R to S */
462 static void internal_shift_left(int mode, /* INTERNAL_FROM_S_TO_L | INTERNAL_FROM_R_TO_S */
463  struct tree_balance *tb,
464  int h, int pointer_amount)
465 {
466  struct buffer_info dest_bi, src_bi;
467  struct buffer_head *cf;
468  int d_key_position;
469 
470  internal_define_dest_src_infos(mode, tb, h, &dest_bi, &src_bi,
471  &d_key_position, &cf);
472 
473  /*printk("pointer_amount = %d\n",pointer_amount); */
474 
475  if (pointer_amount) {
476  /* insert delimiting key from common father of dest and src to node dest into position B_NR_ITEM(dest) */
477  internal_insert_key(&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf,
478  d_key_position);
479 
480  if (B_NR_ITEMS(src_bi.bi_bh) == pointer_amount - 1) {
481  if (src_bi.bi_position /*src->b_item_order */ == 0)
482  replace_key(tb, cf, d_key_position,
483  src_bi.
484  bi_parent /*src->b_parent */ , 0);
485  } else
486  replace_key(tb, cf, d_key_position, src_bi.bi_bh,
487  pointer_amount - 1);
488  }
489  /* last parameter is del_parameter */
490  internal_move_pointers_items(&dest_bi, &src_bi, FIRST_TO_LAST,
491  pointer_amount, 0);
492 
493 }
494 
495 /* Insert delimiting key to L[h].
496  * Copy n node pointers and n - 1 items from buffer S[h] to L[h].
497  * Delete n - 1 items and node pointers from buffer S[h].
498  */
499 /* it always shifts from S[h] to L[h] */
500 static void internal_shift1_left(struct tree_balance *tb,
501  int h, int pointer_amount)
502 {
503  struct buffer_info dest_bi, src_bi;
504  struct buffer_head *cf;
505  int d_key_position;
506 
507  internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
508  &dest_bi, &src_bi, &d_key_position, &cf);
509 
510  if (pointer_amount > 0) /* insert lkey[h]-th key from CFL[h] to left neighbor L[h] */
511  internal_insert_key(&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf,
512  d_key_position);
513  /* internal_insert_key (tb->L[h], B_NR_ITEM(tb->L[h]), tb->CFL[h], tb->lkey[h]); */
514 
515  /* last parameter is del_parameter */
516  internal_move_pointers_items(&dest_bi, &src_bi, FIRST_TO_LAST,
517  pointer_amount, 1);
518  /* internal_move_pointers_items (tb->L[h], tb->S[h], FIRST_TO_LAST, pointer_amount, 1); */
519 }
520 
521 /* Insert d_key'th (delimiting) key from buffer cfr to head of dest.
522  * Copy n node pointers and n - 1 items from buffer src to buffer dest.
523  * Replace d_key'th key in buffer cfr.
524  * Delete n items and node pointers from buffer src.
525  */
526 static void internal_shift_right(int mode, /* INTERNAL_FROM_S_TO_R | INTERNAL_FROM_L_TO_S */
527  struct tree_balance *tb,
528  int h, int pointer_amount)
529 {
530  struct buffer_info dest_bi, src_bi;
531  struct buffer_head *cf;
532  int d_key_position;
533  int nr;
534 
535  internal_define_dest_src_infos(mode, tb, h, &dest_bi, &src_bi,
536  &d_key_position, &cf);
537 
538  nr = B_NR_ITEMS(src_bi.bi_bh);
539 
540  if (pointer_amount > 0) {
541  /* insert delimiting key from common father of dest and src to dest node into position 0 */
542  internal_insert_key(&dest_bi, 0, cf, d_key_position);
543  if (nr == pointer_amount - 1) {
544  RFALSE(src_bi.bi_bh != PATH_H_PBUFFER(tb->tb_path, h) /*tb->S[h] */ ||
545  dest_bi.bi_bh != tb->R[h],
546  "src (%p) must be == tb->S[h](%p) when it disappears",
547  src_bi.bi_bh, PATH_H_PBUFFER(tb->tb_path, h));
548  /* when S[h] disappers replace left delemiting key as well */
549  if (tb->CFL[h])
550  replace_key(tb, cf, d_key_position, tb->CFL[h],
551  tb->lkey[h]);
552  } else
553  replace_key(tb, cf, d_key_position, src_bi.bi_bh,
554  nr - pointer_amount);
555  }
556 
557  /* last parameter is del_parameter */
558  internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST,
559  pointer_amount, 0);
560 }
561 
562 /* Insert delimiting key to R[h].
563  * Copy n node pointers and n - 1 items from buffer S[h] to R[h].
564  * Delete n - 1 items and node pointers from buffer S[h].
565  */
566 /* it always shift from S[h] to R[h] */
567 static void internal_shift1_right(struct tree_balance *tb,
568  int h, int pointer_amount)
569 {
570  struct buffer_info dest_bi, src_bi;
571  struct buffer_head *cf;
572  int d_key_position;
573 
574  internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
575  &dest_bi, &src_bi, &d_key_position, &cf);
576 
577  if (pointer_amount > 0) /* insert rkey from CFR[h] to right neighbor R[h] */
578  internal_insert_key(&dest_bi, 0, cf, d_key_position);
579  /* internal_insert_key (tb->R[h], 0, tb->CFR[h], tb->rkey[h]); */
580 
581  /* last parameter is del_parameter */
582  internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST,
583  pointer_amount, 1);
584  /* internal_move_pointers_items (tb->R[h], tb->S[h], LAST_TO_FIRST, pointer_amount, 1); */
585 }
586 
587 /* Delete insert_num node pointers together with their left items
588  * and balance current node.*/
589 static void balance_internal_when_delete(struct tree_balance *tb,
590  int h, int child_pos)
591 {
592  int insert_num;
593  int n;
594  struct buffer_head *tbSh = PATH_H_PBUFFER(tb->tb_path, h);
595  struct buffer_info bi;
596 
597  insert_num = tb->insert_size[h] / ((int)(DC_SIZE + KEY_SIZE));
598 
599  /* delete child-node-pointer(s) together with their left item(s) */
600  bi.tb = tb;
601  bi.bi_bh = tbSh;
602  bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
603  bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
604 
605  internal_delete_childs(&bi, child_pos, -insert_num);
606 
607  RFALSE(tb->blknum[h] > 1,
608  "tb->blknum[%d]=%d when insert_size < 0", h, tb->blknum[h]);
609 
610  n = B_NR_ITEMS(tbSh);
611 
612  if (tb->lnum[h] == 0 && tb->rnum[h] == 0) {
613  if (tb->blknum[h] == 0) {
614  /* node S[h] (root of the tree) is empty now */
615  struct buffer_head *new_root;
616 
617  RFALSE(n
618  || B_FREE_SPACE(tbSh) !=
619  MAX_CHILD_SIZE(tbSh) - DC_SIZE,
620  "buffer must have only 0 keys (%d)", n);
621  RFALSE(bi.bi_parent, "root has parent (%p)",
622  bi.bi_parent);
623 
624  /* choose a new root */
625  if (!tb->L[h - 1] || !B_NR_ITEMS(tb->L[h - 1]))
626  new_root = tb->R[h - 1];
627  else
628  new_root = tb->L[h - 1];
629  /* switch super block's tree root block number to the new value */
630  PUT_SB_ROOT_BLOCK(tb->tb_sb, new_root->b_blocknr);
631  //REISERFS_SB(tb->tb_sb)->s_rs->s_tree_height --;
633  SB_TREE_HEIGHT(tb->tb_sb) - 1);
634 
636  REISERFS_SB(tb->tb_sb)->s_sbh,
637  1);
638  /*&&&&&&&&&&&&&&&&&&&&&& */
639  if (h > 1)
640  /* use check_internal if new root is an internal node */
641  check_internal(new_root);
642  /*&&&&&&&&&&&&&&&&&&&&&& */
643 
644  /* do what is needed for buffer thrown from tree */
645  reiserfs_invalidate_buffer(tb, tbSh);
646  return;
647  }
648  return;
649  }
650 
651  if (tb->L[h] && tb->lnum[h] == -B_NR_ITEMS(tb->L[h]) - 1) { /* join S[h] with L[h] */
652 
653  RFALSE(tb->rnum[h] != 0,
654  "invalid tb->rnum[%d]==%d when joining S[h] with L[h]",
655  h, tb->rnum[h]);
656 
657  internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, n + 1);
658  reiserfs_invalidate_buffer(tb, tbSh);
659 
660  return;
661  }
662 
663  if (tb->R[h] && tb->rnum[h] == -B_NR_ITEMS(tb->R[h]) - 1) { /* join S[h] with R[h] */
664  RFALSE(tb->lnum[h] != 0,
665  "invalid tb->lnum[%d]==%d when joining S[h] with R[h]",
666  h, tb->lnum[h]);
667 
668  internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h, n + 1);
669 
670  reiserfs_invalidate_buffer(tb, tbSh);
671  return;
672  }
673 
674  if (tb->lnum[h] < 0) { /* borrow from left neighbor L[h] */
675  RFALSE(tb->rnum[h] != 0,
676  "wrong tb->rnum[%d]==%d when borrow from L[h]", h,
677  tb->rnum[h]);
678  /*internal_shift_right (tb, h, tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], -tb->lnum[h]); */
679  internal_shift_right(INTERNAL_SHIFT_FROM_L_TO_S, tb, h,
680  -tb->lnum[h]);
681  return;
682  }
683 
684  if (tb->rnum[h] < 0) { /* borrow from right neighbor R[h] */
685  RFALSE(tb->lnum[h] != 0,
686  "invalid tb->lnum[%d]==%d when borrow from R[h]",
687  h, tb->lnum[h]);
688  internal_shift_left(INTERNAL_SHIFT_FROM_R_TO_S, tb, h, -tb->rnum[h]); /*tb->S[h], tb->CFR[h], tb->rkey[h], tb->R[h], -tb->rnum[h]); */
689  return;
690  }
691 
692  if (tb->lnum[h] > 0) { /* split S[h] into two parts and put them into neighbors */
693  RFALSE(tb->rnum[h] == 0 || tb->lnum[h] + tb->rnum[h] != n + 1,
694  "invalid tb->lnum[%d]==%d or tb->rnum[%d]==%d when S[h](item number == %d) is split between them",
695  h, tb->lnum[h], h, tb->rnum[h], n);
696 
697  internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]); /*tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], tb->lnum[h]); */
698  internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
699  tb->rnum[h]);
700 
701  reiserfs_invalidate_buffer(tb, tbSh);
702 
703  return;
704  }
705  reiserfs_panic(tb->tb_sb, "ibalance-2",
706  "unexpected tb->lnum[%d]==%d or tb->rnum[%d]==%d",
707  h, tb->lnum[h], h, tb->rnum[h]);
708 }
709 
710 /* Replace delimiting key of buffers L[h] and S[h] by the given key.*/
711 static void replace_lkey(struct tree_balance *tb, int h, struct item_head *key)
712 {
713  RFALSE(tb->L[h] == NULL || tb->CFL[h] == NULL,
714  "L[h](%p) and CFL[h](%p) must exist in replace_lkey",
715  tb->L[h], tb->CFL[h]);
716 
717  if (B_NR_ITEMS(PATH_H_PBUFFER(tb->tb_path, h)) == 0)
718  return;
719 
720  memcpy(B_N_PDELIM_KEY(tb->CFL[h], tb->lkey[h]), key, KEY_SIZE);
721 
722  do_balance_mark_internal_dirty(tb, tb->CFL[h], 0);
723 }
724 
725 /* Replace delimiting key of buffers S[h] and R[h] by the given key.*/
726 static void replace_rkey(struct tree_balance *tb, int h, struct item_head *key)
727 {
728  RFALSE(tb->R[h] == NULL || tb->CFR[h] == NULL,
729  "R[h](%p) and CFR[h](%p) must exist in replace_rkey",
730  tb->R[h], tb->CFR[h]);
731  RFALSE(B_NR_ITEMS(tb->R[h]) == 0,
732  "R[h] can not be empty if it exists (item number=%d)",
733  B_NR_ITEMS(tb->R[h]));
734 
735  memcpy(B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]), key, KEY_SIZE);
736 
737  do_balance_mark_internal_dirty(tb, tb->CFR[h], 0);
738 }
739 
740 int balance_internal(struct tree_balance *tb, /* tree_balance structure */
741  int h, /* level of the tree */
742  int child_pos, struct item_head *insert_key, /* key for insertion on higher level */
743  struct buffer_head **insert_ptr /* node for insertion on higher level */
744  )
745  /* if inserting/pasting
746  {
747  child_pos is the position of the node-pointer in S[h] that *
748  pointed to S[h-1] before balancing of the h-1 level; *
749  this means that new pointers and items must be inserted AFTER *
750  child_pos
751  }
752  else
753  {
754  it is the position of the leftmost pointer that must be deleted (together with
755  its corresponding key to the left of the pointer)
756  as a result of the previous level's balancing.
757  }
758  */
759 {
760  struct buffer_head *tbSh = PATH_H_PBUFFER(tb->tb_path, h);
761  struct buffer_info bi;
762  int order; /* we return this: it is 0 if there is no S[h], else it is tb->S[h]->b_item_order */
763  int insert_num, n, k;
764  struct buffer_head *S_new;
765  struct item_head new_insert_key;
766  struct buffer_head *new_insert_ptr = NULL;
767  struct item_head *new_insert_key_addr = insert_key;
768 
769  RFALSE(h < 1, "h (%d) can not be < 1 on internal level", h);
770 
771  PROC_INFO_INC(tb->tb_sb, balance_at[h]);
772 
773  order =
774  (tbSh) ? PATH_H_POSITION(tb->tb_path,
775  h + 1) /*tb->S[h]->b_item_order */ : 0;
776 
777  /* Using insert_size[h] calculate the number insert_num of items
778  that must be inserted to or deleted from S[h]. */
779  insert_num = tb->insert_size[h] / ((int)(KEY_SIZE + DC_SIZE));
780 
781  /* Check whether insert_num is proper * */
782  RFALSE(insert_num < -2 || insert_num > 2,
783  "incorrect number of items inserted to the internal node (%d)",
784  insert_num);
785  RFALSE(h > 1 && (insert_num > 1 || insert_num < -1),
786  "incorrect number of items (%d) inserted to the internal node on a level (h=%d) higher than last internal level",
787  insert_num, h);
788 
789  /* Make balance in case insert_num < 0 */
790  if (insert_num < 0) {
791  balance_internal_when_delete(tb, h, child_pos);
792  return order;
793  }
794 
795  k = 0;
796  if (tb->lnum[h] > 0) {
797  /* shift lnum[h] items from S[h] to the left neighbor L[h].
798  check how many of new items fall into L[h] or CFL[h] after
799  shifting */
800  n = B_NR_ITEMS(tb->L[h]); /* number of items in L[h] */
801  if (tb->lnum[h] <= child_pos) {
802  /* new items don't fall into L[h] or CFL[h] */
803  internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
804  tb->lnum[h]);
805  /*internal_shift_left (tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,tb->lnum[h]); */
806  child_pos -= tb->lnum[h];
807  } else if (tb->lnum[h] > child_pos + insert_num) {
808  /* all new items fall into L[h] */
809  internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
810  tb->lnum[h] - insert_num);
811  /* internal_shift_left(tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,
812  tb->lnum[h]-insert_num);
813  */
814  /* insert insert_num keys and node-pointers into L[h] */
815  bi.tb = tb;
816  bi.bi_bh = tb->L[h];
817  bi.bi_parent = tb->FL[h];
819  internal_insert_childs(&bi,
820  /*tb->L[h], tb->S[h-1]->b_next */
821  n + child_pos + 1,
822  insert_num, insert_key,
823  insert_ptr);
824 
825  insert_num = 0;
826  } else {
827  struct disk_child *dc;
828 
829  /* some items fall into L[h] or CFL[h], but some don't fall */
830  internal_shift1_left(tb, h, child_pos + 1);
831  /* calculate number of new items that fall into L[h] */
832  k = tb->lnum[h] - child_pos - 1;
833  bi.tb = tb;
834  bi.bi_bh = tb->L[h];
835  bi.bi_parent = tb->FL[h];
837  internal_insert_childs(&bi,
838  /*tb->L[h], tb->S[h-1]->b_next, */
839  n + child_pos + 1, k,
840  insert_key, insert_ptr);
841 
842  replace_lkey(tb, h, insert_key + k);
843 
844  /* replace the first node-ptr in S[h] by node-ptr to insert_ptr[k] */
845  dc = B_N_CHILD(tbSh, 0);
846  put_dc_size(dc,
847  MAX_CHILD_SIZE(insert_ptr[k]) -
848  B_FREE_SPACE(insert_ptr[k]));
849  put_dc_block_number(dc, insert_ptr[k]->b_blocknr);
850 
851  do_balance_mark_internal_dirty(tb, tbSh, 0);
852 
853  k++;
854  insert_key += k;
855  insert_ptr += k;
856  insert_num -= k;
857  child_pos = 0;
858  }
859  }
860  /* tb->lnum[h] > 0 */
861  if (tb->rnum[h] > 0) {
862  /*shift rnum[h] items from S[h] to the right neighbor R[h] */
863  /* check how many of new items fall into R or CFR after shifting */
864  n = B_NR_ITEMS(tbSh); /* number of items in S[h] */
865  if (n - tb->rnum[h] >= child_pos)
866  /* new items fall into S[h] */
867  /*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],tb->rnum[h]); */
868  internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
869  tb->rnum[h]);
870  else if (n + insert_num - tb->rnum[h] < child_pos) {
871  /* all new items fall into R[h] */
872  /*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],
873  tb->rnum[h] - insert_num); */
874  internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
875  tb->rnum[h] - insert_num);
876 
877  /* insert insert_num keys and node-pointers into R[h] */
878  bi.tb = tb;
879  bi.bi_bh = tb->R[h];
880  bi.bi_parent = tb->FR[h];
882  internal_insert_childs(&bi,
883  /*tb->R[h],tb->S[h-1]->b_next */
884  child_pos - n - insert_num +
885  tb->rnum[h] - 1,
886  insert_num, insert_key,
887  insert_ptr);
888  insert_num = 0;
889  } else {
890  struct disk_child *dc;
891 
892  /* one of the items falls into CFR[h] */
893  internal_shift1_right(tb, h, n - child_pos + 1);
894  /* calculate number of new items that fall into R[h] */
895  k = tb->rnum[h] - n + child_pos - 1;
896  bi.tb = tb;
897  bi.bi_bh = tb->R[h];
898  bi.bi_parent = tb->FR[h];
900  internal_insert_childs(&bi,
901  /*tb->R[h], tb->R[h]->b_child, */
902  0, k, insert_key + 1,
903  insert_ptr + 1);
904 
905  replace_rkey(tb, h, insert_key + insert_num - k - 1);
906 
907  /* replace the first node-ptr in R[h] by node-ptr insert_ptr[insert_num-k-1] */
908  dc = B_N_CHILD(tb->R[h], 0);
909  put_dc_size(dc,
910  MAX_CHILD_SIZE(insert_ptr
911  [insert_num - k - 1]) -
912  B_FREE_SPACE(insert_ptr
913  [insert_num - k - 1]));
915  insert_ptr[insert_num - k -
916  1]->b_blocknr);
917 
918  do_balance_mark_internal_dirty(tb, tb->R[h], 0);
919 
920  insert_num -= (k + 1);
921  }
922  }
923 
925  RFALSE(tb->blknum[h] > 2, "blknum can not be > 2 for internal level");
926  RFALSE(tb->blknum[h] < 0, "blknum can not be < 0");
927 
928  if (!tb->blknum[h]) { /* node S[h] is empty now */
929  RFALSE(!tbSh, "S[h] is equal NULL");
930 
931  /* do what is needed for buffer thrown from tree */
932  reiserfs_invalidate_buffer(tb, tbSh);
933  return order;
934  }
935 
936  if (!tbSh) {
937  /* create new root */
938  struct disk_child *dc;
939  struct buffer_head *tbSh_1 = PATH_H_PBUFFER(tb->tb_path, h - 1);
940  struct block_head *blkh;
941 
942  if (tb->blknum[h] != 1)
943  reiserfs_panic(NULL, "ibalance-3", "One new node "
944  "required for creating the new root");
945  /* S[h] = empty buffer from the list FEB. */
946  tbSh = get_FEB(tb);
947  blkh = B_BLK_HEAD(tbSh);
948  set_blkh_level(blkh, h + 1);
949 
950  /* Put the unique node-pointer to S[h] that points to S[h-1]. */
951 
952  dc = B_N_CHILD(tbSh, 0);
953  put_dc_block_number(dc, tbSh_1->b_blocknr);
954  put_dc_size(dc,
955  (MAX_CHILD_SIZE(tbSh_1) - B_FREE_SPACE(tbSh_1)));
956 
957  tb->insert_size[h] -= DC_SIZE;
959 
960  do_balance_mark_internal_dirty(tb, tbSh, 0);
961 
962  /*&&&&&&&&&&&&&&&&&&&&&&&& */
963  check_internal(tbSh);
964  /*&&&&&&&&&&&&&&&&&&&&&&&& */
965 
966  /* put new root into path structure */
968  tbSh;
969 
970  /* Change root in structure super block. */
971  PUT_SB_ROOT_BLOCK(tb->tb_sb, tbSh->b_blocknr);
973  do_balance_mark_sb_dirty(tb, REISERFS_SB(tb->tb_sb)->s_sbh, 1);
974  }
975 
976  if (tb->blknum[h] == 2) {
977  int snum;
978  struct buffer_info dest_bi, src_bi;
979 
980  /* S_new = free buffer from list FEB */
981  S_new = get_FEB(tb);
982 
983  set_blkh_level(B_BLK_HEAD(S_new), h + 1);
984 
985  dest_bi.tb = tb;
986  dest_bi.bi_bh = S_new;
987  dest_bi.bi_parent = NULL;
988  dest_bi.bi_position = 0;
989  src_bi.tb = tb;
990  src_bi.bi_bh = tbSh;
991  src_bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
992  src_bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
993 
994  n = B_NR_ITEMS(tbSh); /* number of items in S[h] */
995  snum = (insert_num + n + 1) / 2;
996  if (n - snum >= child_pos) {
997  /* new items don't fall into S_new */
998  /* store the delimiting key for the next level */
999  /* new_insert_key = (n - snum)'th key in S[h] */
1000  memcpy(&new_insert_key, B_N_PDELIM_KEY(tbSh, n - snum),
1001  KEY_SIZE);
1002  /* last parameter is del_par */
1003  internal_move_pointers_items(&dest_bi, &src_bi,
1004  LAST_TO_FIRST, snum, 0);
1005  /* internal_move_pointers_items(S_new, tbSh, LAST_TO_FIRST, snum, 0); */
1006  } else if (n + insert_num - snum < child_pos) {
1007  /* all new items fall into S_new */
1008  /* store the delimiting key for the next level */
1009  /* new_insert_key = (n + insert_item - snum)'th key in S[h] */
1010  memcpy(&new_insert_key,
1011  B_N_PDELIM_KEY(tbSh, n + insert_num - snum),
1012  KEY_SIZE);
1013  /* last parameter is del_par */
1014  internal_move_pointers_items(&dest_bi, &src_bi,
1015  LAST_TO_FIRST,
1016  snum - insert_num, 0);
1017  /* internal_move_pointers_items(S_new,tbSh,1,snum - insert_num,0); */
1018 
1019  /* insert insert_num keys and node-pointers into S_new */
1020  internal_insert_childs(&dest_bi,
1021  /*S_new,tb->S[h-1]->b_next, */
1022  child_pos - n - insert_num +
1023  snum - 1,
1024  insert_num, insert_key,
1025  insert_ptr);
1026 
1027  insert_num = 0;
1028  } else {
1029  struct disk_child *dc;
1030 
1031  /* some items fall into S_new, but some don't fall */
1032  /* last parameter is del_par */
1033  internal_move_pointers_items(&dest_bi, &src_bi,
1034  LAST_TO_FIRST,
1035  n - child_pos + 1, 1);
1036  /* internal_move_pointers_items(S_new,tbSh,1,n - child_pos + 1,1); */
1037  /* calculate number of new items that fall into S_new */
1038  k = snum - n + child_pos - 1;
1039 
1040  internal_insert_childs(&dest_bi, /*S_new, */ 0, k,
1041  insert_key + 1, insert_ptr + 1);
1042 
1043  /* new_insert_key = insert_key[insert_num - k - 1] */
1044  memcpy(&new_insert_key, insert_key + insert_num - k - 1,
1045  KEY_SIZE);
1046  /* replace first node-ptr in S_new by node-ptr to insert_ptr[insert_num-k-1] */
1047 
1048  dc = B_N_CHILD(S_new, 0);
1049  put_dc_size(dc,
1051  (insert_ptr[insert_num - k - 1]) -
1052  B_FREE_SPACE(insert_ptr
1053  [insert_num - k - 1])));
1055  insert_ptr[insert_num - k -
1056  1]->b_blocknr);
1057 
1058  do_balance_mark_internal_dirty(tb, S_new, 0);
1059 
1060  insert_num -= (k + 1);
1061  }
1062  /* new_insert_ptr = node_pointer to S_new */
1063  new_insert_ptr = S_new;
1064 
1065  RFALSE(!buffer_journaled(S_new) || buffer_journal_dirty(S_new)
1066  || buffer_dirty(S_new), "cm-00001: bad S_new (%b)",
1067  S_new);
1068 
1069  // S_new is released in unfix_nodes
1070  }
1071 
1072  n = B_NR_ITEMS(tbSh); /*number of items in S[h] */
1073 
1074  if (0 <= child_pos && child_pos <= n && insert_num > 0) {
1075  bi.tb = tb;
1076  bi.bi_bh = tbSh;
1077  bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
1078  bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
1079  internal_insert_childs(&bi, /*tbSh, */
1080  /* ( tb->S[h-1]->b_parent == tb->S[h] ) ? tb->S[h-1]->b_next : tb->S[h]->b_child->b_next, */
1081  child_pos, insert_num, insert_key,
1082  insert_ptr);
1083  }
1084 
1085  memcpy(new_insert_key_addr, &new_insert_key, KEY_SIZE);
1086  insert_ptr[0] = new_insert_ptr;
1087 
1088  return order;
1089 }