Linux Kernel
3.7.1
Main Page
Related Pages
Modules
Namespaces
Data Structures
Files
File List
Globals
•
All
Data Structures
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Macros
Groups
Pages
include
linux
jiffies.h
Go to the documentation of this file.
1
#ifndef _LINUX_JIFFIES_H
2
#define _LINUX_JIFFIES_H
3
4
#include <
linux/math64.h
>
5
#include <linux/kernel.h>
6
#include <linux/types.h>
7
#include <linux/time.h>
8
#include <linux/timex.h>
9
#include <asm/param.h>
/* for HZ */
10
11
/*
12
* The following defines establish the engineering parameters of the PLL
13
* model. The HZ variable establishes the timer interrupt frequency, 100 Hz
14
* for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
15
* OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
16
* nearest power of two in order to avoid hardware multiply operations.
17
*/
18
#if HZ >= 12 && HZ < 24
19
# define SHIFT_HZ 4
20
#elif HZ >= 24 && HZ < 48
21
# define SHIFT_HZ 5
22
#elif HZ >= 48 && HZ < 96
23
# define SHIFT_HZ 6
24
#elif HZ >= 96 && HZ < 192
25
# define SHIFT_HZ 7
26
#elif HZ >= 192 && HZ < 384
27
# define SHIFT_HZ 8
28
#elif HZ >= 384 && HZ < 768
29
# define SHIFT_HZ 9
30
#elif HZ >= 768 && HZ < 1536
31
# define SHIFT_HZ 10
32
#elif HZ >= 1536 && HZ < 3072
33
# define SHIFT_HZ 11
34
#elif HZ >= 3072 && HZ < 6144
35
# define SHIFT_HZ 12
36
#elif HZ >= 6144 && HZ < 12288
37
# define SHIFT_HZ 13
38
#else
39
# error Invalid value of HZ.
40
#endif
41
42
/* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
43
* improve accuracy by shifting LSH bits, hence calculating:
44
* (NOM << LSH) / DEN
45
* This however means trouble for large NOM, because (NOM << LSH) may no
46
* longer fit in 32 bits. The following way of calculating this gives us
47
* some slack, under the following conditions:
48
* - (NOM / DEN) fits in (32 - LSH) bits.
49
* - (NOM % DEN) fits in (32 - LSH) bits.
50
*/
51
#define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \
52
+ ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
53
54
/* LATCH is used in the interval timer and ftape setup. */
55
#define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ)
/* For divider */
56
57
extern
int
register_refined_jiffies
(
long
clock_tick_rate);
58
59
/* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */
60
#define TICK_NSEC ((NSEC_PER_SEC+HZ/2)/HZ)
61
62
/* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
63
#define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
64
65
/* some arch's have a small-data section that can be accessed register-relative
66
* but that can only take up to, say, 4-byte variables. jiffies being part of
67
* an 8-byte variable may not be correctly accessed unless we force the issue
68
*/
69
#define __jiffy_data __attribute__((section(".data")))
70
71
/*
72
* The 64-bit value is not atomic - you MUST NOT read it
73
* without sampling the sequence number in xtime_lock.
74
* get_jiffies_64() will do this for you as appropriate.
75
*/
76
extern
u64
__jiffy_data
jiffies_64
;
77
extern
unsigned
long
volatile
__jiffy_data
jiffies
;
78
79
#if (BITS_PER_LONG < 64)
80
u64
get_jiffies_64
(
void
);
81
#else
82
static
inline
u64
get_jiffies_64
(
void
)
83
{
84
return
(
u64
)
jiffies
;
85
}
86
#endif
87
88
/*
89
* These inlines deal with timer wrapping correctly. You are
90
* strongly encouraged to use them
91
* 1. Because people otherwise forget
92
* 2. Because if the timer wrap changes in future you won't have to
93
* alter your driver code.
94
*
95
* time_after(a,b) returns true if the time a is after time b.
96
*
97
* Do this with "<0" and ">=0" to only test the sign of the result. A
98
* good compiler would generate better code (and a really good compiler
99
* wouldn't care). Gcc is currently neither.
100
*/
101
#define time_after(a,b) \
102
(typecheck(unsigned long, a) && \
103
typecheck(unsigned long, b) && \
104
((long)(b) - (long)(a) < 0))
105
#define time_before(a,b) time_after(b,a)
106
107
#define time_after_eq(a,b) \
108
(typecheck(unsigned long, a) && \
109
typecheck(unsigned long, b) && \
110
((long)(a) - (long)(b) >= 0))
111
#define time_before_eq(a,b) time_after_eq(b,a)
112
113
/*
114
* Calculate whether a is in the range of [b, c].
115
*/
116
#define time_in_range(a,b,c) \
117
(time_after_eq(a,b) && \
118
time_before_eq(a,c))
119
120
/*
121
* Calculate whether a is in the range of [b, c).
122
*/
123
#define time_in_range_open(a,b,c) \
124
(time_after_eq(a,b) && \
125
time_before(a,c))
126
127
/* Same as above, but does so with platform independent 64bit types.
128
* These must be used when utilizing jiffies_64 (i.e. return value of
129
* get_jiffies_64() */
130
#define time_after64(a,b) \
131
(typecheck(__u64, a) && \
132
typecheck(__u64, b) && \
133
((__s64)(b) - (__s64)(a) < 0))
134
#define time_before64(a,b) time_after64(b,a)
135
136
#define time_after_eq64(a,b) \
137
(typecheck(__u64, a) && \
138
typecheck(__u64, b) && \
139
((__s64)(a) - (__s64)(b) >= 0))
140
#define time_before_eq64(a,b) time_after_eq64(b,a)
141
142
/*
143
* These four macros compare jiffies and 'a' for convenience.
144
*/
145
146
/* time_is_before_jiffies(a) return true if a is before jiffies */
147
#define time_is_before_jiffies(a) time_after(jiffies, a)
148
149
/* time_is_after_jiffies(a) return true if a is after jiffies */
150
#define time_is_after_jiffies(a) time_before(jiffies, a)
151
152
/* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
153
#define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
154
155
/* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
156
#define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
157
158
/*
159
* Have the 32 bit jiffies value wrap 5 minutes after boot
160
* so jiffies wrap bugs show up earlier.
161
*/
162
#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
163
164
/*
165
* Change timeval to jiffies, trying to avoid the
166
* most obvious overflows..
167
*
168
* And some not so obvious.
169
*
170
* Note that we don't want to return LONG_MAX, because
171
* for various timeout reasons we often end up having
172
* to wait "jiffies+1" in order to guarantee that we wait
173
* at _least_ "jiffies" - so "jiffies+1" had better still
174
* be positive.
175
*/
176
#define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
177
178
extern
unsigned
long
preset_lpj
;
179
180
/*
181
* We want to do realistic conversions of time so we need to use the same
182
* values the update wall clock code uses as the jiffies size. This value
183
* is: TICK_NSEC (which is defined in timex.h). This
184
* is a constant and is in nanoseconds. We will use scaled math
185
* with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and
186
* NSEC_JIFFIE_SC. Note that these defines contain nothing but
187
* constants and so are computed at compile time. SHIFT_HZ (computed in
188
* timex.h) adjusts the scaling for different HZ values.
189
190
* Scaled math??? What is that?
191
*
192
* Scaled math is a way to do integer math on values that would,
193
* otherwise, either overflow, underflow, or cause undesired div
194
* instructions to appear in the execution path. In short, we "scale"
195
* up the operands so they take more bits (more precision, less
196
* underflow), do the desired operation and then "scale" the result back
197
* by the same amount. If we do the scaling by shifting we avoid the
198
* costly mpy and the dastardly div instructions.
199
200
* Suppose, for example, we want to convert from seconds to jiffies
201
* where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The
202
* simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
203
* observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
204
* might calculate at compile time, however, the result will only have
205
* about 3-4 bits of precision (less for smaller values of HZ).
206
*
207
* So, we scale as follows:
208
* jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
209
* jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
210
* Then we make SCALE a power of two so:
211
* jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
212
* Now we define:
213
* #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
214
* jiff = (sec * SEC_CONV) >> SCALE;
215
*
216
* Often the math we use will expand beyond 32-bits so we tell C how to
217
* do this and pass the 64-bit result of the mpy through the ">> SCALE"
218
* which should take the result back to 32-bits. We want this expansion
219
* to capture as much precision as possible. At the same time we don't
220
* want to overflow so we pick the SCALE to avoid this. In this file,
221
* that means using a different scale for each range of HZ values (as
222
* defined in timex.h).
223
*
224
* For those who want to know, gcc will give a 64-bit result from a "*"
225
* operator if the result is a long long AND at least one of the
226
* operands is cast to long long (usually just prior to the "*" so as
227
* not to confuse it into thinking it really has a 64-bit operand,
228
* which, buy the way, it can do, but it takes more code and at least 2
229
* mpys).
230
231
* We also need to be aware that one second in nanoseconds is only a
232
* couple of bits away from overflowing a 32-bit word, so we MUST use
233
* 64-bits to get the full range time in nanoseconds.
234
235
*/
236
237
/*
238
* Here are the scales we will use. One for seconds, nanoseconds and
239
* microseconds.
240
*
241
* Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
242
* check if the sign bit is set. If not, we bump the shift count by 1.
243
* (Gets an extra bit of precision where we can use it.)
244
* We know it is set for HZ = 1024 and HZ = 100 not for 1000.
245
* Haven't tested others.
246
247
* Limits of cpp (for #if expressions) only long (no long long), but
248
* then we only need the most signicant bit.
249
*/
250
251
#define SEC_JIFFIE_SC (31 - SHIFT_HZ)
252
#if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
253
#undef SEC_JIFFIE_SC
254
#define SEC_JIFFIE_SC (32 - SHIFT_HZ)
255
#endif
256
#define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
257
#define USEC_JIFFIE_SC (SEC_JIFFIE_SC + 19)
258
#define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
259
TICK_NSEC -1) / (u64)TICK_NSEC))
260
261
#define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
262
TICK_NSEC -1) / (u64)TICK_NSEC))
263
#define USEC_CONVERSION \
264
((unsigned long)((((u64)NSEC_PER_USEC << USEC_JIFFIE_SC) +\
265
TICK_NSEC -1) / (u64)TICK_NSEC))
266
/*
267
* USEC_ROUND is used in the timeval to jiffie conversion. See there
268
* for more details. It is the scaled resolution rounding value. Note
269
* that it is a 64-bit value. Since, when it is applied, we are already
270
* in jiffies (albit scaled), it is nothing but the bits we will shift
271
* off.
272
*/
273
#define USEC_ROUND (u64)(((u64)1 << USEC_JIFFIE_SC) - 1)
274
/*
275
* The maximum jiffie value is (MAX_INT >> 1). Here we translate that
276
* into seconds. The 64-bit case will overflow if we are not careful,
277
* so use the messy SH_DIV macro to do it. Still all constants.
278
*/
279
#if BITS_PER_LONG < 64
280
# define MAX_SEC_IN_JIFFIES \
281
(long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
282
#else
/* take care of overflow on 64 bits machines */
283
# define MAX_SEC_IN_JIFFIES \
284
(SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
285
286
#endif
287
288
/*
289
* Convert various time units to each other:
290
*/
291
extern
unsigned
int
jiffies_to_msecs
(
const
unsigned
long
j
);
292
extern
unsigned
int
jiffies_to_usecs
(
const
unsigned
long
j
);
293
extern
unsigned
long
msecs_to_jiffies
(
const
unsigned
int
m
);
294
extern
unsigned
long
usecs_to_jiffies
(
const
unsigned
int
u
);
295
extern
unsigned
long
timespec_to_jiffies
(
const
struct
timespec
*
value
);
296
extern
void
jiffies_to_timespec
(
const
unsigned
long
jiffies,
297
struct
timespec
*
value
);
298
extern
unsigned
long
timeval_to_jiffies
(
const
struct
timeval
*
value
);
299
extern
void
jiffies_to_timeval
(
const
unsigned
long
jiffies,
300
struct
timeval
*
value
);
301
302
extern
clock_t
jiffies_to_clock_t
(
unsigned
long
x
);
303
static
inline
clock_t
jiffies_delta_to_clock_t(
long
delta
)
304
{
305
return
jiffies_to_clock_t
(
max
(0L, delta));
306
}
307
308
extern
unsigned
long
clock_t_to_jiffies
(
unsigned
long
x
);
309
extern
u64
jiffies_64_to_clock_t
(
u64
x
);
310
extern
u64
nsec_to_clock_t
(
u64
x
);
311
extern
u64
nsecs_to_jiffies64
(
u64
n
);
312
extern
unsigned
long
nsecs_to_jiffies
(
u64
n
);
313
314
#define TIMESTAMP_SIZE 30
315
316
#endif
Generated on Thu Jan 10 2013 14:51:43 for Linux Kernel by
1.8.2