Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
slab.h
Go to the documentation of this file.
1 /*
2  * Written by Mark Hemment, 1996 ([email protected]).
3  *
4  * (C) SGI 2006, Christoph Lameter
5  * Cleaned up and restructured to ease the addition of alternative
6  * implementations of SLAB allocators.
7  */
8 
9 #ifndef _LINUX_SLAB_H
10 #define _LINUX_SLAB_H
11 
12 #include <linux/gfp.h>
13 #include <linux/types.h>
14 
15 /*
16  * Flags to pass to kmem_cache_create().
17  * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
18  */
19 #define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
20 #define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
21 #define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
22 #define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
23 #define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
24 #define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
25 #define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
26 /*
27  * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
28  *
29  * This delays freeing the SLAB page by a grace period, it does _NOT_
30  * delay object freeing. This means that if you do kmem_cache_free()
31  * that memory location is free to be reused at any time. Thus it may
32  * be possible to see another object there in the same RCU grace period.
33  *
34  * This feature only ensures the memory location backing the object
35  * stays valid, the trick to using this is relying on an independent
36  * object validation pass. Something like:
37  *
38  * rcu_read_lock()
39  * again:
40  * obj = lockless_lookup(key);
41  * if (obj) {
42  * if (!try_get_ref(obj)) // might fail for free objects
43  * goto again;
44  *
45  * if (obj->key != key) { // not the object we expected
46  * put_ref(obj);
47  * goto again;
48  * }
49  * }
50  * rcu_read_unlock();
51  *
52  * See also the comment on struct slab_rcu in mm/slab.c.
53  */
54 #define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
55 #define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
56 #define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
57 
58 /* Flag to prevent checks on free */
59 #ifdef CONFIG_DEBUG_OBJECTS
60 # define SLAB_DEBUG_OBJECTS 0x00400000UL
61 #else
62 # define SLAB_DEBUG_OBJECTS 0x00000000UL
63 #endif
64 
65 #define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
66 
67 /* Don't track use of uninitialized memory */
68 #ifdef CONFIG_KMEMCHECK
69 # define SLAB_NOTRACK 0x01000000UL
70 #else
71 # define SLAB_NOTRACK 0x00000000UL
72 #endif
73 #ifdef CONFIG_FAILSLAB
74 # define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
75 #else
76 # define SLAB_FAILSLAB 0x00000000UL
77 #endif
78 
79 /* The following flags affect the page allocator grouping pages by mobility */
80 #define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
81 #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
82 /*
83  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
84  *
85  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
86  *
87  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
88  * Both make kfree a no-op.
89  */
90 #define ZERO_SIZE_PTR ((void *)16)
91 
92 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
93  (unsigned long)ZERO_SIZE_PTR)
94 
95 /*
96  * Common fields provided in kmem_cache by all slab allocators
97  * This struct is either used directly by the allocator (SLOB)
98  * or the allocator must include definitions for all fields
99  * provided in kmem_cache_common in their definition of kmem_cache.
100  *
101  * Once we can do anonymous structs (C11 standard) we could put a
102  * anonymous struct definition in these allocators so that the
103  * separate allocations in the kmem_cache structure of SLAB and
104  * SLUB is no longer needed.
105  */
106 #ifdef CONFIG_SLOB
107 struct kmem_cache {
108  unsigned int object_size;/* The original size of the object */
109  unsigned int size; /* The aligned/padded/added on size */
110  unsigned int align; /* Alignment as calculated */
111  unsigned long flags; /* Active flags on the slab */
112  const char *name; /* Slab name for sysfs */
113  int refcount; /* Use counter */
114  void (*ctor)(void *); /* Called on object slot creation */
115  struct list_head list; /* List of all slab caches on the system */
116 };
117 #endif
118 
119 /*
120  * struct kmem_cache related prototypes
121  */
122 void __init kmem_cache_init(void);
123 int slab_is_available(void);
124 
125 struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
126  unsigned long,
127  void (*)(void *));
128 void kmem_cache_destroy(struct kmem_cache *);
129 int kmem_cache_shrink(struct kmem_cache *);
130 void kmem_cache_free(struct kmem_cache *, void *);
131 unsigned int kmem_cache_size(struct kmem_cache *);
132 
133 /*
134  * Please use this macro to create slab caches. Simply specify the
135  * name of the structure and maybe some flags that are listed above.
136  *
137  * The alignment of the struct determines object alignment. If you
138  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
139  * then the objects will be properly aligned in SMP configurations.
140  */
141 #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
142  sizeof(struct __struct), __alignof__(struct __struct),\
143  (__flags), NULL)
144 
145 /*
146  * The largest kmalloc size supported by the slab allocators is
147  * 32 megabyte (2^25) or the maximum allocatable page order if that is
148  * less than 32 MB.
149  *
150  * WARNING: Its not easy to increase this value since the allocators have
151  * to do various tricks to work around compiler limitations in order to
152  * ensure proper constant folding.
153  */
154 #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
155  (MAX_ORDER + PAGE_SHIFT - 1) : 25)
156 
157 #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_HIGH)
158 #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_HIGH - PAGE_SHIFT)
159 
160 /*
161  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
162  * alignment larger than the alignment of a 64-bit integer.
163  * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
164  */
165 #ifdef ARCH_DMA_MINALIGN
166 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
167 #else
168 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
169 #endif
170 
171 /*
172  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
173  * Intended for arches that get misalignment faults even for 64 bit integer
174  * aligned buffers.
175  */
176 #ifndef ARCH_SLAB_MINALIGN
177 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
178 #endif
179 
180 /*
181  * Common kmalloc functions provided by all allocators
182  */
183 void * __must_check __krealloc(const void *, size_t, gfp_t);
184 void * __must_check krealloc(const void *, size_t, gfp_t);
185 void kfree(const void *);
186 void kzfree(const void *);
187 size_t ksize(const void *);
188 
189 /*
190  * Allocator specific definitions. These are mainly used to establish optimized
191  * ways to convert kmalloc() calls to kmem_cache_alloc() invocations by
192  * selecting the appropriate general cache at compile time.
193  *
194  * Allocators must define at least:
195  *
196  * kmem_cache_alloc()
197  * __kmalloc()
198  * kmalloc()
199  *
200  * Those wishing to support NUMA must also define:
201  *
202  * kmem_cache_alloc_node()
203  * kmalloc_node()
204  *
205  * See each allocator definition file for additional comments and
206  * implementation notes.
207  */
208 #ifdef CONFIG_SLUB
209 #include <linux/slub_def.h>
210 #elif defined(CONFIG_SLOB)
211 #include <linux/slob_def.h>
212 #else
213 #include <linux/slab_def.h>
214 #endif
215 
267 static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
268 {
269  if (size != 0 && n > SIZE_MAX / size)
270  return NULL;
271  return __kmalloc(n * size, flags);
272 }
273 
280 static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
281 {
282  return kmalloc_array(n, size, flags | __GFP_ZERO);
283 }
284 
285 #if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB)
286 
296 static inline void *kmalloc_node(size_t size, gfp_t flags, int node)
297 {
298  return kmalloc(size, flags);
299 }
300 
301 static inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
302 {
303  return __kmalloc(size, flags);
304 }
305 
306 void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
307 
308 static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep,
309  gfp_t flags, int node)
310 {
311  return kmem_cache_alloc(cachep, flags);
312 }
313 #endif /* !CONFIG_NUMA && !CONFIG_SLOB */
314 
315 /*
316  * kmalloc_track_caller is a special version of kmalloc that records the
317  * calling function of the routine calling it for slab leak tracking instead
318  * of just the calling function (confusing, eh?).
319  * It's useful when the call to kmalloc comes from a widely-used standard
320  * allocator where we care about the real place the memory allocation
321  * request comes from.
322  */
323 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
324  (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
325  (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
326 extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
327 #define kmalloc_track_caller(size, flags) \
328  __kmalloc_track_caller(size, flags, _RET_IP_)
329 #else
330 #define kmalloc_track_caller(size, flags) \
331  __kmalloc(size, flags)
332 #endif /* DEBUG_SLAB */
333 
334 #ifdef CONFIG_NUMA
335 /*
336  * kmalloc_node_track_caller is a special version of kmalloc_node that
337  * records the calling function of the routine calling it for slab leak
338  * tracking instead of just the calling function (confusing, eh?).
339  * It's useful when the call to kmalloc_node comes from a widely-used
340  * standard allocator where we care about the real place the memory
341  * allocation request comes from.
342  */
343 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
344  (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
345  (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
346 extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
347 #define kmalloc_node_track_caller(size, flags, node) \
348  __kmalloc_node_track_caller(size, flags, node, \
349  _RET_IP_)
350 #else
351 #define kmalloc_node_track_caller(size, flags, node) \
352  __kmalloc_node(size, flags, node)
353 #endif
354 
355 #else /* CONFIG_NUMA */
356 
357 #define kmalloc_node_track_caller(size, flags, node) \
358  kmalloc_track_caller(size, flags)
359 
360 #endif /* CONFIG_NUMA */
361 
362 /*
363  * Shortcuts
364  */
365 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
366 {
367  return kmem_cache_alloc(k, flags | __GFP_ZERO);
368 }
369 
375 static inline void *kzalloc(size_t size, gfp_t flags)
376 {
377  return kmalloc(size, flags | __GFP_ZERO);
378 }
379 
386 static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
387 {
388  return kmalloc_node(size, flags | __GFP_ZERO, node);
389 }
390 
391 void __init kmem_cache_init_late(void);
392 
393 #endif /* _LINUX_SLAB_H */