Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
irttp.c
Go to the documentation of this file.
1 /*********************************************************************
2  *
3  * Filename: irttp.c
4  * Version: 1.2
5  * Description: Tiny Transport Protocol (TTP) implementation
6  * Status: Stable
7  * Author: Dag Brattli <[email protected]>
8  * Created at: Sun Aug 31 20:14:31 1997
9  * Modified at: Wed Jan 5 11:31:27 2000
10  * Modified by: Dag Brattli <[email protected]>
11  *
12  * Copyright (c) 1998-2000 Dag Brattli <[email protected]>,
13  * All Rights Reserved.
14  * Copyright (c) 2000-2003 Jean Tourrilhes <[email protected]>
15  *
16  * This program is free software; you can redistribute it and/or
17  * modify it under the terms of the GNU General Public License as
18  * published by the Free Software Foundation; either version 2 of
19  * the License, or (at your option) any later version.
20  *
21  * Neither Dag Brattli nor University of Tromsø admit liability nor
22  * provide warranty for any of this software. This material is
23  * provided "AS-IS" and at no charge.
24  *
25  ********************************************************************/
26 
27 #include <linux/skbuff.h>
28 #include <linux/init.h>
29 #include <linux/fs.h>
30 #include <linux/seq_file.h>
31 #include <linux/slab.h>
32 #include <linux/export.h>
33 
34 #include <asm/byteorder.h>
35 #include <asm/unaligned.h>
36 
37 #include <net/irda/irda.h>
38 #include <net/irda/irlap.h>
39 #include <net/irda/irlmp.h>
40 #include <net/irda/parameters.h>
41 #include <net/irda/irttp.h>
42 
43 static struct irttp_cb *irttp;
44 
45 static void __irttp_close_tsap(struct tsap_cb *self);
46 
47 static int irttp_data_indication(void *instance, void *sap,
48  struct sk_buff *skb);
49 static int irttp_udata_indication(void *instance, void *sap,
50  struct sk_buff *skb);
51 static void irttp_disconnect_indication(void *instance, void *sap,
52  LM_REASON reason, struct sk_buff *);
53 static void irttp_connect_indication(void *instance, void *sap,
54  struct qos_info *qos, __u32 max_sdu_size,
55  __u8 header_size, struct sk_buff *skb);
56 static void irttp_connect_confirm(void *instance, void *sap,
57  struct qos_info *qos, __u32 max_sdu_size,
58  __u8 header_size, struct sk_buff *skb);
59 static void irttp_run_tx_queue(struct tsap_cb *self);
60 static void irttp_run_rx_queue(struct tsap_cb *self);
61 
62 static void irttp_flush_queues(struct tsap_cb *self);
63 static void irttp_fragment_skb(struct tsap_cb *self, struct sk_buff *skb);
64 static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self);
65 static void irttp_todo_expired(unsigned long data);
66 static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
67  int get);
68 
69 static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow);
70 static void irttp_status_indication(void *instance,
72 
73 /* Information for parsing parameters in IrTTP */
74 static pi_minor_info_t pi_minor_call_table[] = {
75  { NULL, 0 }, /* 0x00 */
76  { irttp_param_max_sdu_size, PV_INTEGER | PV_BIG_ENDIAN } /* 0x01 */
77 };
78 static pi_major_info_t pi_major_call_table[] = {{ pi_minor_call_table, 2 }};
79 static pi_param_info_t param_info = { pi_major_call_table, 1, 0x0f, 4 };
80 
81 /************************ GLOBAL PROCEDURES ************************/
82 
83 /*
84  * Function irttp_init (void)
85  *
86  * Initialize the IrTTP layer. Called by module initialization code
87  *
88  */
89 int __init irttp_init(void)
90 {
91  irttp = kzalloc(sizeof(struct irttp_cb), GFP_KERNEL);
92  if (irttp == NULL)
93  return -ENOMEM;
94 
95  irttp->magic = TTP_MAGIC;
96 
97  irttp->tsaps = hashbin_new(HB_LOCK);
98  if (!irttp->tsaps) {
99  IRDA_ERROR("%s: can't allocate IrTTP hashbin!\n",
100  __func__);
101  kfree(irttp);
102  return -ENOMEM;
103  }
104 
105  return 0;
106 }
107 
108 /*
109  * Function irttp_cleanup (void)
110  *
111  * Called by module destruction/cleanup code
112  *
113  */
114 void irttp_cleanup(void)
115 {
116  /* Check for main structure */
117  IRDA_ASSERT(irttp->magic == TTP_MAGIC, return;);
118 
119  /*
120  * Delete hashbin and close all TSAP instances in it
121  */
122  hashbin_delete(irttp->tsaps, (FREE_FUNC) __irttp_close_tsap);
123 
124  irttp->magic = 0;
125 
126  /* De-allocate main structure */
127  kfree(irttp);
128 
129  irttp = NULL;
130 }
131 
132 /*************************** SUBROUTINES ***************************/
133 
134 /*
135  * Function irttp_start_todo_timer (self, timeout)
136  *
137  * Start todo timer.
138  *
139  * Made it more effient and unsensitive to race conditions - Jean II
140  */
141 static inline void irttp_start_todo_timer(struct tsap_cb *self, int timeout)
142 {
143  /* Set new value for timer */
144  mod_timer(&self->todo_timer, jiffies + timeout);
145 }
146 
147 /*
148  * Function irttp_todo_expired (data)
149  *
150  * Todo timer has expired!
151  *
152  * One of the restriction of the timer is that it is run only on the timer
153  * interrupt which run every 10ms. This mean that even if you set the timer
154  * with a delay of 0, it may take up to 10ms before it's run.
155  * So, to minimise latency and keep cache fresh, we try to avoid using
156  * it as much as possible.
157  * Note : we can't use tasklets, because they can't be asynchronously
158  * killed (need user context), and we can't guarantee that here...
159  * Jean II
160  */
161 static void irttp_todo_expired(unsigned long data)
162 {
163  struct tsap_cb *self = (struct tsap_cb *) data;
164 
165  /* Check that we still exist */
166  if (!self || self->magic != TTP_TSAP_MAGIC)
167  return;
168 
169  IRDA_DEBUG(4, "%s(instance=%p)\n", __func__, self);
170 
171  /* Try to make some progress, especially on Tx side - Jean II */
172  irttp_run_rx_queue(self);
173  irttp_run_tx_queue(self);
174 
175  /* Check if time for disconnect */
176  if (test_bit(0, &self->disconnect_pend)) {
177  /* Check if it's possible to disconnect yet */
178  if (skb_queue_empty(&self->tx_queue)) {
179  /* Make sure disconnect is not pending anymore */
180  clear_bit(0, &self->disconnect_pend); /* FALSE */
181 
182  /* Note : self->disconnect_skb may be NULL */
183  irttp_disconnect_request(self, self->disconnect_skb,
184  P_NORMAL);
185  self->disconnect_skb = NULL;
186  } else {
187  /* Try again later */
188  irttp_start_todo_timer(self, HZ/10);
189 
190  /* No reason to try and close now */
191  return;
192  }
193  }
194 
195  /* Check if it's closing time */
196  if (self->close_pend)
197  /* Finish cleanup */
198  irttp_close_tsap(self);
199 }
200 
201 /*
202  * Function irttp_flush_queues (self)
203  *
204  * Flushes (removes all frames) in transitt-buffer (tx_list)
205  */
206 static void irttp_flush_queues(struct tsap_cb *self)
207 {
208  struct sk_buff* skb;
209 
210  IRDA_DEBUG(4, "%s()\n", __func__);
211 
212  IRDA_ASSERT(self != NULL, return;);
213  IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
214 
215  /* Deallocate frames waiting to be sent */
216  while ((skb = skb_dequeue(&self->tx_queue)) != NULL)
217  dev_kfree_skb(skb);
218 
219  /* Deallocate received frames */
220  while ((skb = skb_dequeue(&self->rx_queue)) != NULL)
221  dev_kfree_skb(skb);
222 
223  /* Deallocate received fragments */
224  while ((skb = skb_dequeue(&self->rx_fragments)) != NULL)
225  dev_kfree_skb(skb);
226 }
227 
228 /*
229  * Function irttp_reassemble (self)
230  *
231  * Makes a new (continuous) skb of all the fragments in the fragment
232  * queue
233  *
234  */
235 static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self)
236 {
237  struct sk_buff *skb, *frag;
238  int n = 0; /* Fragment index */
239 
240  IRDA_ASSERT(self != NULL, return NULL;);
241  IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return NULL;);
242 
243  IRDA_DEBUG(2, "%s(), self->rx_sdu_size=%d\n", __func__,
244  self->rx_sdu_size);
245 
246  skb = dev_alloc_skb(TTP_HEADER + self->rx_sdu_size);
247  if (!skb)
248  return NULL;
249 
250  /*
251  * Need to reserve space for TTP header in case this skb needs to
252  * be requeued in case delivery failes
253  */
254  skb_reserve(skb, TTP_HEADER);
255  skb_put(skb, self->rx_sdu_size);
256 
257  /*
258  * Copy all fragments to a new buffer
259  */
260  while ((frag = skb_dequeue(&self->rx_fragments)) != NULL) {
261  skb_copy_to_linear_data_offset(skb, n, frag->data, frag->len);
262  n += frag->len;
263 
264  dev_kfree_skb(frag);
265  }
266 
267  IRDA_DEBUG(2,
268  "%s(), frame len=%d, rx_sdu_size=%d, rx_max_sdu_size=%d\n",
269  __func__, n, self->rx_sdu_size, self->rx_max_sdu_size);
270  /* Note : irttp_run_rx_queue() calculate self->rx_sdu_size
271  * by summing the size of all fragments, so we should always
272  * have n == self->rx_sdu_size, except in cases where we
273  * droped the last fragment (when self->rx_sdu_size exceed
274  * self->rx_max_sdu_size), where n < self->rx_sdu_size.
275  * Jean II */
276  IRDA_ASSERT(n <= self->rx_sdu_size, n = self->rx_sdu_size;);
277 
278  /* Set the new length */
279  skb_trim(skb, n);
280 
281  self->rx_sdu_size = 0;
282 
283  return skb;
284 }
285 
286 /*
287  * Function irttp_fragment_skb (skb)
288  *
289  * Fragments a frame and queues all the fragments for transmission
290  *
291  */
292 static inline void irttp_fragment_skb(struct tsap_cb *self,
293  struct sk_buff *skb)
294 {
295  struct sk_buff *frag;
296  __u8 *frame;
297 
298  IRDA_DEBUG(2, "%s()\n", __func__);
299 
300  IRDA_ASSERT(self != NULL, return;);
301  IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
302  IRDA_ASSERT(skb != NULL, return;);
303 
304  /*
305  * Split frame into a number of segments
306  */
307  while (skb->len > self->max_seg_size) {
308  IRDA_DEBUG(2, "%s(), fragmenting ...\n", __func__);
309 
310  /* Make new segment */
311  frag = alloc_skb(self->max_seg_size+self->max_header_size,
312  GFP_ATOMIC);
313  if (!frag)
314  return;
315 
316  skb_reserve(frag, self->max_header_size);
317 
318  /* Copy data from the original skb into this fragment. */
319  skb_copy_from_linear_data(skb, skb_put(frag, self->max_seg_size),
320  self->max_seg_size);
321 
322  /* Insert TTP header, with the more bit set */
323  frame = skb_push(frag, TTP_HEADER);
324  frame[0] = TTP_MORE;
325 
326  /* Hide the copied data from the original skb */
327  skb_pull(skb, self->max_seg_size);
328 
329  /* Queue fragment */
330  skb_queue_tail(&self->tx_queue, frag);
331  }
332  /* Queue what is left of the original skb */
333  IRDA_DEBUG(2, "%s(), queuing last segment\n", __func__);
334 
335  frame = skb_push(skb, TTP_HEADER);
336  frame[0] = 0x00; /* Clear more bit */
337 
338  /* Queue fragment */
339  skb_queue_tail(&self->tx_queue, skb);
340 }
341 
342 /*
343  * Function irttp_param_max_sdu_size (self, param)
344  *
345  * Handle the MaxSduSize parameter in the connect frames, this function
346  * will be called both when this parameter needs to be inserted into, and
347  * extracted from the connect frames
348  */
349 static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
350  int get)
351 {
352  struct tsap_cb *self;
353 
354  self = instance;
355 
356  IRDA_ASSERT(self != NULL, return -1;);
357  IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
358 
359  if (get)
360  param->pv.i = self->tx_max_sdu_size;
361  else
362  self->tx_max_sdu_size = param->pv.i;
363 
364  IRDA_DEBUG(1, "%s(), MaxSduSize=%d\n", __func__, param->pv.i);
365 
366  return 0;
367 }
368 
369 /*************************** CLIENT CALLS ***************************/
370 /************************** LMP CALLBACKS **************************/
371 /* Everything is happily mixed up. Waiting for next clean up - Jean II */
372 
373 /*
374  * Initialization, that has to be done on new tsap
375  * instance allocation and on duplication
376  */
377 static void irttp_init_tsap(struct tsap_cb *tsap)
378 {
379  spin_lock_init(&tsap->lock);
380  init_timer(&tsap->todo_timer);
381 
382  skb_queue_head_init(&tsap->rx_queue);
383  skb_queue_head_init(&tsap->tx_queue);
384  skb_queue_head_init(&tsap->rx_fragments);
385 }
386 
387 /*
388  * Function irttp_open_tsap (stsap, notify)
389  *
390  * Create TSAP connection endpoint,
391  */
393 {
394  struct tsap_cb *self;
395  struct lsap_cb *lsap;
396  notify_t ttp_notify;
397 
398  IRDA_ASSERT(irttp->magic == TTP_MAGIC, return NULL;);
399 
400  /* The IrLMP spec (IrLMP 1.1 p10) says that we have the right to
401  * use only 0x01-0x6F. Of course, we can use LSAP_ANY as well.
402  * JeanII */
403  if((stsap_sel != LSAP_ANY) &&
404  ((stsap_sel < 0x01) || (stsap_sel >= 0x70))) {
405  IRDA_DEBUG(0, "%s(), invalid tsap!\n", __func__);
406  return NULL;
407  }
408 
409  self = kzalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
410  if (self == NULL) {
411  IRDA_DEBUG(0, "%s(), unable to kmalloc!\n", __func__);
412  return NULL;
413  }
414 
415  /* Initialize internal objects */
416  irttp_init_tsap(self);
417 
418  /* Initialise todo timer */
419  self->todo_timer.data = (unsigned long) self;
420  self->todo_timer.function = &irttp_todo_expired;
421 
422  /* Initialize callbacks for IrLMP to use */
423  irda_notify_init(&ttp_notify);
424  ttp_notify.connect_confirm = irttp_connect_confirm;
425  ttp_notify.connect_indication = irttp_connect_indication;
426  ttp_notify.disconnect_indication = irttp_disconnect_indication;
427  ttp_notify.data_indication = irttp_data_indication;
428  ttp_notify.udata_indication = irttp_udata_indication;
429  ttp_notify.flow_indication = irttp_flow_indication;
430  if(notify->status_indication != NULL)
431  ttp_notify.status_indication = irttp_status_indication;
432  ttp_notify.instance = self;
433  strncpy(ttp_notify.name, notify->name, NOTIFY_MAX_NAME);
434 
435  self->magic = TTP_TSAP_MAGIC;
436  self->connected = FALSE;
437 
438  /*
439  * Create LSAP at IrLMP layer
440  */
441  lsap = irlmp_open_lsap(stsap_sel, &ttp_notify, 0);
442  if (lsap == NULL) {
443  IRDA_DEBUG(0, "%s: unable to allocate LSAP!!\n", __func__);
444  __irttp_close_tsap(self);
445  return NULL;
446  }
447 
448  /*
449  * If user specified LSAP_ANY as source TSAP selector, then IrLMP
450  * will replace it with whatever source selector which is free, so
451  * the stsap_sel we have might not be valid anymore
452  */
453  self->stsap_sel = lsap->slsap_sel;
454  IRDA_DEBUG(4, "%s(), stsap_sel=%02x\n", __func__, self->stsap_sel);
455 
456  self->notify = *notify;
457  self->lsap = lsap;
458 
459  hashbin_insert(irttp->tsaps, (irda_queue_t *) self, (long) self, NULL);
460 
461  if (credit > TTP_RX_MAX_CREDIT)
462  self->initial_credit = TTP_RX_MAX_CREDIT;
463  else
464  self->initial_credit = credit;
465 
466  return self;
467 }
469 
470 /*
471  * Function irttp_close (handle)
472  *
473  * Remove an instance of a TSAP. This function should only deal with the
474  * deallocation of the TSAP, and resetting of the TSAPs values;
475  *
476  */
477 static void __irttp_close_tsap(struct tsap_cb *self)
478 {
479  /* First make sure we're connected. */
480  IRDA_ASSERT(self != NULL, return;);
481  IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
482 
483  irttp_flush_queues(self);
484 
485  del_timer(&self->todo_timer);
486 
487  /* This one won't be cleaned up if we are disconnect_pend + close_pend
488  * and we receive a disconnect_indication */
489  if (self->disconnect_skb)
490  dev_kfree_skb(self->disconnect_skb);
491 
492  self->connected = FALSE;
493  self->magic = ~TTP_TSAP_MAGIC;
494 
495  kfree(self);
496 }
497 
498 /*
499  * Function irttp_close (self)
500  *
501  * Remove TSAP from list of all TSAPs and then deallocate all resources
502  * associated with this TSAP
503  *
504  * Note : because we *free* the tsap structure, it is the responsibility
505  * of the caller to make sure we are called only once and to deal with
506  * possible race conditions. - Jean II
507  */
508 int irttp_close_tsap(struct tsap_cb *self)
509 {
510  struct tsap_cb *tsap;
511 
512  IRDA_DEBUG(4, "%s()\n", __func__);
513 
514  IRDA_ASSERT(self != NULL, return -1;);
515  IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
516 
517  /* Make sure tsap has been disconnected */
518  if (self->connected) {
519  /* Check if disconnect is not pending */
520  if (!test_bit(0, &self->disconnect_pend)) {
521  IRDA_WARNING("%s: TSAP still connected!\n",
522  __func__);
524  }
525  self->close_pend = TRUE;
526  irttp_start_todo_timer(self, HZ/10);
527 
528  return 0; /* Will be back! */
529  }
530 
531  tsap = hashbin_remove(irttp->tsaps, (long) self, NULL);
532 
533  IRDA_ASSERT(tsap == self, return -1;);
534 
535  /* Close corresponding LSAP */
536  if (self->lsap) {
537  irlmp_close_lsap(self->lsap);
538  self->lsap = NULL;
539  }
540 
541  __irttp_close_tsap(self);
542 
543  return 0;
544 }
546 
547 /*
548  * Function irttp_udata_request (self, skb)
549  *
550  * Send unreliable data on this TSAP
551  *
552  */
553 int irttp_udata_request(struct tsap_cb *self, struct sk_buff *skb)
554 {
555  int ret;
556 
557  IRDA_ASSERT(self != NULL, return -1;);
558  IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
559  IRDA_ASSERT(skb != NULL, return -1;);
560 
561  IRDA_DEBUG(4, "%s()\n", __func__);
562 
563  /* Take shortcut on zero byte packets */
564  if (skb->len == 0) {
565  ret = 0;
566  goto err;
567  }
568 
569  /* Check that nothing bad happens */
570  if (!self->connected) {
571  IRDA_WARNING("%s(), Not connected\n", __func__);
572  ret = -ENOTCONN;
573  goto err;
574  }
575 
576  if (skb->len > self->max_seg_size) {
577  IRDA_ERROR("%s(), UData is too large for IrLAP!\n", __func__);
578  ret = -EMSGSIZE;
579  goto err;
580  }
581 
582  irlmp_udata_request(self->lsap, skb);
583  self->stats.tx_packets++;
584 
585  return 0;
586 
587 err:
588  dev_kfree_skb(skb);
589  return ret;
590 }
592 
593 
594 /*
595  * Function irttp_data_request (handle, skb)
596  *
597  * Queue frame for transmission. If SAR is enabled, fragement the frame
598  * and queue the fragments for transmission
599  */
600 int irttp_data_request(struct tsap_cb *self, struct sk_buff *skb)
601 {
602  __u8 *frame;
603  int ret;
604 
605  IRDA_ASSERT(self != NULL, return -1;);
606  IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
607  IRDA_ASSERT(skb != NULL, return -1;);
608 
609  IRDA_DEBUG(2, "%s() : queue len = %d\n", __func__,
610  skb_queue_len(&self->tx_queue));
611 
612  /* Take shortcut on zero byte packets */
613  if (skb->len == 0) {
614  ret = 0;
615  goto err;
616  }
617 
618  /* Check that nothing bad happens */
619  if (!self->connected) {
620  IRDA_WARNING("%s: Not connected\n", __func__);
621  ret = -ENOTCONN;
622  goto err;
623  }
624 
625  /*
626  * Check if SAR is disabled, and the frame is larger than what fits
627  * inside an IrLAP frame
628  */
629  if ((self->tx_max_sdu_size == 0) && (skb->len > self->max_seg_size)) {
630  IRDA_ERROR("%s: SAR disabled, and data is too large for IrLAP!\n",
631  __func__);
632  ret = -EMSGSIZE;
633  goto err;
634  }
635 
636  /*
637  * Check if SAR is enabled, and the frame is larger than the
638  * TxMaxSduSize
639  */
640  if ((self->tx_max_sdu_size != 0) &&
641  (self->tx_max_sdu_size != TTP_SAR_UNBOUND) &&
642  (skb->len > self->tx_max_sdu_size))
643  {
644  IRDA_ERROR("%s: SAR enabled, but data is larger than TxMaxSduSize!\n",
645  __func__);
646  ret = -EMSGSIZE;
647  goto err;
648  }
649  /*
650  * Check if transmit queue is full
651  */
652  if (skb_queue_len(&self->tx_queue) >= TTP_TX_MAX_QUEUE) {
653  /*
654  * Give it a chance to empty itself
655  */
656  irttp_run_tx_queue(self);
657 
658  /* Drop packet. This error code should trigger the caller
659  * to resend the data in the client code - Jean II */
660  ret = -ENOBUFS;
661  goto err;
662  }
663 
664  /* Queue frame, or queue frame segments */
665  if ((self->tx_max_sdu_size == 0) || (skb->len < self->max_seg_size)) {
666  /* Queue frame */
667  IRDA_ASSERT(skb_headroom(skb) >= TTP_HEADER, return -1;);
668  frame = skb_push(skb, TTP_HEADER);
669  frame[0] = 0x00; /* Clear more bit */
670 
671  skb_queue_tail(&self->tx_queue, skb);
672  } else {
673  /*
674  * Fragment the frame, this function will also queue the
675  * fragments, we don't care about the fact the transmit
676  * queue may be overfilled by all the segments for a little
677  * while
678  */
679  irttp_fragment_skb(self, skb);
680  }
681 
682  /* Check if we can accept more data from client */
683  if ((!self->tx_sdu_busy) &&
684  (skb_queue_len(&self->tx_queue) > TTP_TX_HIGH_THRESHOLD)) {
685  /* Tx queue filling up, so stop client. */
686  if (self->notify.flow_indication) {
687  self->notify.flow_indication(self->notify.instance,
688  self, FLOW_STOP);
689  }
690  /* self->tx_sdu_busy is the state of the client.
691  * Update state after notifying client to avoid
692  * race condition with irttp_flow_indication().
693  * If the queue empty itself after our test but before
694  * we set the flag, we will fix ourselves below in
695  * irttp_run_tx_queue().
696  * Jean II */
697  self->tx_sdu_busy = TRUE;
698  }
699 
700  /* Try to make some progress */
701  irttp_run_tx_queue(self);
702 
703  return 0;
704 
705 err:
706  dev_kfree_skb(skb);
707  return ret;
708 }
710 
711 /*
712  * Function irttp_run_tx_queue (self)
713  *
714  * Transmit packets queued for transmission (if possible)
715  *
716  */
717 static void irttp_run_tx_queue(struct tsap_cb *self)
718 {
719  struct sk_buff *skb;
720  unsigned long flags;
721  int n;
722 
723  IRDA_DEBUG(2, "%s() : send_credit = %d, queue_len = %d\n",
724  __func__,
725  self->send_credit, skb_queue_len(&self->tx_queue));
726 
727  /* Get exclusive access to the tx queue, otherwise don't touch it */
728  if (irda_lock(&self->tx_queue_lock) == FALSE)
729  return;
730 
731  /* Try to send out frames as long as we have credits
732  * and as long as LAP is not full. If LAP is full, it will
733  * poll us through irttp_flow_indication() - Jean II */
734  while ((self->send_credit > 0) &&
735  (!irlmp_lap_tx_queue_full(self->lsap)) &&
736  (skb = skb_dequeue(&self->tx_queue)))
737  {
738  /*
739  * Since we can transmit and receive frames concurrently,
740  * the code below is a critical region and we must assure that
741  * nobody messes with the credits while we update them.
742  */
743  spin_lock_irqsave(&self->lock, flags);
744 
745  n = self->avail_credit;
746  self->avail_credit = 0;
747 
748  /* Only room for 127 credits in frame */
749  if (n > 127) {
750  self->avail_credit = n-127;
751  n = 127;
752  }
753  self->remote_credit += n;
754  self->send_credit--;
755 
756  spin_unlock_irqrestore(&self->lock, flags);
757 
758  /*
759  * More bit must be set by the data_request() or fragment()
760  * functions
761  */
762  skb->data[0] |= (n & 0x7f);
763 
764  /* Detach from socket.
765  * The current skb has a reference to the socket that sent
766  * it (skb->sk). When we pass it to IrLMP, the skb will be
767  * stored in in IrLAP (self->wx_list). When we are within
768  * IrLAP, we lose the notion of socket, so we should not
769  * have a reference to a socket. So, we drop it here.
770  *
771  * Why does it matter ?
772  * When the skb is freed (kfree_skb), if it is associated
773  * with a socket, it release buffer space on the socket
774  * (through sock_wfree() and sock_def_write_space()).
775  * If the socket no longer exist, we may crash. Hard.
776  * When we close a socket, we make sure that associated packets
777  * in IrTTP are freed. However, we have no way to cancel
778  * the packet that we have passed to IrLAP. So, if a packet
779  * remains in IrLAP (retry on the link or else) after we
780  * close the socket, we are dead !
781  * Jean II */
782  if (skb->sk != NULL) {
783  /* IrSOCK application, IrOBEX, ... */
784  skb_orphan(skb);
785  }
786  /* IrCOMM over IrTTP, IrLAN, ... */
787 
788  /* Pass the skb to IrLMP - done */
789  irlmp_data_request(self->lsap, skb);
790  self->stats.tx_packets++;
791  }
792 
793  /* Check if we can accept more frames from client.
794  * We don't want to wait until the todo timer to do that, and we
795  * can't use tasklets (grr...), so we are obliged to give control
796  * to client. That's ok, this test will be true not too often
797  * (max once per LAP window) and we are called from places
798  * where we can spend a bit of time doing stuff. - Jean II */
799  if ((self->tx_sdu_busy) &&
800  (skb_queue_len(&self->tx_queue) < TTP_TX_LOW_THRESHOLD) &&
801  (!self->close_pend))
802  {
803  if (self->notify.flow_indication)
804  self->notify.flow_indication(self->notify.instance,
805  self, FLOW_START);
806 
807  /* self->tx_sdu_busy is the state of the client.
808  * We don't really have a race here, but it's always safer
809  * to update our state after the client - Jean II */
810  self->tx_sdu_busy = FALSE;
811  }
812 
813  /* Reset lock */
814  self->tx_queue_lock = 0;
815 }
816 
817 /*
818  * Function irttp_give_credit (self)
819  *
820  * Send a dataless flowdata TTP-PDU and give available credit to peer
821  * TSAP
822  */
823 static inline void irttp_give_credit(struct tsap_cb *self)
824 {
825  struct sk_buff *tx_skb = NULL;
826  unsigned long flags;
827  int n;
828 
829  IRDA_ASSERT(self != NULL, return;);
830  IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
831 
832  IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n",
833  __func__,
834  self->send_credit, self->avail_credit, self->remote_credit);
835 
836  /* Give credit to peer */
837  tx_skb = alloc_skb(TTP_MAX_HEADER, GFP_ATOMIC);
838  if (!tx_skb)
839  return;
840 
841  /* Reserve space for LMP, and LAP header */
842  skb_reserve(tx_skb, LMP_MAX_HEADER);
843 
844  /*
845  * Since we can transmit and receive frames concurrently,
846  * the code below is a critical region and we must assure that
847  * nobody messes with the credits while we update them.
848  */
849  spin_lock_irqsave(&self->lock, flags);
850 
851  n = self->avail_credit;
852  self->avail_credit = 0;
853 
854  /* Only space for 127 credits in frame */
855  if (n > 127) {
856  self->avail_credit = n - 127;
857  n = 127;
858  }
859  self->remote_credit += n;
860 
861  spin_unlock_irqrestore(&self->lock, flags);
862 
863  skb_put(tx_skb, 1);
864  tx_skb->data[0] = (__u8) (n & 0x7f);
865 
866  irlmp_data_request(self->lsap, tx_skb);
867  self->stats.tx_packets++;
868 }
869 
870 /*
871  * Function irttp_udata_indication (instance, sap, skb)
872  *
873  * Received some unit-data (unreliable)
874  *
875  */
876 static int irttp_udata_indication(void *instance, void *sap,
877  struct sk_buff *skb)
878 {
879  struct tsap_cb *self;
880  int err;
881 
882  IRDA_DEBUG(4, "%s()\n", __func__);
883 
884  self = instance;
885 
886  IRDA_ASSERT(self != NULL, return -1;);
887  IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
888  IRDA_ASSERT(skb != NULL, return -1;);
889 
890  self->stats.rx_packets++;
891 
892  /* Just pass data to layer above */
893  if (self->notify.udata_indication) {
894  err = self->notify.udata_indication(self->notify.instance,
895  self,skb);
896  /* Same comment as in irttp_do_data_indication() */
897  if (!err)
898  return 0;
899  }
900  /* Either no handler, or handler returns an error */
901  dev_kfree_skb(skb);
902 
903  return 0;
904 }
905 
906 /*
907  * Function irttp_data_indication (instance, sap, skb)
908  *
909  * Receive segment from IrLMP.
910  *
911  */
912 static int irttp_data_indication(void *instance, void *sap,
913  struct sk_buff *skb)
914 {
915  struct tsap_cb *self;
916  unsigned long flags;
917  int n;
918 
919  self = instance;
920 
921  n = skb->data[0] & 0x7f; /* Extract the credits */
922 
923  self->stats.rx_packets++;
924 
925  /* Deal with inbound credit
926  * Since we can transmit and receive frames concurrently,
927  * the code below is a critical region and we must assure that
928  * nobody messes with the credits while we update them.
929  */
930  spin_lock_irqsave(&self->lock, flags);
931  self->send_credit += n;
932  if (skb->len > 1)
933  self->remote_credit--;
934  spin_unlock_irqrestore(&self->lock, flags);
935 
936  /*
937  * Data or dataless packet? Dataless frames contains only the
938  * TTP_HEADER.
939  */
940  if (skb->len > 1) {
941  /*
942  * We don't remove the TTP header, since we must preserve the
943  * more bit, so the defragment routing knows what to do
944  */
945  skb_queue_tail(&self->rx_queue, skb);
946  } else {
947  /* Dataless flowdata TTP-PDU */
948  dev_kfree_skb(skb);
949  }
950 
951 
952  /* Push data to the higher layer.
953  * We do it synchronously because running the todo timer for each
954  * receive packet would be too much overhead and latency.
955  * By passing control to the higher layer, we run the risk that
956  * it may take time or grab a lock. Most often, the higher layer
957  * will only put packet in a queue.
958  * Anyway, packets are only dripping through the IrDA, so we can
959  * have time before the next packet.
960  * Further, we are run from NET_BH, so the worse that can happen is
961  * us missing the optimal time to send back the PF bit in LAP.
962  * Jean II */
963  irttp_run_rx_queue(self);
964 
965  /* We now give credits to peer in irttp_run_rx_queue().
966  * We need to send credit *NOW*, otherwise we are going
967  * to miss the next Tx window. The todo timer may take
968  * a while before it's run... - Jean II */
969 
970  /*
971  * If the peer device has given us some credits and we didn't have
972  * anyone from before, then we need to shedule the tx queue.
973  * We need to do that because our Tx have stopped (so we may not
974  * get any LAP flow indication) and the user may be stopped as
975  * well. - Jean II
976  */
977  if (self->send_credit == n) {
978  /* Restart pushing stuff to LAP */
979  irttp_run_tx_queue(self);
980  /* Note : we don't want to schedule the todo timer
981  * because it has horrible latency. No tasklets
982  * because the tasklet API is broken. - Jean II */
983  }
984 
985  return 0;
986 }
987 
988 /*
989  * Function irttp_status_indication (self, reason)
990  *
991  * Status_indication, just pass to the higher layer...
992  *
993  */
994 static void irttp_status_indication(void *instance,
996 {
997  struct tsap_cb *self;
998 
999  IRDA_DEBUG(4, "%s()\n", __func__);
1000 
1001  self = instance;
1002 
1003  IRDA_ASSERT(self != NULL, return;);
1004  IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1005 
1006  /* Check if client has already closed the TSAP and gone away */
1007  if (self->close_pend)
1008  return;
1009 
1010  /*
1011  * Inform service user if he has requested it
1012  */
1013  if (self->notify.status_indication != NULL)
1014  self->notify.status_indication(self->notify.instance,
1015  link, lock);
1016  else
1017  IRDA_DEBUG(2, "%s(), no handler\n", __func__);
1018 }
1019 
1020 /*
1021  * Function irttp_flow_indication (self, reason)
1022  *
1023  * Flow_indication : IrLAP tells us to send more data.
1024  *
1025  */
1026 static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
1027 {
1028  struct tsap_cb *self;
1029 
1030  self = instance;
1031 
1032  IRDA_ASSERT(self != NULL, return;);
1033  IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1034 
1035  IRDA_DEBUG(4, "%s(instance=%p)\n", __func__, self);
1036 
1037  /* We are "polled" directly from LAP, and the LAP want to fill
1038  * its Tx window. We want to do our best to send it data, so that
1039  * we maximise the window. On the other hand, we want to limit the
1040  * amount of work here so that LAP doesn't hang forever waiting
1041  * for packets. - Jean II */
1042 
1043  /* Try to send some packets. Currently, LAP calls us every time
1044  * there is one free slot, so we will send only one packet.
1045  * This allow the scheduler to do its round robin - Jean II */
1046  irttp_run_tx_queue(self);
1047 
1048  /* Note regarding the interraction with higher layer.
1049  * irttp_run_tx_queue() may call the client when its queue
1050  * start to empty, via notify.flow_indication(). Initially.
1051  * I wanted this to happen in a tasklet, to avoid client
1052  * grabbing the CPU, but we can't use tasklets safely. And timer
1053  * is definitely too slow.
1054  * This will happen only once per LAP window, and usually at
1055  * the third packet (unless window is smaller). LAP is still
1056  * doing mtt and sending first packet so it's sort of OK
1057  * to do that. Jean II */
1058 
1059  /* If we need to send disconnect. try to do it now */
1060  if(self->disconnect_pend)
1061  irttp_start_todo_timer(self, 0);
1062 }
1063 
1064 /*
1065  * Function irttp_flow_request (self, command)
1066  *
1067  * This function could be used by the upper layers to tell IrTTP to stop
1068  * delivering frames if the receive queues are starting to get full, or
1069  * to tell IrTTP to start delivering frames again.
1070  */
1071 void irttp_flow_request(struct tsap_cb *self, LOCAL_FLOW flow)
1072 {
1073  IRDA_DEBUG(1, "%s()\n", __func__);
1074 
1075  IRDA_ASSERT(self != NULL, return;);
1076  IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1077 
1078  switch (flow) {
1079  case FLOW_STOP:
1080  IRDA_DEBUG(1, "%s(), flow stop\n", __func__);
1081  self->rx_sdu_busy = TRUE;
1082  break;
1083  case FLOW_START:
1084  IRDA_DEBUG(1, "%s(), flow start\n", __func__);
1085  self->rx_sdu_busy = FALSE;
1086 
1087  /* Client say he can accept more data, try to free our
1088  * queues ASAP - Jean II */
1089  irttp_run_rx_queue(self);
1090 
1091  break;
1092  default:
1093  IRDA_DEBUG(1, "%s(), Unknown flow command!\n", __func__);
1094  }
1095 }
1097 
1098 /*
1099  * Function irttp_connect_request (self, dtsap_sel, daddr, qos)
1100  *
1101  * Try to connect to remote destination TSAP selector
1102  *
1103  */
1106  struct qos_info *qos, __u32 max_sdu_size,
1107  struct sk_buff *userdata)
1108 {
1109  struct sk_buff *tx_skb;
1110  __u8 *frame;
1111  __u8 n;
1112 
1113  IRDA_DEBUG(4, "%s(), max_sdu_size=%d\n", __func__, max_sdu_size);
1114 
1115  IRDA_ASSERT(self != NULL, return -EBADR;);
1116  IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -EBADR;);
1117 
1118  if (self->connected) {
1119  if(userdata)
1120  dev_kfree_skb(userdata);
1121  return -EISCONN;
1122  }
1123 
1124  /* Any userdata supplied? */
1125  if (userdata == NULL) {
1126  tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
1127  GFP_ATOMIC);
1128  if (!tx_skb)
1129  return -ENOMEM;
1130 
1131  /* Reserve space for MUX_CONTROL and LAP header */
1132  skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
1133  } else {
1134  tx_skb = userdata;
1135  /*
1136  * Check that the client has reserved enough space for
1137  * headers
1138  */
1139  IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
1140  { dev_kfree_skb(userdata); return -1; } );
1141  }
1142 
1143  /* Initialize connection parameters */
1144  self->connected = FALSE;
1145  self->avail_credit = 0;
1146  self->rx_max_sdu_size = max_sdu_size;
1147  self->rx_sdu_size = 0;
1148  self->rx_sdu_busy = FALSE;
1149  self->dtsap_sel = dtsap_sel;
1150 
1151  n = self->initial_credit;
1152 
1153  self->remote_credit = 0;
1154  self->send_credit = 0;
1155 
1156  /*
1157  * Give away max 127 credits for now
1158  */
1159  if (n > 127) {
1160  self->avail_credit=n-127;
1161  n = 127;
1162  }
1163 
1164  self->remote_credit = n;
1165 
1166  /* SAR enabled? */
1167  if (max_sdu_size > 0) {
1168  IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
1169  { dev_kfree_skb(tx_skb); return -1; } );
1170 
1171  /* Insert SAR parameters */
1172  frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
1173 
1174  frame[0] = TTP_PARAMETERS | n;
1175  frame[1] = 0x04; /* Length */
1176  frame[2] = 0x01; /* MaxSduSize */
1177  frame[3] = 0x02; /* Value length */
1178 
1179  put_unaligned(cpu_to_be16((__u16) max_sdu_size),
1180  (__be16 *)(frame+4));
1181  } else {
1182  /* Insert plain TTP header */
1183  frame = skb_push(tx_skb, TTP_HEADER);
1184 
1185  /* Insert initial credit in frame */
1186  frame[0] = n & 0x7f;
1187  }
1188 
1189  /* Connect with IrLMP. No QoS parameters for now */
1190  return irlmp_connect_request(self->lsap, dtsap_sel, saddr, daddr, qos,
1191  tx_skb);
1192 }
1194 
1195 /*
1196  * Function irttp_connect_confirm (handle, qos, skb)
1197  *
1198  * Service user confirms TSAP connection with peer.
1199  *
1200  */
1201 static void irttp_connect_confirm(void *instance, void *sap,
1202  struct qos_info *qos, __u32 max_seg_size,
1203  __u8 max_header_size, struct sk_buff *skb)
1204 {
1205  struct tsap_cb *self;
1206  int parameters;
1207  int ret;
1208  __u8 plen;
1209  __u8 n;
1210 
1211  IRDA_DEBUG(4, "%s()\n", __func__);
1212 
1213  self = instance;
1214 
1215  IRDA_ASSERT(self != NULL, return;);
1216  IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1217  IRDA_ASSERT(skb != NULL, return;);
1218 
1219  self->max_seg_size = max_seg_size - TTP_HEADER;
1220  self->max_header_size = max_header_size + TTP_HEADER;
1221 
1222  /*
1223  * Check if we have got some QoS parameters back! This should be the
1224  * negotiated QoS for the link.
1225  */
1226  if (qos) {
1227  IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %02x\n",
1228  qos->baud_rate.bits);
1229  IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %d bps.\n",
1230  qos->baud_rate.value);
1231  }
1232 
1233  n = skb->data[0] & 0x7f;
1234 
1235  IRDA_DEBUG(4, "%s(), Initial send_credit=%d\n", __func__, n);
1236 
1237  self->send_credit = n;
1238  self->tx_max_sdu_size = 0;
1239  self->connected = TRUE;
1240 
1241  parameters = skb->data[0] & 0x80;
1242 
1243  IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
1244  skb_pull(skb, TTP_HEADER);
1245 
1246  if (parameters) {
1247  plen = skb->data[0];
1248 
1249  ret = irda_param_extract_all(self, skb->data+1,
1250  IRDA_MIN(skb->len-1, plen),
1251  &param_info);
1252 
1253  /* Any errors in the parameter list? */
1254  if (ret < 0) {
1255  IRDA_WARNING("%s: error extracting parameters\n",
1256  __func__);
1257  dev_kfree_skb(skb);
1258 
1259  /* Do not accept this connection attempt */
1260  return;
1261  }
1262  /* Remove parameters */
1263  skb_pull(skb, IRDA_MIN(skb->len, plen+1));
1264  }
1265 
1266  IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n", __func__,
1267  self->send_credit, self->avail_credit, self->remote_credit);
1268 
1269  IRDA_DEBUG(2, "%s(), MaxSduSize=%d\n", __func__,
1270  self->tx_max_sdu_size);
1271 
1272  if (self->notify.connect_confirm) {
1273  self->notify.connect_confirm(self->notify.instance, self, qos,
1274  self->tx_max_sdu_size,
1275  self->max_header_size, skb);
1276  } else
1277  dev_kfree_skb(skb);
1278 }
1279 
1280 /*
1281  * Function irttp_connect_indication (handle, skb)
1282  *
1283  * Some other device is connecting to this TSAP
1284  *
1285  */
1286 static void irttp_connect_indication(void *instance, void *sap,
1287  struct qos_info *qos, __u32 max_seg_size, __u8 max_header_size,
1288  struct sk_buff *skb)
1289 {
1290  struct tsap_cb *self;
1291  struct lsap_cb *lsap;
1292  int parameters;
1293  int ret;
1294  __u8 plen;
1295  __u8 n;
1296 
1297  self = instance;
1298 
1299  IRDA_ASSERT(self != NULL, return;);
1300  IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1301  IRDA_ASSERT(skb != NULL, return;);
1302 
1303  lsap = sap;
1304 
1305  self->max_seg_size = max_seg_size - TTP_HEADER;
1306  self->max_header_size = max_header_size+TTP_HEADER;
1307 
1308  IRDA_DEBUG(4, "%s(), TSAP sel=%02x\n", __func__, self->stsap_sel);
1309 
1310  /* Need to update dtsap_sel if its equal to LSAP_ANY */
1311  self->dtsap_sel = lsap->dlsap_sel;
1312 
1313  n = skb->data[0] & 0x7f;
1314 
1315  self->send_credit = n;
1316  self->tx_max_sdu_size = 0;
1317 
1318  parameters = skb->data[0] & 0x80;
1319 
1320  IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
1321  skb_pull(skb, TTP_HEADER);
1322 
1323  if (parameters) {
1324  plen = skb->data[0];
1325 
1326  ret = irda_param_extract_all(self, skb->data+1,
1327  IRDA_MIN(skb->len-1, plen),
1328  &param_info);
1329 
1330  /* Any errors in the parameter list? */
1331  if (ret < 0) {
1332  IRDA_WARNING("%s: error extracting parameters\n",
1333  __func__);
1334  dev_kfree_skb(skb);
1335 
1336  /* Do not accept this connection attempt */
1337  return;
1338  }
1339 
1340  /* Remove parameters */
1341  skb_pull(skb, IRDA_MIN(skb->len, plen+1));
1342  }
1343 
1344  if (self->notify.connect_indication) {
1345  self->notify.connect_indication(self->notify.instance, self,
1346  qos, self->tx_max_sdu_size,
1347  self->max_header_size, skb);
1348  } else
1349  dev_kfree_skb(skb);
1350 }
1351 
1352 /*
1353  * Function irttp_connect_response (handle, userdata)
1354  *
1355  * Service user is accepting the connection, just pass it down to
1356  * IrLMP!
1357  *
1358  */
1359 int irttp_connect_response(struct tsap_cb *self, __u32 max_sdu_size,
1360  struct sk_buff *userdata)
1361 {
1362  struct sk_buff *tx_skb;
1363  __u8 *frame;
1364  int ret;
1365  __u8 n;
1366 
1367  IRDA_ASSERT(self != NULL, return -1;);
1368  IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
1369 
1370  IRDA_DEBUG(4, "%s(), Source TSAP selector=%02x\n", __func__,
1371  self->stsap_sel);
1372 
1373  /* Any userdata supplied? */
1374  if (userdata == NULL) {
1375  tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
1376  GFP_ATOMIC);
1377  if (!tx_skb)
1378  return -ENOMEM;
1379 
1380  /* Reserve space for MUX_CONTROL and LAP header */
1381  skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
1382  } else {
1383  tx_skb = userdata;
1384  /*
1385  * Check that the client has reserved enough space for
1386  * headers
1387  */
1388  IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
1389  { dev_kfree_skb(userdata); return -1; } );
1390  }
1391 
1392  self->avail_credit = 0;
1393  self->remote_credit = 0;
1394  self->rx_max_sdu_size = max_sdu_size;
1395  self->rx_sdu_size = 0;
1396  self->rx_sdu_busy = FALSE;
1397 
1398  n = self->initial_credit;
1399 
1400  /* Frame has only space for max 127 credits (7 bits) */
1401  if (n > 127) {
1402  self->avail_credit = n - 127;
1403  n = 127;
1404  }
1405 
1406  self->remote_credit = n;
1407  self->connected = TRUE;
1408 
1409  /* SAR enabled? */
1410  if (max_sdu_size > 0) {
1411  IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
1412  { dev_kfree_skb(tx_skb); return -1; } );
1413 
1414  /* Insert TTP header with SAR parameters */
1415  frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
1416 
1417  frame[0] = TTP_PARAMETERS | n;
1418  frame[1] = 0x04; /* Length */
1419 
1420  /* irda_param_insert(self, IRTTP_MAX_SDU_SIZE, frame+1, */
1421 /* TTP_SAR_HEADER, &param_info) */
1422 
1423  frame[2] = 0x01; /* MaxSduSize */
1424  frame[3] = 0x02; /* Value length */
1425 
1426  put_unaligned(cpu_to_be16((__u16) max_sdu_size),
1427  (__be16 *)(frame+4));
1428  } else {
1429  /* Insert TTP header */
1430  frame = skb_push(tx_skb, TTP_HEADER);
1431 
1432  frame[0] = n & 0x7f;
1433  }
1434 
1435  ret = irlmp_connect_response(self->lsap, tx_skb);
1436 
1437  return ret;
1438 }
1440 
1441 /*
1442  * Function irttp_dup (self, instance)
1443  *
1444  * Duplicate TSAP, can be used by servers to confirm a connection on a
1445  * new TSAP so it can keep listening on the old one.
1446  */
1447 struct tsap_cb *irttp_dup(struct tsap_cb *orig, void *instance)
1448 {
1449  struct tsap_cb *new;
1450  unsigned long flags;
1451 
1452  IRDA_DEBUG(1, "%s()\n", __func__);
1453 
1454  /* Protect our access to the old tsap instance */
1455  spin_lock_irqsave(&irttp->tsaps->hb_spinlock, flags);
1456 
1457  /* Find the old instance */
1458  if (!hashbin_find(irttp->tsaps, (long) orig, NULL)) {
1459  IRDA_DEBUG(0, "%s(), unable to find TSAP\n", __func__);
1460  spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1461  return NULL;
1462  }
1463 
1464  /* Allocate a new instance */
1465  new = kmemdup(orig, sizeof(struct tsap_cb), GFP_ATOMIC);
1466  if (!new) {
1467  IRDA_DEBUG(0, "%s(), unable to kmalloc\n", __func__);
1468  spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1469  return NULL;
1470  }
1471  spin_lock_init(&new->lock);
1472 
1473  /* We don't need the old instance any more */
1474  spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1475 
1476  /* Try to dup the LSAP (may fail if we were too slow) */
1477  new->lsap = irlmp_dup(orig->lsap, new);
1478  if (!new->lsap) {
1479  IRDA_DEBUG(0, "%s(), dup failed!\n", __func__);
1480  kfree(new);
1481  return NULL;
1482  }
1483 
1484  /* Not everything should be copied */
1485  new->notify.instance = instance;
1486 
1487  /* Initialize internal objects */
1488  irttp_init_tsap(new);
1489 
1490  /* This is locked */
1491  hashbin_insert(irttp->tsaps, (irda_queue_t *) new, (long) new, NULL);
1492 
1493  return new;
1494 }
1496 
1497 /*
1498  * Function irttp_disconnect_request (self)
1499  *
1500  * Close this connection please! If priority is high, the queued data
1501  * segments, if any, will be deallocated first
1502  *
1503  */
1504 int irttp_disconnect_request(struct tsap_cb *self, struct sk_buff *userdata,
1505  int priority)
1506 {
1507  int ret;
1508 
1509  IRDA_ASSERT(self != NULL, return -1;);
1510  IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
1511 
1512  /* Already disconnected? */
1513  if (!self->connected) {
1514  IRDA_DEBUG(4, "%s(), already disconnected!\n", __func__);
1515  if (userdata)
1516  dev_kfree_skb(userdata);
1517  return -1;
1518  }
1519 
1520  /* Disconnect already pending ?
1521  * We need to use an atomic operation to prevent reentry. This
1522  * function may be called from various context, like user, timer
1523  * for following a disconnect_indication() (i.e. net_bh).
1524  * Jean II */
1525  if(test_and_set_bit(0, &self->disconnect_pend)) {
1526  IRDA_DEBUG(0, "%s(), disconnect already pending\n",
1527  __func__);
1528  if (userdata)
1529  dev_kfree_skb(userdata);
1530 
1531  /* Try to make some progress */
1532  irttp_run_tx_queue(self);
1533  return -1;
1534  }
1535 
1536  /*
1537  * Check if there is still data segments in the transmit queue
1538  */
1539  if (!skb_queue_empty(&self->tx_queue)) {
1540  if (priority == P_HIGH) {
1541  /*
1542  * No need to send the queued data, if we are
1543  * disconnecting right now since the data will
1544  * not have any usable connection to be sent on
1545  */
1546  IRDA_DEBUG(1, "%s(): High priority!!()\n", __func__);
1547  irttp_flush_queues(self);
1548  } else if (priority == P_NORMAL) {
1549  /*
1550  * Must delay disconnect until after all data segments
1551  * have been sent and the tx_queue is empty
1552  */
1553  /* We'll reuse this one later for the disconnect */
1554  self->disconnect_skb = userdata; /* May be NULL */
1555 
1556  irttp_run_tx_queue(self);
1557 
1558  irttp_start_todo_timer(self, HZ/10);
1559  return -1;
1560  }
1561  }
1562  /* Note : we don't need to check if self->rx_queue is full and the
1563  * state of self->rx_sdu_busy because the disconnect response will
1564  * be sent at the LMP level (so even if the peer has its Tx queue
1565  * full of data). - Jean II */
1566 
1567  IRDA_DEBUG(1, "%s(), Disconnecting ...\n", __func__);
1568  self->connected = FALSE;
1569 
1570  if (!userdata) {
1571  struct sk_buff *tx_skb;
1572  tx_skb = alloc_skb(LMP_MAX_HEADER, GFP_ATOMIC);
1573  if (!tx_skb)
1574  return -ENOMEM;
1575 
1576  /*
1577  * Reserve space for MUX and LAP header
1578  */
1579  skb_reserve(tx_skb, LMP_MAX_HEADER);
1580 
1581  userdata = tx_skb;
1582  }
1583  ret = irlmp_disconnect_request(self->lsap, userdata);
1584 
1585  /* The disconnect is no longer pending */
1586  clear_bit(0, &self->disconnect_pend); /* FALSE */
1587 
1588  return ret;
1589 }
1591 
1592 /*
1593  * Function irttp_disconnect_indication (self, reason)
1594  *
1595  * Disconnect indication, TSAP disconnected by peer?
1596  *
1597  */
1598 static void irttp_disconnect_indication(void *instance, void *sap,
1599  LM_REASON reason, struct sk_buff *skb)
1600 {
1601  struct tsap_cb *self;
1602 
1603  IRDA_DEBUG(4, "%s()\n", __func__);
1604 
1605  self = instance;
1606 
1607  IRDA_ASSERT(self != NULL, return;);
1608  IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1609 
1610  /* Prevent higher layer to send more data */
1611  self->connected = FALSE;
1612 
1613  /* Check if client has already tried to close the TSAP */
1614  if (self->close_pend) {
1615  /* In this case, the higher layer is probably gone. Don't
1616  * bother it and clean up the remains - Jean II */
1617  if (skb)
1618  dev_kfree_skb(skb);
1619  irttp_close_tsap(self);
1620  return;
1621  }
1622 
1623  /* If we are here, we assume that is the higher layer is still
1624  * waiting for the disconnect notification and able to process it,
1625  * even if he tried to disconnect. Otherwise, it would have already
1626  * attempted to close the tsap and self->close_pend would be TRUE.
1627  * Jean II */
1628 
1629  /* No need to notify the client if has already tried to disconnect */
1630  if(self->notify.disconnect_indication)
1631  self->notify.disconnect_indication(self->notify.instance, self,
1632  reason, skb);
1633  else
1634  if (skb)
1635  dev_kfree_skb(skb);
1636 }
1637 
1638 /*
1639  * Function irttp_do_data_indication (self, skb)
1640  *
1641  * Try to deliver reassembled skb to layer above, and requeue it if that
1642  * for some reason should fail. We mark rx sdu as busy to apply back
1643  * pressure is necessary.
1644  */
1645 static void irttp_do_data_indication(struct tsap_cb *self, struct sk_buff *skb)
1646 {
1647  int err;
1648 
1649  /* Check if client has already closed the TSAP and gone away */
1650  if (self->close_pend) {
1651  dev_kfree_skb(skb);
1652  return;
1653  }
1654 
1655  err = self->notify.data_indication(self->notify.instance, self, skb);
1656 
1657  /* Usually the layer above will notify that it's input queue is
1658  * starting to get filled by using the flow request, but this may
1659  * be difficult, so it can instead just refuse to eat it and just
1660  * give an error back
1661  */
1662  if (err) {
1663  IRDA_DEBUG(0, "%s() requeueing skb!\n", __func__);
1664 
1665  /* Make sure we take a break */
1666  self->rx_sdu_busy = TRUE;
1667 
1668  /* Need to push the header in again */
1669  skb_push(skb, TTP_HEADER);
1670  skb->data[0] = 0x00; /* Make sure MORE bit is cleared */
1671 
1672  /* Put skb back on queue */
1673  skb_queue_head(&self->rx_queue, skb);
1674  }
1675 }
1676 
1677 /*
1678  * Function irttp_run_rx_queue (self)
1679  *
1680  * Check if we have any frames to be transmitted, or if we have any
1681  * available credit to give away.
1682  */
1683 static void irttp_run_rx_queue(struct tsap_cb *self)
1684 {
1685  struct sk_buff *skb;
1686  int more = 0;
1687 
1688  IRDA_DEBUG(2, "%s() send=%d,avail=%d,remote=%d\n", __func__,
1689  self->send_credit, self->avail_credit, self->remote_credit);
1690 
1691  /* Get exclusive access to the rx queue, otherwise don't touch it */
1692  if (irda_lock(&self->rx_queue_lock) == FALSE)
1693  return;
1694 
1695  /*
1696  * Reassemble all frames in receive queue and deliver them
1697  */
1698  while (!self->rx_sdu_busy && (skb = skb_dequeue(&self->rx_queue))) {
1699  /* This bit will tell us if it's the last fragment or not */
1700  more = skb->data[0] & 0x80;
1701 
1702  /* Remove TTP header */
1703  skb_pull(skb, TTP_HEADER);
1704 
1705  /* Add the length of the remaining data */
1706  self->rx_sdu_size += skb->len;
1707 
1708  /*
1709  * If SAR is disabled, or user has requested no reassembly
1710  * of received fragments then we just deliver them
1711  * immediately. This can be requested by clients that
1712  * implements byte streams without any message boundaries
1713  */
1714  if (self->rx_max_sdu_size == TTP_SAR_DISABLE) {
1715  irttp_do_data_indication(self, skb);
1716  self->rx_sdu_size = 0;
1717 
1718  continue;
1719  }
1720 
1721  /* Check if this is a fragment, and not the last fragment */
1722  if (more) {
1723  /*
1724  * Queue the fragment if we still are within the
1725  * limits of the maximum size of the rx_sdu
1726  */
1727  if (self->rx_sdu_size <= self->rx_max_sdu_size) {
1728  IRDA_DEBUG(4, "%s(), queueing frag\n",
1729  __func__);
1730  skb_queue_tail(&self->rx_fragments, skb);
1731  } else {
1732  /* Free the part of the SDU that is too big */
1733  dev_kfree_skb(skb);
1734  }
1735  continue;
1736  }
1737  /*
1738  * This is the last fragment, so time to reassemble!
1739  */
1740  if ((self->rx_sdu_size <= self->rx_max_sdu_size) ||
1741  (self->rx_max_sdu_size == TTP_SAR_UNBOUND))
1742  {
1743  /*
1744  * A little optimizing. Only queue the fragment if
1745  * there are other fragments. Since if this is the
1746  * last and only fragment, there is no need to
1747  * reassemble :-)
1748  */
1749  if (!skb_queue_empty(&self->rx_fragments)) {
1750  skb_queue_tail(&self->rx_fragments,
1751  skb);
1752 
1753  skb = irttp_reassemble_skb(self);
1754  }
1755 
1756  /* Now we can deliver the reassembled skb */
1757  irttp_do_data_indication(self, skb);
1758  } else {
1759  IRDA_DEBUG(1, "%s(), Truncated frame\n", __func__);
1760 
1761  /* Free the part of the SDU that is too big */
1762  dev_kfree_skb(skb);
1763 
1764  /* Deliver only the valid but truncated part of SDU */
1765  skb = irttp_reassemble_skb(self);
1766 
1767  irttp_do_data_indication(self, skb);
1768  }
1769  self->rx_sdu_size = 0;
1770  }
1771 
1772  /*
1773  * It's not trivial to keep track of how many credits are available
1774  * by incrementing at each packet, because delivery may fail
1775  * (irttp_do_data_indication() may requeue the frame) and because
1776  * we need to take care of fragmentation.
1777  * We want the other side to send up to initial_credit packets.
1778  * We have some frames in our queues, and we have already allowed it
1779  * to send remote_credit.
1780  * No need to spinlock, write is atomic and self correcting...
1781  * Jean II
1782  */
1783  self->avail_credit = (self->initial_credit -
1784  (self->remote_credit +
1785  skb_queue_len(&self->rx_queue) +
1786  skb_queue_len(&self->rx_fragments)));
1787 
1788  /* Do we have too much credits to send to peer ? */
1789  if ((self->remote_credit <= TTP_RX_MIN_CREDIT) &&
1790  (self->avail_credit > 0)) {
1791  /* Send explicit credit frame */
1792  irttp_give_credit(self);
1793  /* Note : do *NOT* check if tx_queue is non-empty, that
1794  * will produce deadlocks. I repeat : send a credit frame
1795  * even if we have something to send in our Tx queue.
1796  * If we have credits, it means that our Tx queue is blocked.
1797  *
1798  * Let's suppose the peer can't keep up with our Tx. He will
1799  * flow control us by not sending us any credits, and we
1800  * will stop Tx and start accumulating credits here.
1801  * Up to the point where the peer will stop its Tx queue,
1802  * for lack of credits.
1803  * Let's assume the peer application is single threaded.
1804  * It will block on Tx and never consume any Rx buffer.
1805  * Deadlock. Guaranteed. - Jean II
1806  */
1807  }
1808 
1809  /* Reset lock */
1810  self->rx_queue_lock = 0;
1811 }
1812 
1813 #ifdef CONFIG_PROC_FS
1814 struct irttp_iter_state {
1815  int id;
1816 };
1817 
1818 static void *irttp_seq_start(struct seq_file *seq, loff_t *pos)
1819 {
1820  struct irttp_iter_state *iter = seq->private;
1821  struct tsap_cb *self;
1822 
1823  /* Protect our access to the tsap list */
1824  spin_lock_irq(&irttp->tsaps->hb_spinlock);
1825  iter->id = 0;
1826 
1827  for (self = (struct tsap_cb *) hashbin_get_first(irttp->tsaps);
1828  self != NULL;
1829  self = (struct tsap_cb *) hashbin_get_next(irttp->tsaps)) {
1830  if (iter->id == *pos)
1831  break;
1832  ++iter->id;
1833  }
1834 
1835  return self;
1836 }
1837 
1838 static void *irttp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1839 {
1840  struct irttp_iter_state *iter = seq->private;
1841 
1842  ++*pos;
1843  ++iter->id;
1844  return (void *) hashbin_get_next(irttp->tsaps);
1845 }
1846 
1847 static void irttp_seq_stop(struct seq_file *seq, void *v)
1848 {
1849  spin_unlock_irq(&irttp->tsaps->hb_spinlock);
1850 }
1851 
1852 static int irttp_seq_show(struct seq_file *seq, void *v)
1853 {
1854  const struct irttp_iter_state *iter = seq->private;
1855  const struct tsap_cb *self = v;
1856 
1857  seq_printf(seq, "TSAP %d, ", iter->id);
1858  seq_printf(seq, "stsap_sel: %02x, ",
1859  self->stsap_sel);
1860  seq_printf(seq, "dtsap_sel: %02x\n",
1861  self->dtsap_sel);
1862  seq_printf(seq, " connected: %s, ",
1863  self->connected? "TRUE":"FALSE");
1864  seq_printf(seq, "avail credit: %d, ",
1865  self->avail_credit);
1866  seq_printf(seq, "remote credit: %d, ",
1867  self->remote_credit);
1868  seq_printf(seq, "send credit: %d\n",
1869  self->send_credit);
1870  seq_printf(seq, " tx packets: %lu, ",
1871  self->stats.tx_packets);
1872  seq_printf(seq, "rx packets: %lu, ",
1873  self->stats.rx_packets);
1874  seq_printf(seq, "tx_queue len: %u ",
1875  skb_queue_len(&self->tx_queue));
1876  seq_printf(seq, "rx_queue len: %u\n",
1877  skb_queue_len(&self->rx_queue));
1878  seq_printf(seq, " tx_sdu_busy: %s, ",
1879  self->tx_sdu_busy? "TRUE":"FALSE");
1880  seq_printf(seq, "rx_sdu_busy: %s\n",
1881  self->rx_sdu_busy? "TRUE":"FALSE");
1882  seq_printf(seq, " max_seg_size: %u, ",
1883  self->max_seg_size);
1884  seq_printf(seq, "tx_max_sdu_size: %u, ",
1885  self->tx_max_sdu_size);
1886  seq_printf(seq, "rx_max_sdu_size: %u\n",
1887  self->rx_max_sdu_size);
1888 
1889  seq_printf(seq, " Used by (%s)\n\n",
1890  self->notify.name);
1891  return 0;
1892 }
1893 
1894 static const struct seq_operations irttp_seq_ops = {
1895  .start = irttp_seq_start,
1896  .next = irttp_seq_next,
1897  .stop = irttp_seq_stop,
1898  .show = irttp_seq_show,
1899 };
1900 
1901 static int irttp_seq_open(struct inode *inode, struct file *file)
1902 {
1903  return seq_open_private(file, &irttp_seq_ops,
1904  sizeof(struct irttp_iter_state));
1905 }
1906 
1907 const struct file_operations irttp_seq_fops = {
1908  .owner = THIS_MODULE,
1909  .open = irttp_seq_open,
1910  .read = seq_read,
1911  .llseek = seq_lseek,
1912  .release = seq_release_private,
1913 };
1914 
1915 #endif /* PROC_FS */